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Abstract. The fluctuation-dissipation theorem is a cornerstone result in statistical mechanics that can be
used to translate the statistics of the free natural variability of a system into information on its
forced response to perturbations. By combining this viewpoint on response theory with the key
ingredients of Koopmanism, it is possible to deconstruct virtually any response operator into a sum
of terms, each associated with a specific mode of natural variability of the system. This dramatically
improves the interpretability of the resulting response formulas. We show here on three simple
yet mathematically meaningful examples how to use the extended dynamic mode decomposition
algorithm on an individual trajectory of the system to compute with high accuracy correlation
functions as well as Green functions associated with acting forcings. This demonstrates the great
potential of using Koopman analysis for the key problem of evaluating and testing the sensitivity of
a complex system.
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1. Introduction. Despite the charming aphorism more is different [1], no unique defi-
nition of complexity exists, nor does a coherent conceptual or mathematical framework to
fully understand it. Nonetheless, the past few decades have witnessed great advances in our
understanding of complex systems such as ecosystems, multiagent models, spin glasses, tur-
bulent flows, and the climate. The awarding of the 2021 Nobel Prize in physics to three
scientists who have provided fundamental contributions in these research areas has largely
been seen as a coronation of these scientific endeavours; see a comprehensive discussion in

*Received by the editors October 3, 2024; accepted for publication (in revised form) by S. Wieczorek September
4, 2025; published electronically January 6, 2026.
https://doi.org/10.1137 /24M1699206
Funding: The work of the first author was partially supported by the Wallenberg Initiative on Networks and
Quantum Information (WINQ). The work of the third author was partially supported by the Horizon Europe Projects
ClimTIP grant 100018693 and Past2Future grant 101184070 and by ARIA SCOP-PR01-P003 - Advancing Tipping
Point Early Warning AdvanTip. The work of the third and fifth authors were partially supported by the CROPS
RETF project funded by the University of Reading and by the EPSRC project LINK grant EP/Y026675/1). The
work of the fourth author was partially supported by the ONR project N00014-21-1-2384.
fNordita, Stockholm University and KTH Royal Institute of Technology - Hannes Alfvéns vig 12, SE-106 91
Stockholm, Sweden.
'DAMTP, University of Cambridge, Cambridge, CB3 OWA, UK (m.colbrook@damtp.cam.ac.uk).
§School of Computing and Mathematical Sciences, University of Leicester, Leicester, LE17LE, UK
(nz680@leicester.ac.uk, v.lucarini@leicester.ac.uk, john.moroney®leicester.ac.uk).
TDepartment of Mechanical Engineering, University of California, Santa Barbara, CA 93106 USA
(mezic@ucsb.edu).

196

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1137/24M1699206
mailto:m.colbrook@damtp.cam.ac.uk
mailto:nz68@leicester.ac.uk, v.lucarini@leicester.ac.uk, john.moroney@leicester.ac.uk
mailto:mezic@ucsb.edu

Downloaded 01/14/26 to 14.202.149.35 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

KOOPMANISM AND RESPONSE THEORY 197

[34, 35, 36, 37, 38, 39, 40, 41, 42,43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75]. Often complexity is associated with the
presence of variability on multiple and interacting scales and noisy signals originating from an
underlying deterministic chaotic dynamics or stochastic sources of randomness. The climate
represents the paradigmatic example of a complex system as it is a high-dimensional, forced,
dissipative, chaotic, and out-of-equilibrium system featuring internal degrees of freedom acting
on about 15 orders of magnitude in space and in time [32, 56].

The availability of ever-growing amounts of data and the rapid development of machine
learning techniques are creating a paradigm shift in the modelling of complex systems: it has
been recognized that top-down, theory-driven approaches need to be blended with bottom-
up, data-driven methods. Data-centric approaches have indeed had huge success in multiple
research areas [74, 72].

A powerful synthesis between data-driven and theory-informed approaches can be found
[64, 65]. Koopmanism is a theoretical framework whereby the evolution of a nonlinear sys-
tem can be reconstructed by studying the properties of a linear operator—the Koopman
operator—acting on observables of the system [14]. This is a powerful tool for analyzing
the dynamics of the system and for obtaining statistical information about it. Koopmanism
has found applications in areas such as fluid dynamics, control theory, data analysis, and
many others [14, 13]. The power and limits of Koopman learning of dynamical systems from
data can be put into rigorous mathematical foundations (see [23]). The standard algorithm
used to approximate the Koopman operator from data is represented by the dynamic mode
decomposition (DMD) method. DMD is computationally efficient and provides a scalable
dimensionality reduction for high-dimensional data. DMD is valid for both experimental and
simulated data, as it is based entirely on measurement data and does not require knowledge
of the governing equations [13].

A recent generalization of DMD is extended DMD (EDMD) [92, 50]. EDMD’s improve-
ment upon DMD comes from the flexibility in choosing the dictionary of observables allow-
ing for estimating and approximating the Koopman operator. Variants and extensions of
EDMD have been developed to investigate high-dimensional systems and to control infinite-
dimensional projection errors; see [20] for a comprehensive review.

