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a b s t r a c t

This paper presents a new approach to solving acoustic scattering problems: the Unified

Transform method. This spectral, boundary-based collocation method can be readily applied

to acoustic scattering by disjoint two-dimensional structures, and, for the purposes of this

paper, is illustrated in the case of multiple flat plates, which also addresses the additional dif-

ficulty of mathematical singularities in the scattered field due to diffraction at sharp edges.

Fluid-structure interaction may also be incorporated into the method, such as plate elasticity,

which when applied to aerofoil trailing edges, is known to reduce aerodynamic noise. While a

range of examples are illustrated to show the versatility of the method, attention is in particu-

lar given to the scattering of quadrupole sources by rigid plates with finite elastic extensions.

It is seen that whilst a fully elastic plate is most beneficial acoustically, plates with only small

extensions can considerably reduce the far-field sound power versus a fully rigid plate.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

The interaction of acoustic or hydrodynamic fluctuations with thin elastic structures arises in numerous situations, including

both aeroacoustics, where elasticity of a wing is known to reduce the aerodynamic noise scattered by the sharp trailing edge,

and oceanography, where ice sheets deform elastically on the ocean surface affecting acoustic scattering in the ocean beneath,

or, where ocean waves interact with flexible marine platforms. Accurate and fast modelling of the fluid-structure interaction is

key to predicting the effect of external forces on an elastic plate, or the effect of elasticity on the radiated field, and thus crucial

for providing insight into a wide range of fluid dynamic problems.

When elastic structures can be approximated by flat plates, theoretical progress for scattering problems is possible predom-

inantly through the use of the Wiener–Hopf method [19]. Examples of this relevant to the scattering of aerodynamic noise are

given by Refs. [14,16,23], and examples relevant to ocean acoustics by Refs. [27,29], and recently [26]. In both applications, the

factorisation required during the Wiener–Hopf method is difficult due to the complexity of the elastic kernel function [8]. In

the case where the elastic plate is finite, the Wiener–Hopf method becomes more difficult still due to the need to factorise a

matrix kernel rather than a scalar kernel, as seen in recent work [1]. There, the solution is approximated and obtained only in a

restricted region of the scattered domain.

Numerical simulations are also complexified by the elastic properties; current work [3] for the scattering of a near-field

source by a finite perforated elastic flat plate requires two problems to be solved; one for the structural modes of the plate

which is done via a spectral method; the second for the scattering of the acoustic source which is achieved via a boundary

element method (BEM). A benefit of this approach compared to theoretical modelling is that finite length effects are easily

∗
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included, which is important as both backscattering [18] of the trailing-edge field by the leading edge, and structural resonances

can be significant in aeroacoustic applications.

Inspired by the previous numerical method for elastic plates [3], this paper presents an alternative spectral boundary-based

method for obtaining the scattered field due to the interaction of acoustic sources with finite elastic plates, adapted from a

similar approach used for rigid plates [5]. This approach, centred around taking the unified transform [11] (also known as the

Fokas transform) of the governing equations both for the structural and acoustic fields, allows us to combine these equations

in spectral space and avoids having to calculate singular integrals as is often problematic for BEM codes. It is also fast, with

suitable basis functions leading to rapid convergence (see Ref. [5] for comparisons with other spectral and boundary based

methods). Our new method can be easily extended to more complicated geometries, such as those consisting of multiple, not

necessarily parallel plates, and therefore could provide a valuable tool for a range of aeroacoustic and hydroacoustic applications.

Additionally, different sources could easily be input for this method. However, such a consideration is beyond the scope of the

current paper.

The layout of this paper is as follows. Section 2 outlines the mathematical problem of the scattering of acoustic waves by

finite plates with flexural elasticity. Section 3 contains details on the unified transform, both generally and specific to scattering

by collinear elastic plates (which is the focus of this paper and provides some simplification to the general method). We also

discuss the choice of basis functions in which we expand the unknown boundary data, and collocation points most amenable

for fast computation of the resulting linear system when boundaries deform due to wave-bearing elasticity. We further provide

a numerical analysis of our new approach and discuss its advantages over traditional methods. Section 4 illustrates the utility

of the new method with a range of examples. First, we consider the scattering of a near-field quadrupole source by a finite

elastic plate (achieved through the acoustic reciprocity principle) and compare to previous results [3]. Second, we illustrate the

versatility of the method by including multiple elastic plates as could be useful for modelling formation flight/swimming, or

multiple ice sheets. Finally, we consider joined plates, in particular, a plate consisting of a rigid section and an elastic section

(clamped to the rigid section). This has particular relevance to the practical modelling of reduced trailing-edge noise designs.

Our conclusions are given in Section 5.

2. Mathematical modelling

We consider the scattering of some incident pressure field, p∗
I

, by a number of finite elastic plates in an unbounded quiescent

fluid of density 𝜌∗
0

and speed of sound c∗
0

, where the superscript ∗ denotes a dimensional quantity. We suppose the ith elastic

plate is parallel to the horizontal x
∗

direction and is described by a contour 𝛾 i. We non-dimensionalise lengths by the length of

a typical plate, velocities by c∗
0
, and pressures by 𝜌∗

0
c∗2

0
, denoting non-dimensional quantities without the ∗ superscript.

