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A HYBRID ANALYTICAL-NUMERICAL TECHNIQUE FOR
ELLIPTIC PDES∗
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Abstract. Recent work has given rise to a novel and simple numerical technique for solving
elliptic boundary value problems formulated in convex polygons in two dimensions. The method,
based on the unified transform, involves expanding the unknown boundary values in a Legendre basis
and determining the expansion coefficients by evaluating the so-called global relation at appropriate
points in the complex Fourier plane (spectral collocation). In this paper we provide a significant
advancement of this numerical technique by providing a fast and efficient method to evaluate the
solution in the domain interior. The use of a Legendre basis allows the relevant integrals to be
computed efficiently and accurately using Chebyshev interpolation, even for large degree. For the
particular case of the Laplace equation this allows an explicit expansion in the domain interior in
terms of hypergeometric functions. Evaluation in the interior is found to converge more rapidly than
the approximation of the unknown boundary values, allowing accurate approximation of solutions
with weak corner singularities. For stronger singularities, the method can be combined with global
singular functions for rapid convergence. Numerical examples are provided, showing that the method
compares well against standard spectral methods and opens up the possibility of applying the method
to general curvilinear domains.
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1. Introduction. The unified transform [27, 28, 29] is a method for analyzing
boundary value problems (BVPs) for linear PDEs with constant coefficients [25, 60,
44], as well as for integrable nonlinear PDEs [48, 30]. A crucial role in the method is
played by the so-called global relation formulated in the complex Fourier plane, which
is an algebraic equation coupling appropriate integral transforms of all boundary
values. This relation has had important analytical and numerical implications: first,
it provides the starting point for placing the implementation of the unified transform
to elliptic PDEs on a rigorous foundation [5]. Second, it has led to novel analytical
formulations of a variety of important physical problems from water waves [1, 23, 8,
46, 61, 24] to three-dimensional layer scattering [3]. Third, it has led to the emergence
of a new, now established, numerical technique for the Laplace, modified Helmholtz,
Helmholtz, and biharmonic equations on convex domains in two dimensions [31, 21,
35, 34, 51, 52, 53, 54, 55, 6, 33, 16]. Namely, the analysis of the global relation gives
rise to a simple algorithm for the numerical computation of the generalized Dirichlet-
to-Neumann map, i.e., for determining the unknown boundary values in terms of the
given boundary data.
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The latter technique provides an interesting collocation method, with collocation
occurring in Fourier space rather than physical space. However, despite the many
works on the method in the literature, there still remains much to be done in over-
coming obstacles and assessing its scope. In particular, so far this method has been
mainly used for computing the unknown boundary values, and there is very little
discussion in the literature on how to effectively use this method to compute solu-
tions in the interior. In many problems, such as the determination of the far-field
pattern in scattering problems, computing boundary values of solutions to elliptic
PDEs is sufficient to reveal quantities of interest. However, in a variety of problems,
such as in plasmonics (regarding the precise field enhancements in a neighborhood of
layer interfaces) it is necessary to compute the solution inside the domain. In this
paper we show that the unified transform is effective for obtaining the solution of the
BVP in the interior of the domain of interest, while still retaining the advantages of
being a “boundary-based” method. We propose a fast and accurate numerical method
employing the computed boundary values to evaluate the solution in the domain inte-
rior. Importantly, our analysis also allows the numerical treatment of domains whose
boundary consists of a finite number of C1 curved edges.

We shall focus on the following linear PDE problem posed on a bounded Lipschitz
domain Ω with sides Γj listed in positive orientation:

uxx + uyy ± κ2u = 0 in Ω,

δj
∂uj
∂N

+ (1− δj)uj = gj on Γj , j = 1, . . . , n.
(1.1)

We take κ ∈ R≥0 with κ = 0 corresponding to the Laplace equation, +κ2 the
Helmholtz equation, and −κ2 the modified Helmholtz equation. By a linear change
of variables, our results can be extended to more general constant coefficient second
order elliptic PDEs. For a side Γj we consider either a Dirichlet boundary condition
(δj = 1) or a Neumann boundary condition (δj = 0). Such a problem is well-posed
given sufficiently smooth boundary data and provided ∓κ2 is not an eigenvalue of the
Laplacian on Ω with the given boundary conditions [43].

The unified transform solves this BVP by employing the global relation, which
provides a linear relationship between the known boundary data and the unknown
boundary values. Specifically, if the domain is a polygon characterized by the corners
zj = xj + iyj , zj ∈ C, j = 1, . . . , n, then the global relation is given by

n∑
j=1

ûj(λ) = 0, λ ∈ C,(1.2)

where the function ûj(λ) is the following Fourier transform along the side (zj , zj+1):

ûj(λ) =

∫ zj+1

zj

e−iλz
[
∂uj
∂N

ds

dz
+ λuj

]
dz λ ∈ C (Lap.),

(1.3)

ûj(λ)=

∫ zj+1

zj

e
iκ
2

(
z̄
λ−λz

)[
∂uj
∂N

ds

dz
+
κuj
2

(
λ+

1

λ

dz̄

dz

)]
dz λ ∈ C \ {0} (mod. Helm.),

(1.4)

ûj(λ) =

∫ zj+1

zj

e
−iκ

2

(
λz+ z̄

λ

)[
∂uj
∂N

ds

dz
+
κuj
2

(
λ− 1

λ

dz̄

dz

)]
dz λ ∈ C \ {0} (Helm.).

(1.5)
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Here and throughout the paper
∂uj
∂N denotes the derivative of u in the direction of the

outward normal to the side (zj , zj+1), and s denotes the arc length parametrizing this
side. These relations are a simple consequence of applying Green’s second identity to
solutions of the adjoint equation (see, for example, [35]).

The unified transform as a numerical algorithm. For the benefit of the
reader, we briefly recall how the global relation (1.2) gives rise to a collocation method
for the case of a polygonal domain. Using the fact that λ is an arbitrary complex
parameter, the analysis of the global relation yields a unique solution [5, 9, 7] for
the unknown boundary values. This solution can be obtained numerically using the
following steps:

(i) Parametrize the jth side of the polygon, which is the side between the edges
zj and zj+1, via the expressions

z(t) = mj + thj , mj =
zj + zj+1

2
, hj =

zj+1 − zj
2

, t ∈ [−1, 1].(1.6)

(ii) Expand {uj}n1 and {∂uj∂N }
n
1 in terms of N ∈ N Legendre polynomials,1

uj(t) ≈
N−1∑
l=0

ajlPl(t),
∂uj
∂N

(t) ≈
N−1∑
l=0

bjlPl(t), j = 1, . . . , n, t ∈ [−1, 1].

(1.7)

For Dirichlet, Neumann, or Robin (δj 6= 0, 1) BVPs, a linear relation between

ajl and bjl is known for each j.
(iii) Substitute (1.7) into the global relation to obtain an approximate global rela-

tion. The approximate global relation is given by

n∑
j=1

ûj(λ) ≈ 0 λ ∈ C,(1.8)

where for the Laplace equation, ûj(λ) is obtained by substituting (1.7) into
(1.3):

ûj(λ) ≈
N−1∑
l=0

e−imjλ
(
bjl |hj |+ ajlhjλ

)
P̂l(hjλ) λ ∈ C,(1.9)

with P̂l(λ) denoting the finite Fourier transform of the Legendre polynomials:

P̂l(λ) =

∫ 1

−1

e−iλtPl(t)dt =

√
−2πiλ

−iλ
Il+1/2(−iλ), l = 0, . . . , N − 1 λ ∈ C,

(1.10)

where Iα denotes the modified Bessel function of the first kind. Similar rela-
tions hold for the Helmholtz and modified Helmholtz equations.