1.1. Linking forced and free fluctuations. Predicting the response of a complex system
to perturbations and identifying possible critical behavior associated with diverging sensitivity
and slow decay of correlations is of extreme importance. Efficient prediction requires the pos-
sibility of using information gathered on the system in the absence of the acting perturbation.
For systems near equilibrium, the theoretical foundation for such an operation is provided by
the fluctuation-dissipation theorem (FDT) [45], which allows one to write a (linear) response
operator for an observable of interest as a rather intuitive correlation between such observable
and a suitably defined conjugated variable. The FDT can be extended to stochastic systems
far from equilibrium [63, 82] and in such a way that nonlinear effects can be accounted for
[57]. Within a stochastic framework, it is possible to show that linear response theory is valid
under rather general conditions and applicable response formulas can be derived [36]. Linking
free and forced variability is harder in the case of dissipative chaotic systems: in this case
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the classical form of FDT is not valid, even if it is possible to (painfully) construct a rigorous
linear response theory [78, 8]; see discussion and applications in [61, 60].

Complex systems can feature either smooth response to perturbations or tipping behavior
due to critical transitions. Criticality is often associated with cataclysmic and undesirable
events [83, 87] and with the presence of multistable behavior [30, 5]. In the smooth response
regime, one can use response formulas to predict the change in the statistics due to the applied
perturbations [68, 6, 60]. Critical transitions [83, 46] are intimately related to the occurrence
of high sensitivity of the system to perturbations: the response operators diverge exactly
because the system decorrelates very slowly [17, 94]. The fundamental equivalence between
high sensitivity to perturbations and slow decay of correlations is the basis of the so-called
early warning indicators [49]. Whilst the FDT allows one to reconstruct forced variability
from the observations of the natural fluctuations of the system, it falls short in terms of
interpretability. Indeed, it does not include provisions for decomposing the response of the
system to perturbations into a sum of terms, each associated with a mode of natural variability
of the system, as one instead obtains, for example, when looking at the linear optical response
of matter to an electromagnetic field [19].

Building on [17], reference [35] proposed a new expression of the response operators based
on a spectral decomposition based on the eigenvalues/eigenvectors of the Kolmogorov operator
[71], which is the reformulation of the Koopman operator in the context of stochastic dynamics
generated by stochastic differential equations (SDEs) [25]. We refer the reader to [66] for the
definition of the stochastic Koopman operator for more general stochastic systems. We also
mention previous works on response theory from a transfer operator perspective in both
deterministic and stochastic settings [53, 15].

Such a formal reconstruction of the response in terms of specific modes of unperturbed
variability allows for identifying feedback across scales in complex systems and is especially
promising in the context of climate research [56]: it explains the mathematical mechanism
behind the occurrence of tipping points [88], clarifies an ansatz by Hasselman and collab-
orators [38], and supports recently proposed data-driven methods for studying the climate
response [89, 10].

1.2. This work. We show that it is possible to use the data-driven methods aimed at
accurately computing the eigenvalues and eigenvectors of the Koopman /Kolmogorov operator,
and specifically EDMD, to compute with a high degree of accuracy the operators describing the
response of such systems to perturbations. Hence, our goal is to show that the Koopmanism
viewpoint on dynamics can be augmented in such a way that it wields the potential to predict
the sensitivity of a system to general perturbations. This has several key implications in terms
of assessing the resilience of a system and in particular its proximity to critical behavior.

The paper is structured as follows. Section 2 provides a succinct yet self-contained mathe-
matical account of how the operator formalism used here sheds new light on the interpretation
of the key results of response theory. Section 3 translates the key results of section 2 into the
EDMD language, thus providing formulas that can be readily applied in numerical investiga-
tions. Section 4 discusses the results of the three mathematical models studied here. The first
model is a one-dimensional chaotic map introduced in [62]. The second model is the stochas-
tically forced version of the two-dimensional chaotic map introduced in [86]. The latter is a
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variant of the classical Arnold’s cat map, where dissipation is introduced so that the invariant
measure is singular with respect to Lebesgue. The study of this model in the weak-noise limit
is particularly interesting. The third model is a stochastically forced two-dimensional gradient
flow associated with a double-well potential. The EDMD analysis of this classical equilibrium
system has been showcased in [42]. In section 5, we present our conclusions and perspectives
for future work.

2. Statistical properties of stochastic systems: A Markov semigroup approach. We
consider an autonomous system described by a set of SDEs,

(2.1) dx = F(x)dt + o Z(x)dW;, x€ M CR?,

where the, generally nonlinear, vector field F(x) : M — M represents the drift part of the
dynamics of the system, ¥(x) : M — Matg (d x q) is a state-dependent volatility matrix
shaping the stochastic part of the evolution, o > 0 determines the strength of the noise term,
and W; = (W,},...,Wtq) is a R%-valued Wiener process, ¢ not necessarily equal to d, with
mutually independent components. In this paper, we consider settings where M is R% or a
periodic domain of size L in each direction, T¢ = R¢/(LZ)%. Tt is well known that the statistical
properties of the stochastic trajectories generated by the stochastic process determined by
(2.1) are encoded in the probability density p(x,t) solution of the Fokker—Planck (or forward
Kolmogorov) equation