We suppose the incident pressure field is given by pI(x, y, t) = qI(x, y)e−i𝜔t and the scattered pressure field is denoted by

p(x, y, t) = q(x, y)e−i𝜔t. The scattered field thus satisfies

𝜕2q

𝜕x2
+ 𝜕2q

𝜕y2
+ k2

0
q = 0 (1)

subject to the Sommerfeld radiation condition, and appropriate boundary conditions on each elastic plate. By denoting the

deformation of the ith elastic plate by 𝜂i(x)e−i𝜔t, the dynamic condition on each plate satisfies(
𝜕4

𝜕x4
−

k4
0

Ω4
i

)
𝜂i = − 𝜖i

Ω6
i

k3
0
[q] on 𝛾i, (2)

where 𝜖i is the fluid loading parameter, given by 𝜖 = 𝜌0k0∕(mkB)2 and Ωi = k0∕kB the vacuum bending wave Mach number for

the ith plate [3]. Here, m is the specific mass of the plate, and kB is the in-vacuo bending wavenumber of the plate. Finally, [q]
denotes the jump in pressure across the plate (pressure above the plate minus pressure below the plate).

The kinematic condition for each plate is given by

k2
0
𝜂i =

𝜕qI

𝜕y
+ 𝜕q

𝜕y
on 𝛾i. (3)

The ends of each plate will be specified as either clamped or free. Supposing the end of an elastic plate is at x = x0, it is clamped

if

𝜂(x0) = 𝜂′(x0) = 0, (4)

or it is free if

𝜂′′(x0) = 𝜂′′′(x0) = 0. (5)

Finally, should an additional (stationary) rigid surface be present along the contour Γ, also parallel to the x axis, we require

𝜕q

𝜕y
= −𝜕qI

𝜕y
on Γ. (6)
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3. Unified transform

In this section, we discuss first how to generate the so-called ‘global relation’ obtained from the unified transform, which

then permits numerical progress. Once the global relation is obtained, we can expand all unknown boundary data in terms

of carefully selected basis functions to obtain a linear system for the expansion coefficients. Finally, the linear system can be

evaluated at collocation points to solve for the unknown expansion coefficients.

We begin by discussing the general theory behind the unified transform in section 3.1, before simplifying to the case of

collinear plates in section 3.2. We discuss the choice of basis functions in section 3.3 and collocation points in section 3.4. A

simple example with three rigid plates is then given in section 3.5.

3.1. General theory

The unified transform can be applied to arbitrary elliptic PDEs with constant coefficients [5–7] and more general separable

PDEs [4], with boundary conditions prescribed on curved boundaries, non-flat bodies and bodies close to a source [4,9,10,17].

However, for the sake of brevity, we shall describe the method applied to the Helmholtz equation Eq. (1). First, let v be another

solution to the Helmholtz equation. Multiplying Eq. (1) by v, and then subtracting the same equation with q and v interchanged

we find

𝜕

𝜕x

(
v
𝜕q

𝜕x
− q

𝜕v

𝜕x

)
+ 𝜕

𝜕y

(
v
𝜕q

𝜕y
− q

𝜕v

𝜕y

)
= 0. (7)

If the equations are valid over a domain  and the contributions at infinity vanish, Green’s theorem (see for example [22])

together with Eq. (7) imply that

∫𝜕
[(

v
𝜕q

𝜕x
− q

𝜕v

𝜕x

)
dy −

(
v
𝜕q

𝜕y
− q

𝜕v

𝜕y

)
dx

]
= 0. (8)

In order to express the integrand of the above equation in terms of just the Dirichlet and Neumann boundary values, we

parametrise q(x, y) and v(x, y) in terms of the arc length, s, of 𝜕. Differentiating the function q(x(s), y(s)) with respect to s

we find

𝜕q

𝜕x
dy − 𝜕q

𝜕y
dx = qnds, (9)

where qn denotes the derivative of q along the outward normal to the boundary. Inserting Eq. (9) into Eq. (8), we find the general

global relation

∫𝜕
(

v
𝜕q

𝜕n
− q

𝜕v

𝜕n

)
ds = 0. (10)

In what follows, in order to further simplify the global relation, we introduce the complex variable z = x + iy, and its

conjugate z = x − iy. This enables us to write the Helmholtz equation in the form

𝜕2q

𝜕z𝜕z
+ 𝛽2q = 0, (11)

where 𝛽 = k0∕2. We make the particular choice v = e
−i𝛽(𝜆z+ z

𝜆
)
, a convenient and simple parametrisation of solutions to the

Helmholtz equation obtained using separation of variables (and consistent with the literature on the unified transform). Then,

Eq. (10) gives the global relation

∫𝜕e
−i𝛽(𝜆z+ z

𝜆
)
[

qn + 𝛽

(
𝜆

dz

ds
− 1

𝜆

dz

ds

)
q

]
ds = 0. (12)

Note that this relation involves only q and its normal derivative, qn, on the boundary. The range of validity of the complex

parameter 𝜆 depends on the domain . If the domain is bounded, the global relation is valid for all complex 𝜆 (excluding 0),

since each integral along the boundary always converges. If the domain is unbounded, then the range of values of 𝜆 for which

the integrals converge and contributions at infinity vanish are limited to ensure the validity of Green’s theorem. For example,

Re[−i𝛽(𝜆z + z

𝜆
)] < 0. Other values can also be included by assuming q satisfies the Sommerfeld radiation condition, since the

convergence of the integral is then provided by the solution, q itself (see Ref. [25] for further details).