1Legendre polynomials are used here because they satisfy the relation (1.10). In the literature
of the unified transform, Legendre polynomials are found to be more accurate/stable than other
choices, such as Chebyshev polynomials. Furthermore, the method we propose here makes vital use
of the orthogonality of Legendre polynomials.
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(iv) Evaluate (1.8), as well as the Schwartz conjugate of (1.8), i.e., the equation
obtained from (1.8) by taking its complex conjugate and then replacing λ̄ with
λ, at an appropriate set of points (collocation points), and then compute
a least-squares solution of the resulting system of linear equations for the
unknown expansion coefficients. A suitable choice for collocation points is
given in [35], and it is repeated below for completeness:

λj,r = −h̄j
R

M
r, j = 1, . . . , n, r = 1, . . . ,M,(1.11)

where the positive integer M specifies the total number of collocation points
and the positive number R specifies the distance between consecutive col-
location points. The above particular choice of collocation points has the
advantage that it yields a linear algebraic system for the expansion coeffi-
cients {ajl , b

j
l } which has a low condition number. For a different numerical

approach tackling several well-studied Wiener–Hopf problems for harmonic
and biharmonic fields we refer the reader to [20]. This approach instead re-
quires analysis of the zeros of functions arising from the global relations.

Contribution of the paper. The main contributions/novelties of the paper are
the following:

• We demonstrate that after the unknown coefficients appearing in the Legen-
dre expansions have been determined by the above algorithm, it is straight-
forward to compute the solution at any point z inside the domain. Indeed,
let G be the associated fundamental solution of (1.1); then

u(x, y) =

∫
∂Ω

(
G(x, y; ξ(s), η(s))

∂u

∂N
− u ∂G

∂N
(x, y; ξ(s), η(s))

)
ds.(1.12)

Introducing the variable ζ = ξ + iη, the chain rule yields the relations

∂

∂η
= i

(
∂

∂ζ
− ∂

∂ζ̄

)
,

∂

∂ξ
=

(
∂

∂ζ
+

∂

∂ζ̄

)
.(1.13)

Then, in the case of straight edges, (1.12) leads to

u(x, y) =
n∑
j=1

∫ 1

−1

[
G
∂u

∂N
|hj |+ iu

(
∂G

∂ζ(t)
hj −

∂G

∂ζ̄(t)
h̄j

)]
dt.(1.14)

Given the approximations (1.7), we demonstrate a fast method for computing
the right-hand side of (1.14) accurately, given the approximation (1.7), even
for large N , with rapid convergence to the true solution (see Theorem 2.7
and the pseudocode in the appendix). We use a Chebyshev interpolation
and convert to Legendre expansions to compute the relevant integrals. In the
particular case of Laplace’s equation, the approximate representation can be
given explicitly in terms of hypergeometric functions.

• We use these ideas to extend these results theoretically and numerically to
domains with curved edges.

• We provide several numerical examples showing that the unified transform
coupled with the evaluation of (1.14) yields a high order method which is
very easy to implement and fast. We also include comparisons with spectral
methods.
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• Finally we show that the method can deal with corner singularities through
the addition of global singular functions to the basis.

An alternative approach for computing the solution inside a convex polygon,
where instead of using the integral representation (1.12), the integral representations
of [28, 58] were used, was presented in [21] (see Appendix C). The approach presented
here appears to be more accurate and efficient; comparisons are made in section 3.1.

The method proposed in this paper has the following attractive features:

• Very easy to program. The code required to run the method is very simple,
and all our examples were run in MATLAB. (Code will be made available on
the first author’s website).

• Speed. The method is fast. Our numerical experiments were performed on a
slow four-year-old laptop with 1.80 GHz processor. For our simple code, the
time taken to approximately invert the Dirichlet-to-Neumann map is of the
order of a few tens of milliseconds and evaluation at several hundred points
in the interior of the order of at most a second. The method is also entirely
local and trivially parallelizable.

• Accurate. The method converges spectrally for analytic solutions and conver-
ges with high algebraic rates for nonsmooth solutions (in the sense that we
found faster rates of convergence in the domain interior than along the bound-
ary when corner singularities are present). In fact, we prove that it is only
the convergence of the first few coefficients of the Legendre expansion that
really matter (Theorem 2.7). As a consequence, we found that the method
converges at a much faster rate than spectral methods using polynomials of
the same degree.

• Boundary discretization. The only approximation occurs at the expansion
of the boundary values in terms of Legendre polynomials (or the additional
global basis functions capturing corner singularities). A key advantage of the
unified transform over boundary element methods is that it is a boundary-
based method that avoids entirely the computation of singular integrals [50].

We should remark that one of the reasons for the popularity of boundary inte-
gral/element methods is that they typically yield well-conditioned linear systems. A
good choice of collocation points is crucial in order for the unified transform to be
well-conditioned as further discussed in [35]; the choice (1.11) leads to a diagonally
dominant linear system. It is also crucial to overdetermine the system (M > N) (also
explored in [63] in the context of the water wave problem).

Of course, in the presence of corner singularities the choice of Legendre functions
as a basis can only achieve algebraic rates of convergence along the boundary. How-
ever, the evaluation of (1.14) in the interior of the domain is found to converge more
rapidly than the evaluation of the missing boundary values via the global relation. We
also found that weak singularities are not a serious problem for the computation of the
solution in the domain interior, despite degrading the accuracy of the approximation
of the Dirichlet-to-Neumann map. In particular, we refer the reader to Theorem 2.7
and the error plots in Figure 6 and Figure 7.

Additionally, a procedure for adapting the basis to cope with corner singularities
for evaluating the Dirichlet-to-Neumann along ∂Ω was discussed in [33, 16]. Adding
global basis functions consisting of singular functions to our original local basis im-
proves the method, and one can still benefit from applying the numerical method for
computation of the relevant integrals in this paper to the local basis approximating
the smooth part of the solution in the domain interior (see the example in section 3.4).
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While we adopt a global basis approach to singularities, further methods designed to
cope with corner singularities are extensively reviewed in [40, 47].

Organization of the paper. In section 2 we give expressions for approximations
of the solution in the interior using the unified transform and expansions (1.7). We
also present our numerical method of computing the relevant integrals quickly and
accurately. The ideas presented in this section are also shown to allow the numerical
implementation of the unified transform in domains with curved boundaries in section
3.3. Numerical examples of each equation are shown in section 3 where we also compare
against spectral methods. Finally, conclusions as well as remaining challenges of the
method and future work are discussed in section 4. An appendix proving the results
of section 2 is also given, as well as pseudocode for our numerical method.

2. Approximations in the interior. In this section we shall show how the
expansions of the boundary data and computed boundary values give rise to approxi-
mations of the solution in the interior. This can be achieved by inserting the computed
approximations into (1.14). For the sake of simplicity, we shall stick to convex domains
with straight edges and discuss extensions in section 3. We begin with deriving inte-
gral expressions for the solutions, which in the particular case of Laplace’s equation
can be written explicitly in terms of hypergeometric functions. We then discuss a fast
and accurate numerical method for the evaluation of the relevant integrals.