p

2
—_V. 7 p2. T
T =Lop:=-V-(Fp)+ 2D ((Z=p),

(2.2)
where D;; = %{;ﬁ is the matrix of second derivatives. In general, the above equation should
be interpreted in a weak sense (in the sense of distributions). However, the smoothness and
regularity of the probability density p(x,t) are, in most stochastic settings, guaranteed as the
noise yields a regularizing effect provided that it can sufficiently spread over all the phase space.
Such physical intuition can be rigorously justified by requiring the Fokker—Planck operator
Lo to be hypoelliptic (see [71, Chap. 6]). The assumption of hypoellipticity is quite general
and can encompass situations featuring degenerate noise acting only on part of the systems’
equations, which are often encountered in applications. Hypoellipticity, together with other
mild regularity and growth conditions on drift and coefficient terms of (2.1) (see [71, Chap.
4]), guarantees the existence of a unique invariant measure pg, solution of the stationary
Fokker—Planck equation, which is absolutely continuous with respect to Lebesgue; that is,
it admits a smooth probability density po(x) such that dug(x) = po(x)dx. Furthermore, we
consider settings in which the invariant measure is ergodic, so that pg provides information
on the expectation value at stationarity of any observable f as

(2.3 (D= [ 10960 = 1w 1 [ st

where x(t) is a trajectory generated by the set of SDEs (2.1) and the last equality holds because
of ergodicity. We refer the reader to [70, Chap. 2] and references therein for conditions on
the drift and diffusion terms that lead to an ergodic stochastic process.
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It turns out that many other statistical properties of the stochastic system (2.1) can be
investigated through a functional analytical operator theory. This alternative description
focuses on the time-evolution of (statistics of) observables f of the system rather than indi-
vidual stochastic trajectories. In particular, any autonomous (time-homogenous) Markov sto-
chastic process can be described in terms of a semigroup of operators, i.e., a family P = (P;),~
of linear operators parameterized by the temporal variable t. The semigroup P is defined, at
each point in time, through its action on bounded observables f of the system as

(2.4) (Pf) ( /f p(y, t]x)dy,

where the p(y,t|x) represents the transition probability of getting to point y at time ¢ from
point x at time ¢ = 0. A more general definition of the stochastic Koopman operator en-
compassing a broader class of dynamical processes can be found in [66, 64]. If the system is
purely deterministic, its evolution is described in terms of a flow S? uniquely mapping initial
conditions xq to their time evolved state x(t) = S'x¢. In this case, the transition probabilities
are given by the deterministic flow as p(y,t|x) = d(y — S'x) and the semigroup is given by

(25) (Pir) = [ 15 (v = 5'x) ay = 7(s7)

which corresponds to the usual definition of the Koopman group in deterministic settings
generated by Lipschitz ordinary differential equations [3, 14, 13]. The previous equation
shows that P?¢* determines the evolution in time of observables f of the system. A similar
interpretation holds for P; with the caveat that its action should be interpreted in a statistical
sense. Equation (2.4) represents an expectation value over all final states y weighted according
to the transition probabilities p(y,t|x). It is a classical result that the existence of the unique
invariant measure g implies that the semigroup P, when acting on functions f € L ={f:
[ f2(x)duo(x) < 0o}, is a strongly continuous semigroup [7]— see [29, 28] for an mtroduction
to semigroup theory. This means that it is possible to define an operator Ky such that the
action of the semigroup can be written, at every time ¢, in an exponential form as

(2.6) P, =tk

The operator Ky is called the generator of the Markov semigroup; it is (usually) an unbounded
operator and its domain D(Ky) is dense in Lzo. The action of the semigroup P is then uniquely
defined by its generator Ky (and its domain). According to the definitions (2.4) and (2.6), Ky
represents the generator of time translation of observables of the system. More specifically,
given an observable f of the system, the evolution in time of its expectation f(z,t) = (P;f) (x)
is determined by

of
ot

The above equation is known as the backward Kolmogorov equation and it determines the
evolution of expectations of observables as an initial value problem together with the initial
condition f(z,0) = (Pof)(x) = f(x). For a stochastic Markov process that does not feature

(2.7) = Kof.
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jumps, such as the one generated by (2.1), the generator Ky takes the name of Kolmogorov
operator and can be identified as the second-order differential operator given by [71]

(2.8) Ko=F(x)-V+ "22 (=x7): D%

In the case of a jump-diffusive process, a generalization of the above operator, featuring a
nonlocal term, can be defined. We refer the reader to [18] for a Kolmogorov analysis of
chaotic jump-diffusive processes. Interestingly, many physically relevant statistical properties
of the stochastic process (2.1) can be characterized in terms of the spectral features of the
generator g as described in the next section.

2.1. Stochastic resonances, correlation functions, and response operators. A quantity
of interest for a statistical mechanical description of nonequilibrium systems is represented by
the correlation function Cf4(t) between two observables f,g € C

(2.9) Cipolt) = /M /M )9 (p(y tx)du(x) = /M ¢t £ ()" (x) du(x),

where, without loss of generality, f and g have been assumed to have vanishing mean (f),, =
(9)uo =0 and in the last equality we have used the definition of Markov semigroup (2.4) and
its generator Ky. Correlation functions provide a measure of the relationship between two
observables as one evolves with time. It is thus not a surprise that C 4(t) not only depends
on the invariant measure but also on the transition probabilities characterizing the stochastic
process.