In this paper we are primarily concerned with the scattering of acoustic sources by a finite collection of collinear plates

𝛾 = ∪M
i=1

𝛾i , where each plate is located at y = 0 and x ∈ [xi,0, xi,1] = 𝛾 i with xi,0 < xi,1 ≤ xi+1,0. Thus our total scattering

domain consists of ℝ2 ⧵ 𝛾 . An example of the set up for three plates is shown in Fig. 1. We discuss this case in the following

subsection.
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Fig. 1. Example of the geometry and labelling convention for three collinear plates.

3.2. The global relation for collinear plates

In order to employ the unified transform on  = ℝ2 ⧵ 𝛾 we consider two separate semi-infinite domains:

1 = {−∞ < x < ∞, 0+ ≤ y < ∞},

2 = {−∞ < x < ∞, −∞ < y ≤ 0−}.

We apply the global relation, Eq. (12), separately to 1,2.

Evaluating the global relation Eq. (12) in the domains 1 and 2, yields the following two relations. Namely, from integrating

along 𝜕1 we obtain the relation

∫ℝ⧵𝛾e
−i𝛽x(𝜆+ 1

𝜆
)
[
−qy(x, 0+) + 𝛽

(
𝜆 − 1

𝜆

)
q(x, 0+)

]
dx + ∫𝛾e

−i𝛽x(𝜆+ 1

𝜆
)
[
−qy(x, 0+) + 𝛽

(
𝜆 − 1

𝜆

)
q(x, 0+)

]
dx = 0, (13)

valid for 𝜆 ∈ (−∞,−1) ∪ (0, 1) ∪ {ei𝜃 ∶ 0 < 𝜃 < 𝜋} = Λ1. Similarly, from integrating along 𝜕2 we obtain the relation

∫ℝ⧵𝛾e
−i𝛽x(𝜆+ 1

𝜆
)
[
qy(x, 0−) − 𝛽

(
𝜆 − 1

𝜆

)
q(x, 0−)

]
dx + ∫𝛾e

−i𝛽x(𝜆+ 1

𝜆
)
[
qy(x, 0−) − 𝛽

(
𝜆 − 1

𝜆

)
q(x, 0−)

]
dx = 0, (14)

valid for 𝜆 ∈ (−1, 0) ∪ (1,∞) ∪ {ei𝜃 ∶ 𝜋 < 𝜃 < 2𝜋} = Λ2.

With these two equations, Eqs. (13) and (14), we cannot impose all of our boundary conditions since the boundary conditions

rely on the jump of q across y = 0. We must therefore combine Eqs. (13) and (14) in order to apply the appropriate boundary

conditions given in section 2. We cannot currently combine Eqs. (13) and (14) as they are valid in different regions of the complex

𝜆-plane, thus we must define a symmetry transform, 𝜆 → 𝜆−1 which maps Λ1 ↔ Λ2.

We manipulate Eqs. (13) and (14) using the symmetry transform. Namely, we subtract the symmetry transform of Eq. (13)

from Eq. (14) to obtain

∫ℝ⧵𝛾e
−i𝛽x(𝜆+ 1

𝜆
)
qy(x, 0)dx + ∫𝛾e

−i𝛽x(𝜆+ 1

𝜆
)
[

qy(x, 0) + 𝛽

2

(
𝜆 − 1

𝜆

)
[q](x, 0)

]
dx = 0, 𝜆 ∈ Λ2, (15)

where we have also used the fact that qy is continuous across the plates (i.e. the fluid is in constant contact with the oscillating

plate) and continuity of q, qy across ℝ ⧵ 𝛾 (continuity of pressure and vertical velocity when no plates are present). Thus, Eq. (15)

gives us the most simplified form of the global relation suitable for solving the Helmholtz equation with boundary conditions

prescribed on collinear sections, 𝛾 i.

The idea now is to expand the unknowns in this relation in suitable basis functions and evaluate at enough collocations

points 𝜆 to set up a linear system for the unknown coefficients. This is explained in the next subsection.

3.3. Basis functions and the approximate global relation

For convenience, we split ℝ ⧵ 𝛾 into the following intervals. Let I1 = (−∞, x1,0) and I2 = (xM,1,∞). Then [x1,0, xM,1]∖𝛾 can be

split into disjoint open intervals of the form Ji = (xi,2, xi,3) for i = 1,… ,M′ where M′ is at most M − 1. Note that if two plates

touch (xi,1 = xi+1,0 for some i) then we have M′ < M − 1. For notational convenience, we introduce Li = ||𝛾i
|| = xi,1 − xi,0 and

𝜇i = (xi,1 + xi,0)∕2 for i = 1,… ,M as well as L′
i
= ||Ji

|| and 𝜇′
i

equal to the midpoint of Ji for i = 1,… ,M′.