2.1. Integral expressions. The following propositions give the relevant integral
expressions for the solution in terms of the approximated boundary values.

Proposition 2.1 (Laplace). Let u satisfy the Laplace equation in the interior of

a convex polygon specified by the corners {zj}n1 . Let uj and
∂uj
∂N be approximated by

(1.7). For a well-posed problem the algorithm presented in section 1 determines the
constants {ajl , b

j
l }. Substituting these expansions into (1.14) gives the approximation

u(x, y) ≈
n∑
j=1

|hj |
N−1∑
l=0

bjl J
j
l +

n∑
j=1

hj

N−1∑
l=0

ajl I
j
l +

n∑
j=1

h̄j

N−1∑
l=0

ajl Ī
j
l ,(2.1)

where the following representations are valid for Jjl and Ijl .

Jjl = − 1

2π

∫ 1

−1

ln(|z −mj − hjt|)Pl(t)dt, l = 0, 1,(2.2)

which simplifies to

J1
0 = − 1

2π

(
ln |(z −mj)

2 − h2
j |+ Re

{
−2 +

z −mj

hj
ln
z −mj + hj
z −mj − hj

})
,(2.3)

Jjl =
Γ(l + 1)2

πl
Re{ηlj2F̃1(l, l + 1; 2l + 2; ηj)}, l > 0,(2.4)

and

Ijl =
i

4π

∫ 1

−1

Pl(t)dt

z −mj − hjt
=

i

4πhj
Γ(l + 1)2ηl+1

j 2F̃1(l + 1, l + 1; 2l + 2; ηj).(2.5)

In the above formulae, 2F̃1(a, b; c; z) denotes the regularized hypergeometric function,

ηj =
2hj

z−mj+hj , and hj , mj , z, z̄ are defined by

hj =
zj+1 − zj

2
, mj =

zj+1 + zj
2

, z = x+ iy, z̄ = x− iy.(2.6)
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Proposition 2.2 (modified Helmholtz). Let u satisfy the modified Helmholtz
equation (1.1) in the interior of a convex polygon specified by the corners {zj}n1 . Let uj
and

∂uj
∂N be approximated by (1.7). For a well-posed problem the algorithm presented in

section 1 determines the constants {ajl , b
j
l }. Using (1.14), this gives the approximation

u(x, y) ≈ 1

2π

n∑
j=1

|hj |
N−1∑
l=0

bjl

∫ 1

−1

K0

(
κ|z −mj − thj |

)
Pl(t)dt

− κ

2π

n∑
j=1

|hj |
N−1∑
l=0

ajl

∫ 1

−1

Re

{[
− h̄j
hj

(z −mj − thj)
(z̄ − m̄j − th̄j)

] 1
2

}
K1

(
κ|z −mj − thj |

)
Pl(t)dt,

(2.7)

where hj , mj , z, z̄ are defined in (2.6) and Kn(z) denotes the modified Bessel function
of the second kind.

Remark 2.3. The representation obtained in Proposition 2.1 for the Laplace equa-
tion can be obtained by letting κ→ 0 in Proposition 2.2 assuming the condition

n∑
j=1

|hj | bj0 = 0,(2.8)

which corresponds to the vanishing of the integral of the normal derivative along the
boundary. The fact that this condition is indeed valid for a solution of the Laplace
equation can be seen by applying the divergence theorem to the integral of ∇2u over
the domain.

Proposition 2.4 (Helmholtz). Let u satisfy the Helmholtz equation (1.1) in the

interior of a convex polygon specified by the corners {zj}n1 . Let uj and
∂uj
∂N be ap-

proximated by (1.7). For a well-posed problem the algorithm presented in section 1
determines the constants {ajl , b

j
l }. Using (1.14), this gives the approximation

u(x, y) ≈ i

4

n∑
j=1

|hj |
N−1∑
l=0

bjl

∫ 1

−1

H
(1)
0

(
κ|z −mj − thj |

)
Pl(t)dt

− iκ

4

n∑
j=1

|hj |
N−1∑
l=0

ajl

∫ 1

−1

Re

{[
− h̄j
hj

(z −mj − thj)
(z̄ − m̄j − th̄j)

] 1
2

}
H

(1)
1

(
κ|z −mj − thj |

)
Pl(t)dt,

(2.9)

where hj , mj , z, z̄, are defined in (2.6) and H
(1)
n (z) denotes the Hankel function.

Remark 2.5. Proposition 2.4 also follows from Proposition 2.2 by using the
substitution κ→ −iκ and the following identity which is valid for −π < arg(x) ≤ π/2:

Kα(x) =
π

2
iα+1H(1)

α (ix).(2.10)

Remark 2.6. To obtain real solutions of the Helmholtz equation, we can use the

real part of the fundamental solution. Thus, for real solutions, iH
(1)
0 and iH

(1)
1 in

(4.6) are replaced by their respective real parts (this corresponds to taking the real
part of the approximate form of u).
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2.2. Numerical method. There are two main sources of difficulty in numer-
ically computing the relevant integrals in Propositions 2.1, 2.2, and 2.4. First, the
integrals become highly oscillatory if the degree of the Legendre polynomial is large,
and, second, they become more difficult to evaluate close to the boundary as the
integrand becomes more singular. Here we show that the first of these difficulties
can be overcome by the use of Chebyshev interpolation, allowing us to treat large N
rapidly and accurately. We also demonstrate that the second difficulty only occurs
very near to corner points, and this is not an issue in practice (see section 3.2). It is
important to note that the method described here also allows easy implementation of
the unified transform in domains with curved boundaries (see section 3.3), but since
the numerical method is essentially the same, we only discuss how to compute the
integrals in section 2.1.

First, we have the following simple theorem which suggests that only the approxi-
mation of the first few Legendre coefficients really matters (this is important when we
discuss an example which includes a corner singularity). It suggests the approxima-
tion in the interior converges at least as fast as the global relation along the boundary
(we have actually found it to be faster in practice).

Theorem 2.7. Suppose that we approximately solve (1.1) to obtain (1.7):

uj(t) ≈
N−1∑
l=0

ajlPl(t),
∂uj
∂N

(t) ≈
N−1∑
l=0

bjlPl(t), j = 1, . . . , n, t ∈ [−1, 1].(2.11)

Suppose also that along the boundary the true solution u and its normal derivative lie
in Hs(∂Ω) for some s ≥ 0 and we approximate the coefficients ajl , b

j
l for l ≤ N − 1,

j = 1, . . . , n to an accuracy ε. Given any compact subset K ⊂ Ω and the approximate
solution uapprox obtained via Propositions 2.1, 2.2, and 2.4, respectively, there exist
constants C1, C2 dependent only on u, Ω, and K and a constant ρ > 0 dependent only
on u such that

‖u− uapprox‖∞,K ≤ C1Nε+ C2N
−se−Nρ,(2.12)

where ‖·‖∞,K denotes the supremum norm over the compact set K.

Remark 2.8. The condition that the Dirichlet and Neumann values lie in Hs(∂Ω)
is not restrictive for convex Ω for smooth enough boundary data (the corner singular-
ities that could arise have boundary data in some Hs(∂Ω) [39, 17]). For nonconvex
domains this is more restrictive, but one can supplement the Legendre basis with
singular functions and apply the above theorem to the smoother part.