More importantly, a fundamental question is to understand how the physical properties
of systems change as external, time-dependent forcings push them away from their stationary
state. Linear response theory provides a powerful framework to predict the forced evolution of
systems in terms of response operators, encoding, in a linear regime, all positive and negative
feedback of the system. We here consider the situation where the drift of the unperturbed
system (2.1) is perturbed as

(2.10) dx = (F(x) +eX(x)T'(t)) dt + 03 (x)d Wy,

where ¢ is a small parameter, T'(¢) is a bounded function providing the time modulation of
the perturbation, and X (x) is its phase space profile. The Fokker—Planck equation associated
with (2.10) is now

0
(2.11) o = (Lo+eT()L)p,
(2.12) p(x,0) = po(x),
where we have introduced the perturbation operator £, = —V - (X(x) - ) and the choice

of the initial condition reflects the fact that the perturbation starts acting on the system
once it has already reached its statistical steady state. As the system is forced to operate
in nonautonomous conditions, no invariant measure associated with (2.11) generally exists.
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However, in a linear regime, it is possible to show that the expectation value of a generic
observable f is given by

(2.13) (Fha(t) = (Fhuo +8D[F1(8) + 0(e).
Linear response theory provides useful formulas to evaluate the first-order correction as [35]
(2.14) SWf(t) = (Gy+T)(t) with
(2.15) Gy(t=01) [ 2o fn(),
0

where O(t) represents the Heaviside function. G (t) is the Green’s function of the system
and determines the causal response of the system for any forcing T'(¢). It depends both on
the observable f under consideration and the phase space dependent forcing X(x) through
the perturbation operator £,. Equation (2.15) represents a quite general form of the FDT
establishing a relation between the forced variability of the system prescribed by the Green’s
function and the statistical properties of the unperturbed system. More specifically, the
Green’s function can be written as a suitable unperturbed correlation function

_ . _ EpPO
(2.16) Gy(t)=0(t)Cyr(t) with I'(x) = ?.
Contrary to equilibrium statistical mechanics, there are no first principles determining the
functional form of the invariant distribution pg(x) of nonequilibrium systems, which generally
depends heavily on the detailed dynamical properties of the system. As such, the observable
I' is not known a priori for systems far from equilibrium and its physical interpretation is
not generally clear. Nevertheless, (2.14) and (2.16) provide a solid theoretical framework to
estimate response properties from the observation of the statistical dynamical behavior of
the unperturbed system. We observe that, in order for C'yr to be well-defined, the response
observable I' should be in Lzo, which requires regularity and growth conditions on both the
Markov semigroup and the perturbation field. In this paper, as is typically done, we assume
that the FDT (2.16) is well-defined.

It is possible to obtain a decomposition of both correlation and Green’s functions in terms
of the spectral properties of Ky in Lio [17, 35]. Here, we further require that the stochastic
dynamics (2.1) is associated with a quasi-compact Markov semigroup P such that its dis-
crete eigenvalues whose real part are larger than e~ /"It are discrete and have finite algebraic
multiplicity. Here, 7¢ss < 0 is the essential growth bound associated with the semigroup.’
Such eigenvalues of the semigroup are related to the eigenvalues of the generator through the
spectral mapping theorem [28], meaning that if A; is an eigenvalue of Ky corresponding to
the eigenfunction ¢;(x), so is eti! of P; = efo relative to the same eigenfunction. The dis-

N ., with N possibly infinite, are sometimes called (stochastic)

crete, isolated eigenvalues {\;};L,

'The essential growth bound of a semigroup P; is defined as ress := infyso +In||P|[ess, where ||« |[|ess is
the norm measuring the distance of P; from the space of compact operators using the operator norm. See [28,
Chap. 4] for more details and [28, Chap. 5] for the characterization of quasi-compact semigroups with ress.
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Ruelle-Pollicott resonances [17] and provide a physically relevant decomposition of the action
of the semigroup as (see Theorem 3.7 in [28, Chap. 5])

N
(2.17) o — z NI+ R(L),
=0

where II; represents the projection operator onto the eigenspace associated to A\; and R(t)
denotes the contribution of the essential spectrum. When writing (2.17), we have assumed
that the eigenvalues \; are not degenerate, but a similar result holds even when their alge-
braic multiplicity is greater than one [17, 35]. The assumption of quasi-compactness of the
semigroup guarantees that the effect of R(¢) becomes progressively more negligible as t — oo
and that appropriate bounds on its norm can be found [17]. In more practical terms, the con-
dition of quasi-compactness paves the way for performing a model reduction by focusing on
the contributions associated with the Ruelle-Pollicott resonances. Additionally, the smaller
the essential growth bound r.gs, the further the essential spectrum is from the imaginary axis
and thus less relevant the contribution of R(t) is.