3.3.1. Rigid plates

To illustrate our method, consider first the case of M disjoint rigid plates. In this case, the unknowns in the global relation

Eq. (15) are [q] on each interval 𝛾 i and qy on I1, I2 and on each Ji. For the finite intervals 𝛾 i , in order to capture the
√

1 − t2 type

singularity near the edge tips we define

Cm(t) =
√

1 − t2Um(t), (16)

where Um(·) denote Chebyshev polynomials of the second kind. These have the following Fourier transform:

∫
1

−1

ei𝜆t
√

1 − t2Um(t)dt = (m + 1)im𝜋

𝜆
Jm+1(𝜆), (17)
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where J𝛼(·) denotes the Bessel function of the first kind of order 𝛼. We expand [qi] = [q] on 𝛾 i as

[qi](x) ≈
Ni∑

n=1

ai,nCn−1

(
2x − 2𝜇i

Li

)
.

Similarly, for the M′ intervals Ji we expand qy,i = qy as

qy,i(x) ≈
N′

i∑
n=1

bi,nSn−1

(
2x − 2𝜇′

i

L′
i

)
,

where

Sm(t) =
Tm(t)√
1 − t2

and Tm(·) denote Chebyshev polynomials of the first kind. These are chosen to capture the derivatives of the relevant square root

type singularity and have

∫
1

−1

ei𝜆t Tm(t)√
1 − t2

dt = im𝜋Jm(𝜆). (18)

For the semi-infinite intervals I1 and I2 we expand (after a relevant linear change of variables) in terms of the Bessel functions

{J n+1

2

(k0x)∕x}n≥0. These have the advantage of capturing the correct singular behaviour near the plate edges when n is even.

They decay with the correct algebraic rate at infinity, and have easy to compute Fourier transforms [20]:

∫
∞

0

ei𝜆t J𝛼(bt)
t

dt =

⎧⎪⎪⎨⎪⎪⎩

exp(i𝛼arcsin(𝜆∕b))
𝛼

, for 0 ≤ 𝜆 ≤ b

b𝛼 exp(𝛼𝜋i∕2)

𝛼
(
𝜆 +

√
𝜆2 − b2

)𝛼 , for 0 < b ≤ 𝜆
. (19)

Explicitly, we approximate qy,0 = qy on I1 via

qy,0 ≈
N′

0∑
n=1

b0,n

J n

2
(k0(x1,0 − x))

x1,0 − x

and qy,M′+1 = qy on I2 via

qy,0 ≈
N′

M′+1∑
n=1

bM′+1,n

J n
2
(k0(x − xM,1))

x − xM,1
.

Using the formulae for the relevant Fourier transforms, we thus form an approximate global relation

M∑
i=1

Ni∑
n=1

Ai,n(𝜆)ai,n +
M′+1∑
i=0

N′
i∑

n=1

Bi,n(𝜆)bi,n ≈ ∫𝛾e
−i𝛽x(𝜆+ 1

𝜆
) 𝜕qI

𝜕y
(x, 0)dx. (20)

The coefficients A are given by

Ai,n(𝜆) =
(

1

𝜆
− 𝜆

)
e−i𝛽𝜇i(𝜆+1∕𝜆) nin−1𝜋

2
(
𝜆 + 1

𝜆

) Jn

(
−𝛽Li

2

(
𝜆 + 1

𝜆

))
.

We also have

B0,n(𝜆) = e−i𝛽x1,0(𝜆+1∕𝜆) ∫
∞

0

ei𝛽t(𝜆+1∕𝜆)
J n

2
(k0t)

t
dt,

BM′+1,n(𝜆) = e−i𝛽xM,1(𝜆+1∕𝜆) ∫
∞

0

e−i𝛽t(𝜆+1∕𝜆)
J n

2
(k0t)

t
dt.

Finally, for 0 < i < M′ we have

Bi,n =
L′

i
in−1𝜋

2
e
−i𝛽𝜇′

i
(𝜆+1∕𝜆)

Jn−1

(
−
𝛽L′

i

2

(
𝜆 + 1

𝜆

))
.
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We evaluate Eq. (20) at C ≥ ∑
Ni +

∑
N′

i
points 𝜆 ∈ Λ2 to set up a linear system for the unknown coefficients. This is then

inverted in the least squares sense. Once the coefficients are computed, we can reconstruct approximations of the unknown

functions.

3.3.2. Elastic plates

When dealing with elastic plates, it is advantageous to choose basis functions that obey the clamped/free boundary con-

ditions. To explain the method, we will consider the case of a single elastic plate with x1,0 = − 1 and x1,1 = 1, clamped at

x = − 1 and free at x = 1. We expand the plate deformation as

𝜂1(x) ≈
N∑

j=1

ajfj(x),

where the {fj}∞j=1
are the eigenfunctions (ordered in ascending eigenvalues) of ∇4 on the interval [−1, 1]with the corresponding

boundary conditions. Namely,

∇4fj = d4
j

fj, fj(0) = f ′
j
(0) = 0, f ′′

j
(1) = f ′′′

j
(1) = 0,

and dj ≥ 0. Computing the {fj, dj} can be done using standard spectral methods [2,28]. We expand each fj in Chebyshev polyno-

mials (we used the first 401 Chebyshev polynomials) and compute the coefficients in the Chebyshev expansion and eigenvalues

using extended precision. This then gives the eigenvalues, end point values (see below) and Chebyshev coefficients of the fj

accurate to standard machine precision. This only needs to be done once offline.1 Along the interval 𝛾1 we therefore have that