2.3. Integrals for the Laplace equation. For simplicity, consider first the
evaluation of the integrals for Laplace’s equation, where after letting α + iβ = (z −
mj)/hj we are led to the evaluation of the following integrals:

Am(α, β) =

∫ 1

−1

Pm(t) ln(
√

(α− t)2 + β2)dt, Bm(α, β) =

∫ 1

−1

Pm(t)
β

(α− t)2 + β2
dt.

These integrals were considered in [33] for a boundary integral method at points along
∂Ω where a recurrence relation was derived based on the recurrence relations of the
Legendre polynomials and integration by parts. Unfortunately such recurrence rela-
tions cannot be easily obtained for the modified Helmholtz and Helmholtz equations
and become unstable for large β (or near the corners α = ±1,β = 0). Hence, the use
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of such relations for evaluating the integrals in the interior of the domain is limited.
Proposition 2.1 allows us to represent the integrals Am and Bm exactly in terms of
hypergeometric functions. In what follows we have computed these hypergeometric
functions to machine precision, allowing us to compute errors of the various approxi-
mations.

The integrals of interest are simply rescaled Legendre coefficients of certain
functions analytic in a neighborhood of the interval [−1, 1]. Hence we compute the
Legendre coefficients of ln(

√
(α− t)2 + β2) and β

(α−t)2+β2 through first computing a

high order Chebyshev interpolation and then converting the approximated Chebyshev
coefficients to Legendre coefficients. An M -point Chebyshev interpolation can be
formed by evaluating at the zeros (or extrema) of the (M + 1)th Chebyshev polyno-
mial. The interpolation is also numerically stable [36, 26] and can be done extremely
efficiently using the FFT (even to millions of interpolation points [59]). Computing
Legendre coefficients this way has been used in [2, 49] leading to an O(M log(M)2)
algorithm. This is not quite optimal; specifically, in [37] the existence of a O
(M log(M)) algorithm was established. The functions we deal with are analytic in a
neighborhood of [−1, 1] and hence the Chebyshev interpolation converges exponen-
tially in the supremum norm over [−1, 1] [59, 22]. Assuming the error in the conversion
from Chebyshev to Legendre coefficients to be negligible, it follows that the error in
approximating the sought integrals Am, Bm is bounded by 2/(2m−1) times the error
of the Chebyshev interpolate and hence should rapidly decrease as we increase the
degree of interpolation. In all the numerical experiments in this paper, we took the
number of interpolation points large so that the error of interpolation was of the or-
der of machine precision. For the convenience of the reader, and to demonstrate the
simplicity of the method, we have shown a pseudocode for the proposed method in
an appendix.

Figure 1 shows the absolute error in computing a range of Am(α, β) and Bm(α, β)
using three different methods: the proposed Chebyshev coefficient method, quadrature
using the quadgk command in MATLAB, and the recurrence relations in [33]. The
recurrence relation becomes unstable away from the boundary (i.e., larger β), whereas
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Fig. 1. Absolute errors in approximating the integrals Am (left) and Bm (right) via three
methods. The top row is for α = 0.1, β = 1 and the bottom row for α = 0.1, β = 0.01. The
Chebyshev coefficient method is chosen for its numerical stability and speed. When approximating
for α = 0.1, β = 1 via the Chebyshev coefficient method, we have not shown larger m since the
values of the integrals are 0 to machine precision. Comparable errors were found when using the
Chebyshev coefficient method for larger m ∼ 1000.
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quadrature or the Chebyshev coefficient method yields near machine precision. For
the evaluation of 50 coefficients and a given α, β, the times taken on laptop with a 1.80
GHz processor for each method were of order 0.01s, 10s, and 0.001s respectively. This
change in time becomes more drastic for larger m (making quadrature evaluation at
a large number of points impractical for m > 100), whereas there is negligible change
in the time taken for the Chebyshev coefficient method. In particular, for a given
z we obtain all the integrals for m = 0, . . . , N − 1 simultaneously. Away from the
boundary we were able to obtain machine precision using the Chebyshev coefficient
method even for m ∼ 1000 for a range of α and β > 0.001 (of course for fixed α and
β, the integrals decay exponentially with m). For points very close to the boundary
the number of Chebyshev coefficients needed is very large (we only found this to be a
problem for β < 0.001), and we must resort to quadrature due to the lack of recurrence
relations for the modified Helmholtz and Helmholtz integrals. This is discussed further
in section 3.2.

2.4. Integrals for the modified Helmholtz and Helmholtz equations.
For the modified Helmholtz and Helmholtz equations, we are led to the evaluation of
the following integrals:

Cm(κ; z −mj , hj) :=

∫ 1

−1

K0

(
κ|z −mj − thj |

)
Pm(t)dt,

(2.13)

Dm(κ; z −mj , hj) :=

∫ 1

−1

Re

{[
− h̄j
hj

(z −mj − thj)
(z̄ − m̄j − th̄j)

] 1
2

}
K1

(
κ|z −mj − thj |

)
Pm(t)dt,

(2.14)

Em(κ; z −mj , hj) :=

∫ 1

−1

H
(1)
0

(
κ|z −mj − thj |

)
Pm(t)dt,

(2.15)

Fm(κ; z −mj , hj) :=

∫ 1

−1

Re

{[
− h̄j
hj

(z −mj − thj)
(z̄ − m̄j − th̄j)

] 1
2

}
H

(1)
1

(
κ|z −mj − thj |

)
Pm(t)dt.

(2.16)

We compared the reconstructed functions using the computed Legendre coefficients to
the original function by measuring the relative L∞ error over 100 evenly spaced points
in the interval [−1, 1]. (This is obtained by dividing the L∞ error by the supremum
of the magnitude of function over the interval.) Figure 2 shows the results over a
range of κ using the first 401 Legendre coefficients and z −mj = 0.1i, hj = 1. This
demonstrates that the integrals can be computed accurately and efficiently, even for
large m. We have also shown a plot for the first 1201 coefficients, showing that quite
large κ do not cause any problems.

3. Numerical results. We now present numerical examples of the method.
The time taken to compute the unknown expansion coefficients in our examples is
typically a few tens of milliseconds while the solution in the interior can be computed
at several hundred points in the order of a second. As mentioned in section 2, since we
interpolate to machine precision and obtain all the relevant integrals at once, the time
taken for the evaluation is virtually independent of N ; hence, we have not plotted
time as a function of N .
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Fig. 2. Left: Discrete relative L∞ error for the reconstructed functions using Cm, Dm, Em,
and Fm for a range of κ. The small errors indicate that the integrals can be computed accurately
for large m. Right: Similar plots but now for larger κ using the first 1201 coefficients.

We begin with examples of the Helmholtz and modified Helmholtz equations,
comparing the proposed method to evaluations using the integral representations of
the unified transform that have appeared in [56, 58] and numerically implemented
in [21]. We then conclude the discussion of section 2 by considering points close to
the boundary. Our final examples consider Laplace’s equation. We begin with an
example containing a weak corner singularity demonstrating Theorem 2.7 and also
that the ideas of this paper can be adapted to treat domains with curved edges. We
then conclude this section with a more singular problem, demonstrating how global
singular functions can be added to the basis to improve the method.

3.1. Helmholtz and modified Helmholtz. We first consider smooth solutions
to the Helmholtz and modified Helmholtz equations in order to compare our method
to that of [56, 58] which gave rise to a novel integral representation of the solution.
The method of [56, 58] computes the solution u via integrating the spectral data ûj
(computed via the same collocation method as outlined in the introduction) on rays
in the complex plane extending to infinity, and, for completeness, details can be found
in Appendix C.