The eigenvalues Ajs € C, which for simplicity we consider to be ordered in lexicographic
order as \g = 0 > ReA; > Re)s > ---, all have negative real part and represent intrinsic
relaxation rates of the system shaping the statistical dynamical properties of the system. An
important remark is needed at this point. When considering purely deterministic chaotic
systems the spectral decomposition (2.17) of the Markov semigroup in Lio is no longer valid.
In fact, the (now) Koopman operator Ky is unitary in Lio, which, in physical terms, means
that the dynamics has already settled onto the chaotic attractor and no decay toward it
can be observed [14]. It is known, at least for a class of chaotic systems, that in order to
obtain eigenvalues bearing a physical value, such as expressing mixing rates (resonances) of
the system, the operator Ky should be considered as acting in nonstandard functional spaces
adapted to the specific chaotic dynamics and its underlying geometrical structure [51, 8].

Considering (2.17), neglecting the term R(t), and recalling the definition of correlation
functions and Green’s functions, it is possible to obtain the spectral decomposition

N
(2.18) Crgt)=>_a;(f.g)eM,
7j=1
N
(2.19) Gp(t)=0(t) > Bi(f.T)eM".
7=1

The above equations show that these time-dependent statistical properties can be decomposed
as a sum of exponentially decaying terms, whose rates are given by the eigenvalues of the
Kolmogorov operator Ky and are thus an intrinsic property of the system. On the contrary, the
parameters «;(f, g) and B;(f,I") represent the projection of the observables of interest onto the
Kolmogorov modes and are thus an observable-dependent quantity. The summation in (2.18)
does not include the static eigenmode associated with Ag = 0 as this mode provides information
on the expectation values of observables, which vanishes by assumption for the observables f
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and g in Ct4(t) and by definition for the observable I' in G¢(t). The eigenvalues A; generally
feature an imaginary part corresponding to an oscillatory behavior of correlation functions.
This is a signature of the nonequilibrium nature of the system and it is a typical situation
observed in chaotic systems. On the contrary, physical systems satisfying detailed balance
are associated with Kolmogorov operators that are self-adjoint in LZO and are characterized
by purely real eigenvalues and absences of oscillations [71] (see section 4.3). The dominant
contribution at large times will be given by the Kolmogorov mode associated with the decay
rate v = —Re);. The quantity + is commonly known as the spectral gap and its positivity
guarantees the exponentially fast decay of the correlation functions [9, 71, 17]. However,
we observe that the number N of resonances \; is not necessarily finite and pathological
situations may occur when they accumulate toward the eigenvalue A\g = 0. Such situations
are associated with subexponential decay of correlations [77] and a signal of the dynamical
system approaching a critical setting, such as the deterministic pitchfork bifurcation [31], the
critical transition between competing chaotic attractors in an atmospheric circulation model
[88] and the rough parameter dependence of statistics in geophysical fluids [16]. In the next
section, we show how to estimate from data the hierarchy of Kolmogorov modes and how to
reconstruct correlation and Green’s functions using the spectral decomposition (2.18).

3. Spectral reconstruction of correlation and response operators from data. The an-
alytical evaluation of resonances and other spectral properties of transfer operators is quite
a challenging task, especially in the settings of stochastic chaotic systems for which the Kol-
mogorov operator Ky is far from being self-adjoint (see, for example, [26]). Even if possible,
such analysis would require the knowledge of the drift and diffusion terms determining the
evolution of the system. Numerical methods are then used to estimate the resonances from
data by evaluating the spectrum of transfer matrices resulting from a Galerkin projection of
the action of the semigroup onto a finite number of basis functions. A classical approach
in the literature is Ulam’s method, where transition matrices are evaluated by first seeking
a partition of the phase space into a finite number of disjointed boxes. Here, we employ a
similar in spirit but more general algorithm, known as the EDMD [92], which allows for a
Galerkin projection of the action of the semigroup onto any set of basis functions. If indicator
functions are used as basis functions, the EDMD algorithm is equivalent to Ulam’s method
[42]. However, when the eigenfunctions of the Kolmogorov operator Ky are smooth, EDMD
is computationally less demanding than Ulam’s method. We also remark that variants and
extensions of EDMD have been developed to investigate high-dimensional systems; see [20]
for a comprehensive review.

3.1. The extended dynamic mode decomposition algorithm. We briefly recall the fun-
damentals of the EDMD algorithm, adapted to the settings under consideration in this paper.
We consider a trajectory x; := x(t = iAt), sampled at a fixed time-step At, stemming from
(2.1) at stationarity. In other words, we fix t = 0 to be the time at which the system is
described by the invariant measure pg. EDMD requires as input a set of snapshot data
D = {(xi,yi =%i+1)}£,. When the data is sampled from a trajectory (ergodic sampling),
EDMD approximates the spectral properties of the Kolmogorov operator in LZO [92], which
are at the basis of the spectral decomposition (2.18).
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We define a set of dictionary functions {wj}év:l spanning an N —dimensional subspace
Fn C Lio and we evaluate the action of the Markov semigroup on Fy. It is customary to
arrange the dictionary of variables as a vector-valued function ¥ : M — C*N

(3.1) P (x) = (V1(x), ¢2(%), .. YN (x)) -

EDMD provides the best least square approximation of the representation matrix of the
Kolmogorov operator in the finite-dimensional subspace Fy as