𝜕q

𝜕y
(x) ≈ −𝜕qI

𝜕y
(x) +

N∑
j=1

k2
0
ajfj(x) (21)

[q](x) = −
Ω6

1

k3
0
𝜖1

(
𝜕4

𝜕x4
−

k4
0

Ω4
1

)
𝜂1(x)

≈ −
Ω6

1

k3
0
𝜖1

N∑
j=1

aj

(
d4

j
−

k4
0

Ω4
1

)
fj(x). (22)

There are two advantages of using this basis. First, the boundary conditions are naturally captured and we also gain the plate

displacement 𝜂1 at the same time without any additional computation. Second, the Fourier transform (needed to set up the

approximate global relation) is given explicitly after repeated integration by parts as

(𝜆4 − d4
j
)∫

1

−1

ei𝜆xfj(x)dx = (i𝜆)3[ei𝜆xf (x)]1
x=−1

− (i𝜆)2[ei𝜆xf ′(x)]1
x=−1

+ i𝜆[ei𝜆xf ′′(x)]1
x=−1

− [ei𝜆xf ′′′(x)]1
x=−1

, (23)

where the end point values are computed from the Chebyshev expansions of the function fj. The approximate global relation

then becomes

N∑
j=1

aj ∫
1

−1

e
−i𝛽x(𝜆+ 1

𝜆
)
[

k2
0
−

𝛽Ω6
1

2k3
0
𝜖1

(
d4

j
−

k4
0

Ω4
1

)(
𝜆 − 1

𝜆

)]
fj(x)dx +

1∑
i=0

N′
i∑

n=1

Bi,n(𝜆)bi,n ≈ ∫𝛾1

e
−i𝛽x(𝜆+ 1

𝜆
) 𝜕qI

𝜕y
(x, 0)dx.

The case of 𝛾1 ≠ [−1, 1] is dealt with via an appropriate linear change of variables (note that we can still use the eigenfunctions

computed on [−1, 1] after an appropriate rescaling - we do not need to recompute eigenfunctions via the spectral method for

intervals of different sizes/positions). Different clamped/free boundary conditions can be treated by expanding in terms of the

appropriate eigenfunctions which obey the relevant boundary conditions. Finally, when there is more than one elastic plate or

a mixture of rigid/elastic plates, we simply sum the relevant contributions in the approximate global relation.

3.4. Collocation points and obtaining the scattered field

Unfortunately, in contrast to standard spectral methods [2], there is no current theory describing the best choices

for collocation points.2 For the problems in this paper, we have found that a good choice is to take C1 points  =
{−1∕(C1 + 1)6,−26∕(C1 + 1)6,… ,−C6

1
∕(C1 + 1)6}. Additionally, we took the reciprocals of the negative of these values. Finally,

we also took C1 points in {ei𝜃 ∶ 0 < 𝜃 < 𝜋} with 𝜃 corresponding to equally spaced points in (0, 𝜋), leading to C = 3C1 col-

location points overall. The complex collocation points along the unit circle are allowed precisely because the solution satisfies

1 In fact, even with the use of extended precision, this can be done very quickly.
2 For a good choice of collocation points for bounded convex polygons, see Ref. [13], which we cannot adopt here due to the restrictions on the values of 𝜆.
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the Sommerfeld radiation condition so that the contribution of Green’s identity along the relevant semi-circular arc vanishes in

the infinite radius limit (see Ref. [25]). We found that to obtain accurate numerical solutions, we needed to sample these points,

and hence, we considered the full complex solution. This corresponds to implementing the boundary conditions that make the

boundary value problem well-posed.

In all of the examples encountered in this paper, the scattered field is an odd function in the y variable. Hence, by considering

the reflected Green’s function

GR(x, y, x′, y′) = 1

4i

(
H
(1)
0
(k0

√
(x − x′)2 + (y − y′)2) − H

(1)
0
(k0

√
(x − x′)2 + (y + y′)2)

)
,

and its normal derivative, we can write

q(x, y) = ik0y

4 ∫
𝛾

H
(1)
1
(k0

√
(x − x′)2 + y2)√

(x − x′)2 + y2
[q](x′, 0)dx′,

where H
(1)
𝛼 (·) denotes the Hankel function of the first kind of order 𝛼. For points off the union of plates 𝛾 , we evaluated this using

standard Gaussian quadrature.