The domain considered is shown in the left of Figure 3 with corners (z1, z2, z3, z4) =
(0, 1, 1 + 2i, i). For the modified Helmholtz equation, the relevant solution is

u(x, y) = Im

(
exp

(
z +

κ2

4
z̄

))
.(3.1)

We choose κ = 1 consistent with [21], and for given Dirichlet boundary data we
compute the solution for parameter choices R = 10N and M = 5N in (1.11). For the
Helmholtz equation, we take

u(x, y) = Re

( ∞∑
m=0

(−2)−m exp[iκ(cos(m)x+ sin(m)y)]

)
(3.2)

with κ = 5 and consider given Neumann boundary data along side Γ1 and Dirichlet
data along the other sides.

The approximate spectral data ûj computed numerically via the inversion of
the Dirichlet-to-Neumann map are given in terms of modified Bessel functions by
(1.10). This makes numerically integrating the spectral data along the relevant rays
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Fig. 3. Left: Trapezoidal domain. Right: Domain with curved boundary Γ3. We use the
parameter R for the radius of curvature, with R =∞ a square.

4 6 8 10 12 14 16
10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

4 6 8 10 12 14 16 18 20 22 24 26
10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

101

Fig. 4. Left: Errors of new method compared to old method in [56, 58, 21] for the modified
Helmholtz equation. EP stands for extended precision. The condition number of the linear system,
used to compute unknown boundary coefficients, was bounded by 100 for all N considered. Right:
Same but for the Helmholtz equation.

difficult for large and small spectral arguments. Hence we have also compared with the
numerical evaluation of these Bessel functions in extended precision for the relevant
quadrature. The absolute errors are shown in Figure 4 over a Cartesian grid (with
respect to the (x, y) variables) of side length 0.01 covering the domain.2 Note that
the proposed method achieves errors several orders of magnitude smaller than that of
the method in [56, 58], even when using extended precision for the spectral data. This
agrees with the errors of the 10−11 reported in [21] for the above modified Helmholtz
example when using the exact spectral data (which for this example have a simple
form). Our proposed method is not only numerically more accurate but is also much
simpler/faster to implement.

3.2. Points near ∂Ω. Here we supplement the discussion of section 2 by con-
sidering points close to the boundary. It is well known that solutions expressed as
layer potentials become numerically inaccurate close to the boundary. A possible way
around this via local Taylor expansions is discussed in [12]. However, we demonstrate
that this is not needed for our proposed method—the errors only become an issue very
close to the corners, to the extent that one can use the first order approximation in
this regime (together with the computed Dirichlet/Neumann boundary values), and

2From now on we will refer to such a collection simply as a grid.
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Fig. 5. Left: Comparison of using first order approximation and hypergeometric functions with
the unified transform for points close to z1 and at the midpoint of Γ1 for Laplace with N = 40.
Right: Similar plots but for modified Helmholtz using quadrature and for points close to z4 and at
the midpoint of Γ4 with N = 20.

are not an issue for the case of approximating near the midpoints of the sides of the
polygon.

Using quadrature (or the hypergeometric functions in the case of Laplace) to eval-

uate the relevant integrals, we compute the errors of approximating u = Re
(

zez
3

z−(2i+1)

)
(Laplace). The domain considered, also used in section 3.3, is shown in the right
of Figure 3 and has a curved boundary Γ3 of constant radius of curvature R. For
now, we take R = ∞, corresponding to a square domain with straight edges, with
mixed boundary data u1, ∂u2/∂N , u3, and ∂u4/∂N . We also consider the example
given above for the modified Helmholtz. We consider the errors of the computed
solution approaching a corner zj diagonally (bisecting its internal angle denoted αj)
and approaching the midpoint of side Γj perpendicularly. Denoting the distance to
the boundary along such a path by s, we compare with the error obtained via the
simple first order approximations,

uj(−1 + s cos(αj/2)/ |hj |)− s sin(αµ/2)
∂uj
∂N

(−1 + s cos(αj/2)/ |hj |) (corners)

uj(0)− s∂uj
∂N

(0) (midpoints).

These expressions are computed using the boundary data (half given and half obtained
via the unified transform). Figure 5 shows the results for N = 40 (Laplace) and
N = 20 (modified Helmholtz). As expected, the first order approximations break
down when s2 is approximately the error in the computation at interior points. Similar
results were found for other boundary points and larger N .

3.3. Laplace: Weak singularities and curved domains. We will consider
a solution with a corner singularity (so the Legendre basis will only give algebraic
convergence) to demonstrate Theorem 2.7 and also how the algorithm in section 2
can be used to treat curved boundaries. Suppose the side Γj is parametrized as

[−1, 1] 3 t→ xj(t) + iyj(t), xj(t), yj(t) ∈ R.

Introduce the quantity lj(t) =
√
ẋj(t)2 + ẏj(t)2 along the curve (where the dot de-

notes differentiation with respect to t), and let (n1(t), n2(t))T be the outward normal.
Then, the integral transform in (1.3) becomes
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ûj(λ) =

∫ 1

−1

e−iλz(t)
[
∂uj
∂N

+ λuj(n1(t)i− n2(t))

]
lj(t)dt(3.3)

≈
N−1∑
l=0

∫ 1

−1

e−iλz(t)
[
bjlPl(t) + λ(n1(t)i− n2(t))ajlPl(t)

]
lj(t)dt.(3.4)

We can then use the algorithm of section 2 to accurately compute numerically these
integrals and set up the approximate global relation. The relation (1.12) then becomes

u(x, y)=

n∑
j=1

∫ 1

−1

[
G
∂uj
∂N

+ iuj

( ∂G

∂ζ(t)
(n1(t)i− n2(t)) +

∂G

∂ζ̄(t)
(n1(t)i+ n2(t))

)]
lj(t)dt,

(3.5)

which again can be approximated using the expansions (1.7) and the methods of
section 2 (see also the appendix). The numerical method we present can be adapted
to general curved boundaries, but it is worth remarking that an extension of the
Fourier transform pair for circular-arc polygons was presented in [18, 19, 41] which
extends the unified transform representations in Appendix C.

The domain we consider is shown in the right of Figure 3, where, for simplicity,
Γ3 has constant radius of curvature R. When the curvature R = ∞ (i.e., a square),
the strongest corner singularity (for H1(Ω) solutions) with smooth Dirichlet data is
of the form

u(x, y) = r2
(

log(r) sin(2θ) + θ cos(2θ)
)
,(3.6)

where (r, θ) = (
√

(x+ 1)2 + (y + 1)2, tan−1[(y+1)/(x+1)]) denotes polar coordinates
centred at z2. We take this as our reference solution and illustrate the method with
Dirichlet data. For collocation points we took 20N Halton nodes3 (unless stated, all
experiments used collocation points described in step (iv) in the introduction) within
a (complex) disk of radius 40. This ensures that the collocation points λ do not
produce test functions which oscillate too wildly (these would require a very large
number of Chebyshev coefficients to compute the integrals in the global relation via
the above method).