(3.2) K=GTAcCV*N,

where GT denotes the pseudoinverse of the matrix G and

1 M

(3.3) GZM;‘I’ (xi) ¥ (x1),
1L

(3.4) AZM;‘I' (xi) ¥ (yi)-

The spectral properties of the matrix K provide information on the eigenvalues A\; and eigen-
functions ¢;(x) of Ko. If we denote with v; the eigenvalues of K, the spectral mapping theorem
guarantees that the eigenvalues of the Kolmogorov operator can be found as

In vy,

. Ak = .
(35) =
Similarly, the eigenfunctions of Ky are estimated as
(3.6) pr(x) = ¥ (x)&,

where &, are the right eigenvectors of the matrix K. A quite remarkable feature of EDMD,
which will be extremely important for the practical implementation of (2.18), is that it also
yields the decomposition of general observables onto the eigenfunctions ¢y (x). If we consider
any observable f € F, we can write a decomposition onto the dictionary functions as f(x) =
Zé\f:l hj;(x) = ¥(x)h, where h = (hy,...,hy)T € CV is some vector of constant coefficients.
EDMD then prescribes that the observable f € F can be decomposed onto the Kolmogorov
eigenfunctions as

(3.7) F) =Y frpr(x),
p

where the vector of coefficients f, commonly referred to in deterministic settings as Koopman
modes [14, 13], can be found as

(3.8) f=W'h,
where
(3.9) W = [wiwy...wy] € CV¥V

is the matrix of left eigenvectors wy of K (i.e. wiK =wjuy).
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3.2. Kolmogorov spectral reconstruction. We here want to leverage the EDMD algo-
rithm to spectrally reconstruct the time-lagged correlations and response functions from data.
This approach corresponds to finding a suitable numerical estimate of the mixing rates \;
and projections «;(f,g) and B;(f,I') appearing in (2.18) from the EDMD output. Since the
action of the Markov semigroup on its eigenfunctions is straightforward

(3.10) e pp(x) = ey (x),

we seek a decomposition of observables f =", frpr and g = ), g1 onto the Kolmogorov
eigenfunctions. The correlation function (2.9) can then be estimated as

(3.11) Crg(t) = (g™ )y kagz Ly Pk 1o Efke*kt

k,l

where fi, = fi 219 (@1, k) u, and where we have defined the usual Lio scalar product as
(f,9)uo = | [*(x)g(x)dpo(x). Now, this scalar product can be cast in terms of EDMD quan-
tities. Con51der1ng (3.6) we can write

N

(312) <90l7 ()Ok>,uo = Z <£ll)> wza % Z ‘—'zl‘—‘jkGl] E/GE)lk )
ij

where we have introduced the matrix of right eigenvectors of K as

(3.13) E=[£,&,...Ey] €CVXN,

Below, we provide multiple methods to reconstruct the response of the system using EDMD
properties.

Method 1. Since the FDT (2.16) shows that the Green’s function is a suitable time-lagged
correlation function, a similar result holds for

N
(3.14) Gy(t) =0T, ™ ), =O0(t) D T frler, ou) ™.
k=1

An important remark has to be made. The previous equation relies on the fact that a
reliable estimate of the decomposition of I' = E"—f” onto the Kolmogorov eigenfunctions,

I'(x)= Zévzl ki (x), is attainable. As explained in the previous section, this entails finding
first the decomposition of I'(x) into the dictionary basis and then shifting to the eigenfunctions
space through (3.8).

We expect this procedure to work well for systems with a smooth enough invariant dis-
tribution po(x), as considered in section 4.1. On the other hand, we expect this strategy
not to be reliable when considering weak-noise limits of chaotic deterministic systems with a
fractal attractor, as considered, for example, in section 4.2. For ¢ — 0, the chaotic system
will mostly be concentrated around the underlying chaotic attractor and will not explore the
whole phase space unless ultralong time scales are considered. On a practical level, for a finite
dataset M < oo, sampling problems will arise when estimating the invariant distribution po(x).
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In these cases, it is not so clear how to numerically regularize the action of the perturbation
operator £, and, more importantly, the division by py when estimating the observable I'(x).
We anticipate that the estimation of the Green’s function of the second system investigated
in section 4.2 using this procedure heavily depends on the numerical regularization choices.
We thus propose two alternative reconstruction strategies that do not require similar regular-
ization procedures.

Method 2. The Green’s function (2.16) can be rewritten as a scalar product with respect
to the standard Lebesgue measure

(3.15) G(t) = O(t)(Lypo, € ) 1= O(t) (7, f),

where in the last equality we have defined the observable v = L,,pp and (f, g) = [ [T (x)g(x)dx
is the standard scalar product. On the one hand, the previous expression prov1des a Way to
evaluate Gf(t) starting from the estimation of the much smoother observable ~ rather than
I'. On the other hand, it requires one to perform an integral uniformly over the whole phase
space M. Since EDMD approximates the properties of the operator K in terms of globally
defined dictionary basis functions, the problem of evaluating (3.15) can be mapped into the
much simpler problem of computing standard scalar products among the dictionary functions.
An analogous calculation that leads to (3.14) shows that the Green’s function can also be
decomposed as

N

(3.16) 0(t) Y M fini (er on).

k,l

The standard scalar product among the Kolmogorov eigenfunctions can be written in terms
of EDMD-related quantities as