3.5. Example with 3 rigid plates

As a simple demonstration of the method, we now briefly consider the case of three rigid plates with 𝛾1 = [−4, 1],
𝛾2 = [1.1, 2] and 𝛾3 = [3,5]. We chose qI = e−ik0x cos 𝜃−ik0y sin 𝜃 for k0 = 20 and 𝜃 = 𝜋∕4. In this example, and through-

out the paper, we set Ni = N, N′
0
= N′

M′+1
= 2N and all other N′

i
= N. The number of collocation points is determined by

C1 = 4(
∑

Ni +
∑

N′
i
). As a measure of error, we consider the discrete relative L1 error computed at 201 points on each 𝛾 i. Namely,

given a “converged” solution [q] (computed by taking larger N) and an approximation [q̃], we consider

Ei =
∑201

j=1

|||[q̃](xi,0 +
(j−1)(xi,1−xi,0)

200
) − [q](xi,0 +

(j−1)(xi,1−xi,0)
200

)|||∑201
j=1

|||[q](xi,0 +
(j−1)(xi,1−xi,0)

200
)||| .

Fig. 2 shows the convergence of the method with N, as well as the computed scattered plus incident field for N = 80. The

method is also very fast, taking a few seconds on a standard desktop computer for the computation of [q] with N = 80 (720

basis functions). We have plotted the error against N2 with the errors shown on a logarithmic scale; the near straight lines

indicate that the method converges faster than exponentially. There is also a plateau in the error before this rapid convergence

kicks in. Experimentation suggests that the size of N needed to reach the region of rapid convergence is proportional to k0 (one

would expect that O(k0) basis functions are needed to resolve the relevant oscillations of the solution). The reader is referred

to Fig. 6 of [5] for an example of this with varying k0. For the case of elastic plates, we cannot expect exponential convergence

since the basis functions (the eigenfunctions of ∇4) are smooth and hence do not capture the appropriate endpoint singularities

(at the tips of the plates). They do, however, make it much easier to incorporate the boundary conditions that couple [q] to

the fourth order derivative of 𝜂, hence capturing the much more complicated boundary conditions when the plate is no longer

Fig. 2. (a) Convergence of method for rigid plate example, errors for each plate 𝛾 i are labelled by the legend. (b) Total field computed by the method for N = 80 at time

t = 0. The small arrow shows the direction of the incoming waves.
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Fig. 3. Far-field directivity for a lateral quadrupole located at (1, 0.005), for (a) k0 = 0.1 and (b) k0 = 10. The red lines show polar angles in increments of 30◦ . Legends

denote the value of Ω. The results are non-dimensional and agree well with those of [3] (Fig. 5). (For interpretation of the references to colour in this figure legend, the

reader is referred to the Web version of this article.)

stationary. Note that naively expanding the normal derivative of q in suitable basis functions and then substituting this into

Eq. (2) and (3) (eliminating 𝜂) would require the fourth order derivative of the expansion functions, making it very difficult to

choose singular basis functions with such an approach (the relevant Fourier integrals would not converge). We will see that

the method in the elastic case still converges algebraically, and typically yields two to three digits of accuracy for the examples

considered in this paper. Such accuracy is often sufficient for the relevant applications, given that the governing equations are

obtained after linearisation (assuming 𝜂 to be small). Smaller errors are also possible with larger N.

4. Examples and results

Here we present results for the acoustic scattering by a variety of elastic plate setups.

Fig. 4. Total acoustic field (scattered plus incident) for k0 = 10, 𝜖 = 0.0021 and Ω = 0.25. The arrow denotes the direction of propagation of the incident plane wave.

We have shown (a) the real part and (b) the absolute value of the field.
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Fig. 5. Scattered field for k0 = 20 and 𝜖 = 0.135. The arrow denotes the direction of propagation of the incident plane wave, and the colour the real part of the scattered

pressure field. The value of 𝜖 it typical for an aluminium plate immersed in water. The plots show (a) Ω = 0.4 and (b) Ω = 0.2. (For interpretation of the references to

colour in this figure legend, the reader is referred to the Web version of this article.)

4.1. Single elastic plate

First, we suppose there is a single elastic plate in the region 0 < x < 1, y = 0. We suppose the end at x = 0 is clamped,

while the end at x = 1 is free, in accordance with previous modelling [3]. We take the incident field to be a plane wave, qI =
e−ik0x cos 𝜃−ik0y sin 𝜃 where 𝜃 measures the polar angle counter-clockwise from the positive x-axis.

4.1.1. Near-field quadrupole

By invoking the acoustic reciprocity principle, evaluating q close to the edge x = 1, y = 0 is equivalent to measuring the

far-field acoustics at angle 𝜃 scattered by a monopole close to the edge. Similarly, evaluating
𝜕q

𝜕x
provides the far-field pressure

due to a near-field dipole, and
𝜕2q

𝜕x𝜕y
the far-field pressure due to a near-field lateral quadrupole (with axes aligned with the

coordinate axes). This allows us to calculate the far-field acoustic directivity, |q|, as a function of observation angle, 𝜃, that

would be due to a near-field trailing edge source, as would be the case for aerodynamic noise.

Fig. 3 illustrates this directivity two frequencies k0 = 0.1, 10 in the case of 𝜖 = 0.0021 (suitable for an aluminium plate in

air [15]). This compares well to previous results [3]. We see, as known from previous work, that elasticity can reduce trailing-

Fig. 6. Deformation of the elastic plate, 𝜂, at time t = 0. The legends denote the value of Ω. The plots show (a) 𝜖 = 0.0021, k0 = 10 and (b) 𝜖 = 0.135, k0 = 20.
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Fig. 7. (a) Convergence of the computed values of [q] and 𝜂 for 𝜖 = 0.0021 and k0 = 0.1. (b) Same but for 𝜖 = 0.0021 and k0 = 10. Both results are for 𝜃 = 𝜋∕4.

edge noise effectively. However, the reduction in noise is not monotonic with increasing elasticity (decreasing Ω) due to the

elastic plate resonances. Elastic plate resonances will be discussed further in the following sections.