Figure 6 shows the convergence of the unified transform, both in the interior
(where we measure the absolute error on a uniform grid of side length 0.05) and
along the boundary (the l2 error of computed coefficients). As expected, we only
see algebraic convergence. We have also included a reference line of slope −12; this
was approximately the convergence rate of the first few Legendre coefficients, and we
expect this to dominate the error in this approximation (see Theorem 2.7). This is
also captured by the agreement for small N between internal and boundary errors.
In general, we have found this to be the case for a range of examples with different
types of singularities and given boundary data. Note that the rate of convergence
for this example is faster than the optimal rate of convergence along the boundary
for the boundary values. It can be shown [10] that up to logarithmic factors, the
rate of convergence of the Legendre expansion of the Neumann boundary values in

3These create scattered points with a lack of regularity and can be easily generated in MATLAB.
They provide an example of a quasi-random number sequence and are used in the theory of numerical
integration [45].
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Fig. 6. Left: Errors for unified transform and spectral method for the square. Right: Same but
for R = 2.

L2(∂Ω) is N−3 (also shown as reference). Integrating against an analytic function
in the representation (2.1) causes the method to converge faster in the interior than
on the boundary itself. Note also that the presence of the curved boundary makes
negligible difference to the accuracy of the method. The choice of Halton nodes as
collocation points, as opposed to the rays in (1.11), led to a larger condition number
of about 104 for N = 40, with very little difference between the case of straight and
curved boundaries.

Finally, we have also compared the unified transform to a very simple spectral col-
location method in Figure 6. This spectral method simply expands the solution in the
harmonic functions {1,Re(zk), Im(zk)} and collocates along the boundaries. For col-
location points we took Chebyshev nodes along each side Γi to determine the unknown
coefficients. Of course a better choice of basis can be chosen with knowledge of the
particular type of corner singularities expected (as we demonstrate below), but Figure
6 demonstrates some interesting points. It appears that the use of the harmonic poly-
nomial basis causes the spectral method to converge at the same rate as the Legendre
expansion of the unknown Neumann boundary values. It is also apparent that there
is a significant advantage of approximating just the boundary values, using Green’s
representation formula and Theorem 2.7. Both the unified transform and the spectral
method use a polynomial basis, yet the locality of the unified transform leads to a
much more accurate method (and faster rates of convergence) in the domain’s interior.

3.4. Laplace: Strong singularities and singular functions. Our final
example considers Laplace’s equation for the mixed BVP shown in Figure 7. Let the
angle between Γj−1 and Γj be αjπ, and consider local polar coordinates (rj(x, y), θj
(x, y)) centered at zj such that Γj lies along θj = 0. We chose α2 ≈ 0.7971, α1 = α3

and |Γ1| = 1. In general, the large angle α2π and mixed boundary conditions induce
strong corner singularities. In order to assess our method we chose the test solution

u(x, y) = cos(x) sinh(y) +

∞∑
m=1

{(r1(x, y)

3

) m
α1 sin

(m
α1
θ1

)
+
(r2(x, y)

4

)m−1/2
α2 cos

(m− 1/2

α2
θ2

)
+
(r3(x, y)

5

)m−1/2
α3 sin

(m− 1/2

α3
θ3

)}
,

(3.7)
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Fig. 7. Left: Triangular domain and random test points. D and N stand for given Dirichlet
and Neumann boundary data respectively. We have also shown the transformed domain for the
spectral method and unified transform combined with a conformal map. Right: Errors for unified
transform and spectral methods.

which includes the general form of corner singularities given smooth boundary data
(again we assume the solution lies in H1(Ω)).

To improve the rate of convergence, we have added global basis functions of the
form rai φ(bθi) (where φ is the appropriate trigonometric function) to our local basis
of Legendre polynomials along each side. To implement this we used the formula∫ 1

−1

eiλt(1 + t)αdt =
e−iλγ(α+ 1,−2iλ)

(−iλ)α+1
,(3.8)

where γ denotes the (lower) incomplete gamma function. Given a global basis func-
tion, the relation (3.8) allows us to compute the contribution to the global relations
along sides adjacent to the corner where the singularity is centred. Along the other
sides, the new basis function and its derivatives are smooth, and hence the contribu-
tion to the global relation can be computed using standard Legendre interpolation
and (1.10).

Figure 7 shows the maximum error over 100 points in the interior of the domain
(chosen uniformly at random and also shown in Figure 7) as a function of N when we
add the p most singular global functions to our basis. The parameters chosen were
R = 10N and M = 5N . Including just two singular functions leads to a dramatic
increase in the accuracy of the method. We have also compared the unified transform
to the simple spectral collocation in section 3.3 (Spec1). However, now we choose
the functions rai φ(bθi) as well as {1,Re(zk), Im(zk)} and select the first N of these
with smallest power scale. The spectral method initial converges exponentially for
small N ; however, for large N it becomes numerically unstable. This is a well-known
problem for such methods; see, e.g., [13]. The unified transform is more stable for
large N and is able to obtain more accurate results. However, the condition number
of the linear system grows with the addition of singular functions. For N = 60, the
condition numbers were approximately 5× 103, 6× 104, and 3× 109 for p = 0, 1, and
2, respectively. Though the method appears to be stable from the results of Figure
7, we found that using additional singular functions led to very little improvement
of the accuracy of the method. We have also shown the results of a spectral method
taken from [38] (Spec2). This considers orthogonal polynomials in the right-angled
triangle Ω1 in Figure 7 given by
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φp,q = P (0,0)
p (η1)

(
1− η2

2

)p
P (2p+1,0)
q (η2), (η1, η2) =

(
2(x+ 1)

1− y
− 1, y

)
,(3.9)

where P
(a,b)
n denote the standard Jacobi polynomials. As well as these polynomials,

we added the first two singular functions rai φ(bθi) to the basis.4 For this method
the parameter N corresponds to the maximum degree of the included polynomials.
This method is much more stable and well-conditioned compared to the other spectral
method at large N . It is also clear that the unified transform is competitive partic-
ularly for large N and appears to converge at a faster rate, again due to Theorem
2.7. It should also be mentioned that the number of basis functions used in Spec2
is N(N + 1)/2 + 2. Despite the polynomials not being separable, one can still take
advantage of the structure to set up the linear system efficiently (see section 4.1.6 of
[38]). However, the linear system size grows quadratically in each dimension whereas
it only grows linearly for the unified transform. We found that solving the linear
system was considerably slower for Spec2 for large N .

Remark 3.1. For this particular problem, another approach is to (approximately)
homogenize the boundary conditions locally near z2 and then remove the domi-
nant corner singularities around z2 by a conformal mapping of the domain [11, 47],
expressed in this case via polar coordinates around z2 as

(r2, θ2)→
(
r

1
2α2
2 ,

θ2

2α2

)
.

This transforms the domain to Ω2 in Figure 7 with a curved edge Γ3, for which the
methods of section 3.3 can be applied. We found this to be competitive with the
unified transform with p = 2, though we were only able to obtain errors of around
10−13 due to the larger condition number for curved boundaries and the numerical
errors in computing the spectral functions.

4. Conclusion. It has been established in several publications that the uni-
fied transform provides an efficient algorithm for computing the so-called generalized
Dirichlet-to-Neumann map for linear elliptic PDEs formulated in the interior of a con-
vex bounded polygon. In particular, given Dirichlet or Neumann or Robin data on
each of the sides of a polygon, using this algorithm it is possible to find the constant
coefficients in the series expansion of Legendre polynomials approximating the associ-
ated unknown boundary values on each side. The relevant linear system characterizing
these constants has very low condition number [35].