1 = (E'Gle=s
(3.17) (©1,0k) ( )lk,
where

(3.18) G/ = (i, 1))

is the matrix of scalar products of dictionary functions. In particular, if an orthonormal basis
of dictionary functions is chosen, then GLeb ij-

Method 3. Both Methods 1 and 2 requlre a binning procedure to evaluate an empirical
estimate of the invariant density pg in order to reconstruct the action of the perturbation
operator L,pg, which requires a large amount of data. However, it is possible to obtain
projections of the response observable I' on the Kolmogorov eigenfunctions directly from
the time series data originating from the dynamical system. In Method 1 we seek a global
approximation of the observable I" in terms of the dictionary functions ;(x). Here, we propose
to find an approximation of I' in terms of the dictionary by weighting areas of phase space
according to the invariant measure. Mathematically, we seek an approximation I gppror(X) =
>, cithi(x) such that the quadratic objective function |I'(x) — Tapproz(X)|2 = (I' — Lappros, I —
LCopproz)v is minimized. In the previous expression, v is a suitable measure. In Method 1 we
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looked for a global approximation of I' by setting v as the Lebesgue measure. We here choose
v = ug, so that areas where the system spends the most time are weighted more than areas
that are rarely visited. Minimizing the quadratic function with v = pg results in the following
parameter vector:

(3.19) c=GtA,

where Gy; = (¥4,1)),, is the Gram matrix of scalar products between dictionary functions
which is estimated through the EDMD procedure, and A; = (¢;,I"),,. Now, we estimate this
scalar product as

(3.20)
A—— /M V- (X () po) 1} (x)dx = /M X(x) - Vo po(x)idx~ o /0 X (x(t)) - Vi (x())dt,

where in the last equality we have used ergodicity to approximate the expectation value as a
time average on a long (T’ — +00) trajectory. The previous expression, together with (3.19),
provides a simple way to estimate the decomposition of I' onto the dictionary functions from
time averages of suitable observables involving the derivative of the dictionary functions. We
observe that if the dictionary is closed under differentiation, the derivative V); can be exactly
represented in terms of the dictionary itself and thus Method 3 does not require any more
information than the EDMD procedure itself.

Summary of the Kolmogorov spectral reconstruction procedure. We provide here, for con-
venience, a summary of the key steps of the spectral reconstruction procedure, leaving the
specific details to section 4.

e Consider an evenly sampled trajectory of the stochastic system (2.1) as {x; = x(t =
iAL) M

e Select a dictionary ¥(x) for EDMD and feed the algorithm with the snapshot data
D = {(xi,y: =xi+1)}. Construct matrices G, A and the Kolmogorov matrix K.

e The output of EDMD is the triple ({)\k}{cvzl,E,W) of eigenvalues, right eigenvector
matrix and left eigenvector matrix.

e Given any observable f € Fy, find its decomposition into the dictionary as f(x) =
W (x)h. The coefficients f of the decomposition of f(x) onto the Kolmogorov eigen-
functions are then obtained as f = W'h.

e Spectrally reconstruct the time-lagged correlation function C',4(t) of any two observ-
ables f and g with (3.11) and (3.12).

e Methods 1 and 2: for the evaluation of Green’s functions, approximate the invariant
density pp from the time series {x;},. Evaluate the action of the perturbation
operator £, onto py and construct observable I' (or 7). Method 3: evaluate the
moments A from time averages with (3.20).

e The Green’s function can then be estimated with (3.14) for Methods 1 and 3 (or (3.16)
for Method 2).

4. Numerical experiments. As the first two examples, we investigate the mixing and
response properties of two chaotic maps. Even though the theoretical results presented above
apply to continuous-time stochastic dynamical systems, the situation for maps is similar, if
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not easier, as there is no time-sampling of trajectories associated with it. In fact, all the
spectral decomposition formulas hold when the eigenvalues A; (see (3.5)) are evaluated with
At=1.

In each of the cases investigated below, we take the luxury of observing the full phase
space of the system. In all the below examples, the EDMD-reconstructed statistical properties
have been compared to numerical experiments obtained on a different dataset than the one
employed for EDMD. Code for the numerical experiments can be found at https://github.com/
niccozagli/KoopmanismResponse.

4.1. One-dimensional uniformly expanding map. We will first consider the simplest set-
tings where chaotic dynamics can arise, that is, one-dimensional uniformly expanding maps.
Despite their simple structure, such maps represent the first examples for the analytical in-
vestigation of chaotic phenomena [9]. We consider the following map supported on the torus
M =T 2r) =R/(27Z), introduced in [62],

(4.1) Tpy1 = F(zp) :=azxy —vsin (6x,) + Acos (3z,) mod 27

with @« =3, v =0.4 and A = 0.08. Two typical chaotic trajectories originating from nearby
initial conditions are shown in panel (a) of Figure 4.1. At variance with the theory developed in
the previous section, this dynamical system is completely deterministic. In these settings, the
spectral decomposition of the Markov semigroup in Lio is no longer valid; see the discussion
following (2.17). Nevertheless, we propose this example as it highlights the importance of
the smoothness properties of the invariant measure pg. Being a uniformly expanding and
analytic map, its invariant measure is guaranteed to be absolutely continuous with respect to
Lebesgue with smooth density po(x); see also panel (b) of Figure 4.1. On the one hand, this
supports the validity of the FDT (2.16). On the other hand, for this class of maps having
an analytic measure, there is numerical and analytical evidence that EDMD, with a specific
choice of dictionary functions, provides eigenvalues which converge in the limit of infinite