4.1.2. Scattering of a plane wave

Here we illustrate results for the full scattered field due to an incident sound wave and discuss the convergence and speed

of the method. Fig. 4 illustrates the total pressure field (incident plus scattered) for a plane wave scattering off a single elastic

plate, while Fig. 5 illustrates just the scattered field. Different plate parameters are used throughout. We see clearly in Fig. 5 the

decrease in the magnitude of the scattered field as the plate becomes more flexible (more flexible corresponds to a lower value

of Ω).

From our method we can also easily recover the deformation of the plate, 𝜂, as illustrated by Fig. 6 which shows the plate

deformations for the acoustic fields given in Figs. 4 and 5. Note the values 𝜖 = 0.0021, 0.135 correspond to the fluid loading

parameter for aluminium in air and water respectively [3].

Fig. 7 shows the convergence of the computed values of [q] and 𝜂 as we increase N (computed via comparison with larger N).

We note that a smaller number of modes 𝜂j are needed for smaller values of k0. For the k0 = 10 case and the computation of 𝜂,

a larger number of modes are needed for smaller Ω, consistent with the increase in the bending wavenumbers kB = k0∕Ω. The

algebraic convergence in Fig. 7 is typical with similar results (and two to three digits of accuracy) for other parameter values

Fig. 8. Acoustic fields for three plates: from left to right, elastic with Ω = 0.4 free at x = 0 and clamped at x = 1, rigid, elastic with Ω = 0.2, clamped at x = 2.5 and

free at x = 4. Elastic plates both have 𝜖 = 0.0021. The incident wave has frequency k0 = 20 with angle 𝜋∕4. We have shown (a) the total field and (b) the scattered field.
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Fig. 9. Acoustic fields for three plates: from left to right, elastic with Ω = 0.2 free at x = 0 and clamped at x = 1, rigid, elastic with Ω = 0.1, clamped at x = 2.5 and

free at x = 4. Elastic plates both have 𝜖 = 0.0021. The incident wave has frequency k0 = 5 with angle 𝜋∕6. We have shown (a) the total field and (b) the scattered field.

and N ≈ 100. Again, the method is fast, taking only a few seconds on a standard desktop computer for N = 150 (750 basis

functions).

4.2. Multiple plates

We now highlight the versatility of our method by introducing additional elastic plates. Whilst the focus here is on collinear

elastic plates, the method can also be used for non-collinear plates (following a similar approach as for staggered rigid plates

[5]) however this is beyond the scope of the current paper. Example acoustic fields for high and low frequencies are given by

Figs. 8 and 9, with convergence demonstrated in Fig. 10.

A large variety of multiple plate setups could be calculated with the method presented here. We shall illustrate one partic-

ular case interesting to the aeroacoustics community: elastic extensions to rigid plates. It is known that elastic plates reduce

aerodynamic noise [16], however, most previous studies focus on uniformly elastic plates. Perhaps a more realistic model of the

owl’s wing would be a rigid section with a small elastic section at the trailing edge itself.

We therefore consider a plate of total length 1, with an elastic section of length l (so that the plate is rigid for x ∈ [0, 1 − l],
and elastic for x ∈ [1 − l, 1]). The elastic plate is clamped at x = 1 − l and free at x = 1, and the set up is shown in Fig. 11.

This problem has been considered previously via the Wiener–Hopf technique [1], although due to difficulties in factorising

Fig. 10. Convergence of the method for parameter values in (a) Fig. 8 and (b) Fig. 9.
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Fig. 11. The problem considered for elastic extensions of rigid plates. We have shown the parameters as well as polar angle/radius.

Fig. 12. (a) Relative power level as a function of Ω. (b) Relative power level as a function of lkB. In both cases, k0 = 10 and 𝜖 = 0.0021.
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the matrix equations arising from the Wiener–Hopf method, results were obtained using a Padé approximation method and

restricted to only the far-field directivity. Since elastic plate resonances can significantly affect the directivity when varying the

plate elasticity only slightly, it is not clear from these prior results how to determine the optimal extension length and elasticity

parameters for a required noise reduction.

The method presented in this paper is not only more accurate than the approximation approach [1], but can also recover the

full scattered field sufficiently quickly to allow for sound power calculations. In Fig. 12, we have plotted the sound power level

(normalised by dividing by the rigid plate limit) against Ω for k0 = 10, 𝜖 = 0.0021 and different values of l for a quadrupole

located at (x, y) = (1, 0.02). We see that even for small l, a reduction in noise is possible. This is more striking when plotted

against the dimensionless variable lkB = lk0∕Ω, where we see a larger reduction in noise for smaller l in terms of relative

elasticity. This indicates that a short elastic section could provide ample noise reduction, rivalling the reduction of a fully elastic

plate, if suitable plate parameters are chosen.