We have shown that the use of a Legendre basis lends itself to efficient compu-
tation of the solution in the domain interior. In the case of Laplace’s equation, the
relevant integrals are given explicitly in terms of regularized hypergeometric func-
tions. For the modified Helmholtz and Helmholtz equations, they can be computed
remarkably fast and in a stable manner even for N large, using a Chebyshev interpo-
lation scheme. It is interesting to note that once the coefficients have been computed,
it is easier and more accurate to compute the integral representation in the interior
of the domain in physical space as opposed to Fourier space (see section 3.1). The
method also converges more quickly in the interior of the domain than on the bound-
ary and is very easy to implement. The method compares well to a standard spectral
method and global singular functions can easily be added to the basis to capture

4This only changes the method on the boundary, so it is very easy to incorporate—see [38] for
extensive comments on implementation.
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corner singularities. In addition, we have demonstrated that our analysis allows the
treatment of curved domains and future work will seek to extend this.

The results presented here, may also be significant for the solution of scattering
problems [15] or the exterior problem [4, 57]. It can be shown [32] that in this case
the Dirichlet-to-Neumann map for the Laplace, modified Helmholtz, and Helmholtz
equations formulated in the exterior of a convex polygon is characterized by letting
u = 0 in the left-hand side of (2.1), (2.7), and (2.9), respectively. By choosing appro-
priate values of z in the interior of the polygon, it should be possible to determine
the expansion coefficients of the unknown boundary values. Then, the appropriately
modified global relations [32] yield the scattering amplitudes (this is work in progress).
Our approach is also applicable to nonhomogeneous PDEs, as well as to oblique deriva-
tive (Poincaré) boundary conditions. Future work will aim at extending the method
to three dimensions and higher. Some initial progress in this direction can be found
in [3, 1].

Appendix A. Proofs of results.

Proof of Proposition 2.1. Using the fundamental solution of the Laplace equation,

G(ξ, η;x, y) = − 1

2π
ln |z − ζ|, ∂G

∂ζ
= − 1

4π

1

ζ − z
,(A.1)

and letting ζ = mj + thj , (1.14) becomes

u(x, y) ≈− 1

2π

n∑
j=1

|hj |
N−1∑
l=0

bjl

∫ 1

−1

ln |z −mj − thj |Pl(t)dt

+
i

4π

n∑
j=1

hj

N−1∑
l=0

ajl

∫ 1

−1

Pl(t)dt

z −mj − thj
− i

4π

n∑
j=1

h̄j

N−1∑
l=0

ajl

∫ 1

−1

Pl(t)dt

z̄ − m̄j − th̄j
,

which is (2.1), with Jjl and Ijl defined by (2.2) and (2.5), respectively.

In order to derive the alternative formulae for Ijl , we first employ Rodrigues’
formula, namely,

Pl(t) =
1

2ll!

( d
dt

)l
(t2 − 1)l.(A.2)

Substituting this formula into the definition of Ijl , we find

Ijl =
i

2ll!4π

∫ 1

−1

( ddt )
l(t2 − 1)l

z −mj − thj
dt.

Using repeated integration by parts and noting that all boundary terms vanish due to
the term (t2 − 1)l, it follows that the operator ( ddt )

l finally acts on (z −mj − thj)−1,
where it yields the term

(−1)ll!(−hj)l(z −mj − hjt)−(1+l).

The factor (−1)l cancels with the factor (−1)l generated by the repeated integration
by parts; thus cancelling factorials we obtain

Ijl =
i(−1)lhlj

2l4π

∫ 1

−1

(t2 − 1)l

(z −mj − hjt)l+1
dt.
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Letting t = −1 + 2y, we find

Ijl =
i2lhlj

2π(z −mj + hj)l+1

∫ 1

0

yl(1− y)l(
1− 2hjy

(z−mj+hj)
)l+1

dy.(A.3)

Recalling the definition of the regularized hypergeometric function, namely,

2F̃1(a, b; c; z) =
1

Γ(b)Γ(c− b)

∫ 1

0

yb−1(1− y)−b+c−1

(1− zy)a
dy,

it follows that∫ 1

0

yl(1− y)l(
1− 2hjy

(z−mj+hj)
)l+1

dy = Γ(l + 1)2
2F̃1(l + 1, l + 1; 2l + 2; ηj).(A.4)

Furthermore, the definition of ηj implies

1

(z −mj + hj)l+1
=
( ηj

2hj

)l+1

.(A.5)

Using (2.5) and (A.5) in (A.3) we find (2.5).
In order to derive the alternative formula for Jjl we replace in the definition of Jjl

the term Pl(t) by the right-hand side of (A.2):

Jjl =
−1

2π2ll!

∫ 1

−1

ln |z −mj − hjt|
( d
dt

)l
(t2 − 1)ldt.(A.6)

If l = 0, we find

Jj0 = − 1

2π

∫ 1

−1

ln |z − ζ(t)|dt, ζ(t) = mj + hjt.(A.7)

Employing integration by parts we find∫ 1

−1

ln |z − ζ(t)|dt(A.8)

= t ln |z − ζ(t)|1−1 −
∫ 1

−1

[(
∂

∂ζ
ln |z − ζ(t)|)hj +

(
∂

∂ζ̄
ln |z − ζ(t)|

)
h̄j)]tdt.

Using the equation

∂

∂ζ
ln |z − ζ(t)| = −1

2

1

z − ζ
,(A.9)

(A.8) becomes∫ 1

−1

ln |z − ζ(t)|dt = ln |z −mj − hj |+ ln |z −mj + hj |+ Re

∫ 1

−1

(thj)dt

z −mj − thj
.

Using the identity∫ 1

−1

−thjdt
z −mj − thj

=

∫ 1

−1

[
1− z −mj

z −mj − thj

]
dt = 2 +

z −mj

hj
ln

(
z −mj − hj
z −mj + hj

)
,
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we find∫ 1

−1

ln |z − ζ(t)|dt = ln |(z −mj)
2 − h2

j |+ Re

{
−2 +

z −mj

hj
ln

(
z −mj + hj
z −mj − hj

)}
,

and then (A.7) becomes (2.3).
Similarly, integrating by parts the expression (A.6) with l 6= 0 gives

Jjl =
−1

2π2ll!
Re{hj Ĵjl },(A.10)

where Ĵjl is defined by

Ĵjl =

∫ 1

−1

( ddt )
l−1(t2 − 1)l

(z −mj − hjt)
dt.

Proceeding as in the calculation of Ijl we find

Ĵjl = (l − 1)!(−hj)l−1

∫ 1

−1

(t2 − 1)l

(z −mj − hjt)l
dt.

Letting t = −1 + 2y we find

Ĵjl =
(l − 1)!(−1)l−1hl−1

j 22l+1(−1)l

(z −mj + hj)l

∫ 1

0

yl(1− y)l

(1− ηjy)l
dy.

The definition of 2F̃1 implies that the y integral above equals

Γ(l + 1)2
2F̃1(l, l + 1; 2l + 2; ηj).

Substituting the above expression into (A.10) we find (2.4).

Proof of Proposition 2.2. The fundamental solution of the modified Helmholtz
equation is given by

G(ξ, η;x, y) =
1

2π
K0(κ|z − ζ|),

where z = x+ iy, ζ = ξ + iη. Using ζ = mj + thj , we find

G =
1

2π
K0(κ|z −mj − thj |).(A.11)

Employing the identities

dK0(ζ)

dζ
= −K1(ζ),

∂

∂ζ
|ζ| = 1

2

( ζ̄
ζ

) 1
2

,(A.12)

we find

∂G

∂ζ
= − κ

4π

( ζ̄ − z̄
ζ − z

) 1
2

K1(κ|ζ − z|).

Thus, letting ζ = mj + thj , we find

∂G

∂ζ(t)
= − κ

4π

(
z̄ − m̄j − th̄j
z −mj − thj

) 1
2

K1 (κ|z −mj − thj |) .(A.13)

A similar expression holds for the partial derivative with respect to ζ̄. Substituting in
(1.14) the expressions for u, ∂u

∂N , G,
∂G
∂ζ ,

∂G
∂ζ̄

given by (1.7), (A.11), (A.13), we find

(2.7).
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Proof of Proposition 2.4. The fundamental solution of the Helmholtz equation is
given by

G(ξ, η;x, y) =
i

4
H

(1)
0 (κ|z − ζ|) =

i

4
H

(1)
0 (κ|z −mj − thj).(A.14)

Using the identity

dH
(1)
0 (ζ)

dζ
= −H(1)

1 (ζ)

and proceeding as in the proof of Proposition 2.2 we find

∂G

∂ζ(t)
= − iκ

8

(
z̄ − m̄j − th̄j
z −mj − thj

) 1
2

H
(1)
1 (κ|z −mj − thj |).(A.15)

Then, (1.14) yields (2.9).

Proof of Theorem 2.7. Consider the approximate solution ũ which occurs when
we substitute the exact coefficients ajl , b

j
l into Propositions 2.1, 2.2, 2.4, respectively

(i.e., we truncate the Legendre expansions to N terms). The fundamental solution
G(x, y; ζ, η) and its normal derivatives when evaluated for (x, y) ∈ K and (ζ, η) ∈ ∂Ω
are uniformly bounded. There are O(N) summation terms in the approximations
ũ, uapprox, and hence there exists C1 such that

‖ũ− uapprox‖∞,K ≤ C1Nε.

We also have

u(x, y)− ũ(x, y) =

n∑
j=1

∞∑
l=N

∫ 1

−1

[
G |hj | bjl + i

(
∂G

∂ζ(t)
hj −

∂G

∂ζ̄(t)
h̄j

)
ajl

]
Pl(t)dt.

It is well known [14] that for any s ≥ 0, if F ∈ Hs((−1, 1)) and PN denotes the orthog-
onal projection onto the first N Legendre polynomials that there exists a constant C
with ‖F − PNF‖2 ≤ CN−s. It follows that there exists some C such that∣∣∣ajl ∣∣∣ ≤ Cl−s, ∣∣∣bjl ∣∣∣ ≤ Cl−s, j = 1, . . . , n.

Now the integrals∫ 1

−1

GPl(t)dt and

∫ 1

−1

(
∂G

∂ζ(t)
hj −

∂G

∂ζ̄(t)
h̄j

)
Pl(t)dt(A.16)

are simply the (unnormalized) Legendre coefficients of the respective functions. Since
the polygon is convex, we can define real analytic branches of these functions for
(x, y) ∈ U and t ∈ [−1, 1], where U is an open neighborhood of K whose closure
is contained in Ω. It follows that the integrals in (A.16) decay exponentially in l
uniformly over the compact set K [62]. Hence, by making C large if necessary,

‖u(x, y)− ũ(x, y)‖∞,K ≤ C
∞∑
l=N

l−se−ρl ≤ N−se−ρN C

1− e−ρ

for some ρ > 0.
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Appendix B. Pseudocode.
Here we include pseudocode for the method presented in section 2. Since the

method can also be used for curved domains (see section 3.3) we shall be quite general
and suppose that we wish to compute the integrals

In(f) :=

∫ 1

−1

f(t)Pn(t)dt, n = 0, . . . , N − 1,

simultaneously for a given N ∈ N and function f . This can be done via the following
algorithm. There are many numerical packages that can compute the interpolation
(step 1) efficiently, e.g., Chebfun which can be found at http://www.chebfun.org.

Input: N ∈ N, function handle for t ↪→ f(t)
Output: Vector b, an approximation of {In(f)}N−1

n=0

1 Compute M -point Chebyshev interpolation of f and store as vector a
(M sufficiently large)

2 Define Λ(z) = Γ(z + 1/2)/Γ(z + 1), where Γ denotes usual gamma function
3 Define the matrix M ×M

LMi,j =



1, if i = j = 1
√
π

2Λ(i+1) , if 1 < i = j

−(j+1)(i+3/2)
(i+j+3)(j−i) Λ( j−i−2

2 )Λ( j+i+1
2 ), if 1 < i < j

0, otherwise.

4 cj = L(j, :) ∗ a, j = 1, . . . , N
5 bj = 2cj/(2j − 1)

Note that for |z| large we can use the well-known asymptotics of Λ to obtain an
accurate evaluation.

Appendix C. Integral representations.
For completeness, we recall here the integral representations in [56, 58, 21] for

which we compare our proposed method against in section 3.1. For simplicity, we shall
assume that the domain is a convex polygon and that the solution is real-valued. Non-
convex polygons and exterior domains are discussed in detail in [56]. Alternatively,
one can split up the nonconvex domain as discussed in [16, 42]. Recall the function
ûj(λ) defined as the following Fourier transform along the side (zj , zj+1):

ûj(λ) =

∫ zj+1

zj

e−iλz
[
∂uj
∂N

ds

dz
+ λuj

]
dz λ ∈ C (Lap.),

(C.1)

ûj(λ) =

∫ zj+1

zj

e
iκ
2

(
z̄
λ−λz

)[
∂uj
∂N

ds

dz
+
κuj
2

(
λ+

1

λ

dz̄

dz

)]
dz λ ∈ C \ {0} (mod. Helm.),

(C.2)

ûj(λ) =

∫ zj+1

zj

e
−iκ

2

(
λz+ z̄

λ

)[
∂uj
∂N

ds

dz
+
κuj
2

(
λ− 1

λ

dz̄

dz

)]
dz λ ∈ C \ {0} (Helm.).

(C.3)
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Fig. 8. Contour Lout used for representation of solution u of Helmholtz’s equation.

For the Laplace and modified Helmholtz equations, let lj denote the ray in the
complex plane of all points with argument −arg(zj+1 − zj) (extending outwards to
infinity). For the Helmholtz equation, let Lj denote the contour of points {z ∈ C :
z = le−iarg(zj+1−zj), l ∈ Lout} (extending outwards to infinity) with Lout shown in
Figure 8. The representations are then given as

u(x, y) =
1

2π

n∑
j=1

∫
lj

eiλz
ûj(λ)

λ
dλ (Lap.),(C.4)

u(x, y) =
1

4π

n∑
j=1

∫
lj

ei
κ
2 (λz− zλ ) ûj(λ)

λ
dλ (mod. Helm.),(C.5)

u(x, y) =
1

4π

n∑
j=1

∫
Lj

ei
κ
2 (λz+ z

λ ) ûj(λ)

λ
dλ (Helm.).(C.6)

For numerical evaluation, we remark that it was proven in [29] that the integrands
are bounded at the origin and decay exponentially.

Author contributions. The first author developed the method and its imple-
mentation and performed the numerical tests. The second and third authors assisted
the first author in writing the paper.
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