Note, that the spikes in Fig. 12 correspond to the resonances of the elastic plate, and agree well with the resonance wavenum-

bers dj. One could, therefore, use these plots to determine parameters for a required noise reduction and avoid plate resonances.

Finally, in Fig. 13 we show the far-field directivity, again due to a quadrupole located at x = 1, y = 0.02 above a plate,

for different l and Ω, and for k0 = 5, 50. We see that for the lower frequency, k0 = 5, as l approaches zero, the directivity is

close to that of the rigid plate, even for relatively small Ω (corresponding to more flexible plates), since the acoustic field cannot

Fig. 13. (a) Far-field directivity for k0 = 5, 𝜖 = 0.0021 and different l, the red lines show polar angles in increments of 30◦ . (b) Same but for k0 = 50. In both cases, the

far-field is due to a quadrupole located at x = 1, y = 0.02 above a plate. (For interpretation of the references to colour in this figure legend, the reader is referred to the

Web version of this article.)
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excite such a short plate to oscillate. For the larger wavenumber k0 = 50, even the shortest plate, l = 0.05 can be excited if

sufficiently flexible (Ω = 0.07), thus a reduction in far-field directivity is observed. We see, however, that for fixed Ω, at high

frequency, k0 = 50, there can be an increase in noise as l decreases. This is due to the quadrupole field becoming sufficiently

close to the rigid section of the plate for the scattering from the elastic-rigid junction to be significant (of similar magnitude

to the scattering by the trailing edge itself). Thus too short of a plate will have little effect on noise reduction even if it can be

excited by a high-frequency field. For lower frequencies, the impact of the elastic-rigid junction is less significant due to acoustic

compactness. Thus the quadrupole source primarily interacts only with the trailing edge, x = 1, and provided the elastic plate

can be excited, a noise reduction is expected.

5. Conclusions

In this paper, we have presented a spectral collocation method for acoustic scattering by multiple elastic plates. An expansion

of the plate deformations in the vibrational modes of each plate allows the Fourier transform of the Dirichlet and Neumann

boundary values to be computed and coupled in an appropriate manner. This is then used in the global relation, which sets

up a linear system for the unknown coefficients of the vibrational modes, and which can be given explicitly in terms of special

functions (these have built-in routines in most numerical software packages). The method is simple, fast and flexible, allowing a

mixture of elastic plates with different physical parameters, as well as rigid plates, to be treated collectively in the same manner.

Though we have focused on collinear plates, the method can easily be adapted to more complicated geometries (see for example

[5] for the rigid case or [4] for curved boundaries), a topic which will be explored in future work. The method can be applied to

situations where an approximate Wiener–Hopf solution is very difficult to obtain, such as matrix problems arising from multiple

points at which the type of boundary condition changes or due to the complexity of the elastic kernel function. When compared

with typical boundary element methods, this new spectral approach has the clear advantage of avoiding the evaluation of

singular integrals and is more flexible than previous BEM methods [3], which have treated the case of a single elastic plate. The

method has been applied to semi-infinite plates [5], but not in the case of elastic boundary conditions (which has been well

studied analytically [16]). Whilst semi-infinite stationary plates are useful approximations in aeroacoustic scattering problems,

they are however not as convenient for elastic plates since a semi-infinite elastic plate cannot appropriately replicate structural

resonances which will occur in practice, and thus we have not considered them here. The approach adopted here is unlikely

to work in the semi-infinite elastic case since the spectrum of the biharmonic operator on a semi-infinite strip is no longer

discrete, meaning we can no longer use the eigenfunctions as a suitable basis. Nevertheless, future work may aim to tackle this

case directly using Eqs. (2) and (3).

It should be mentioned that the method converges (at least) exponentially for rigid plates, however, this is not the case

for elastic plates. This is due to the approximation properties of the chosen basis (the smooth vibrational modes), which were

chosen to cope with the boundary conditions given by Eqs. (2) and (3) involving a fourth order derivative and cannot capture

the endpoint singularities. Nevertheless, the method still converges algebraically and can easily gain a few digits of precision

for modest N. Future work will seek to explore different choices of basis functions, which we anticipate may increase the rate of

convergence at the expense of a more demanding global relation. Future work will also consider the extension of this method

to three dimensions, which has been successfully achieved by the previous BEM approach for a single structure [21].

We have illustrated this new method by considering the acoustic fields generated by collinear elastic plates subjected to

incident plane waves or turbulent near-field sources (other types of sources or scattering problems can also be handled). A

feature clearly evident from the illustrated results for partially elastic plates, that is plates with a rigid fore section and elastic

aft section, is that the effectiveness of elasticity on reducing aerodynamic trailing-edge noise can be significantly altered at

mid and high frequencies even when only a small section of the overall plate at the trailing edge is elastic. By only altering a

partial section of the plate to be elastic, this has the potential therefore to significantly reduce noise but also to allow greater

aerodynamic control than if the plates were fully elastic (since fully elastic plates have highly complex behaviour in flow [12,24]).

Of course, further work would be required to understand the full impact of partially elastic trailing edges on the aerodynamics

and to balance with acoustic reductions.
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