1.0

0.8

1r M 0.2
of L 1 1 L

Figure 4.1. Panel (a): Chaotic trajectories. Panel (b): Invariant density computed from a long chaotic
trajectory of the system. The density will be used to compute the response properties of the system; see the later
discussion.
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Figure 4.2. Panel (a): Deterministic Ruelle-Pollicott resonances estimated using EDMD with a Fourier
basis. Only the first 20 resonances are shown. Panel (b): Correlation functions of various observables. Top:
Correlation functions of Ko—eigenfunctions pr(x). The crosses correspond to the numerical simulations, the
dots to the corresponding exponential term |v;|'. Bottom: Correlation functions of general observables. Crosses
correspond to numerical simulations, the dots to the spectral decomposition. All correlation functions have been
normalized by their initial value for scale. The dashed lines are included only for visualization purposes. Here
M =5x10° and Kpax = 30.

dictionary to the (deterministic) Ruelle-Pollicott resonances [62], thus expressing the decay
of correlation functions of the chaotic dynamics. Note that such resonances do not correspond
to the eigenvalues of the Koopman operator in L?(j), which are instead located in the unit
circle. The nontrivial link between the spectrum of the Koopman operator in nonstandard
function spaces and the Ruelle-Pollicott resonances for deterministic hyperbolic systems on
the torus has been investigated in [2, 73].

These considerations point to the fact that the EDMD-related spectral decompositions
(3.11) and (3.14) might be successful in evaluating the mixing and response properties of the
system. The a posteriori validity of our results, shown in Figures 4.2 and 4.3, corroborates
this assumption. Following [62], we consider a dictionary of orthonormal Fourier functions,
which is a quite natural choice for a system defined on a periodic domain,

(4.2) W(x) = (e Hmaz 1, eHmasT),

The corresponding eigenvalues v; of the EDMD matrix K are shown in panel (a) of Figure 4.2.
Since we consider a discrete time system, the decay rate of the Kolmogorov modes is given
by |v;|, whereas their oscillatory behavior is determined by arg(rv;). EDMD returns the static
eigenvalue vg = 1, which is a positive self-consistency check as we included its associated
constant eigenfunction pg = 1 in the dictionary. If the interpretation at the basis of the
spectral decomposition (3.11) is correct, the time-lagged correlation functions associated with
the eigenfunctions of Ky are given by a pure exponential decay

(4.3) Cop, (1) = clvg|' = ce?t

with ¢ being a constant. We have verified this by estimating the eigenfunctions with EDMD
as (x) = ¥(z)€, and evaluating their correlation functions along a long chaotic trajectory.
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Figure 4.3. Green’s functions corresponding to a uniform perturbation X (x) = 1. Panel (a): Green’s
functions associated with the first plane waves (sin(kz),cos(kz)) with k=1,...,5 (from top to bottom). Panel
(b): Left column shows different observables with their corresponding Green’s functions on the right column.
Blue crosses correspond to direct numerical simulations and red dots to the spectral reconstruction. Here, M
and Kpmaz are as in Figure 4.2.

Panel (b) (top plot) of Figure 4.2 shows excellent agreement between the predicted theoretical
exponential decay (4.3) and the numerical results obtained with EDMD. We proceed to eval-
uate auto-(cross-)correlation functions of general observables f and g of the system, shown in
the bottom left (right) plot in panel (b) of Figure 4.2. Most of these observables, not neces-
sarily having a physical meaning, do not lie in the space Fx spanned by the dictionary ¥(z).
We have actually tested the methodology on observables that are not necessarily periodic on
Tjo,2r). We have only required that they do not exhibit any divergences, for example, we have
employed a regularization f(x)=|log(z+ )| with 6 =0.1.

Having confirmed that the mixing properties of the system can be numerically recon-
structed through the EDMD spectral reconstruction methodology, we have investigated the
more complicated and subtle issue of reconstructing the response properties of the system.
Perturbing (4.1) consists of setting F(x,) — F(z,) + X (z,)T(t). Here, in particular, we
consider the effect of a uniform perturbation X (z) = 1 Vx. As observed before, its associ-
ated response-related observable I'(z) = % = —%ln po is intrinsic to the problem and is
not a prior known as there is no analytic expression for the invariant measure of the system.
We estimate from a chaotic trajectory the invariant density of the unperturbed system po(z)
(see panel (b) of Figure 4.1) and construct the observable n(x) = Inpg. Since the Fourier
transform commutes with the derivative operator, we can interchangeably take the deriva-
tive of n(x) to obtain I'(z) and then project onto the dictionary ¥(x) or vice versa. We
proceed with the latter option as it allows us to take a spectral derivative as follows. We
first look for a decomposition onto the dictionary n(z) = >, mgr(x), take the derivative as
I'(z) = > tknpr(x) = > 4 hpr(x), and then find its associated decomposition onto the
ICo—eigenfunctions as I'(z) =), T'rypr(x) with I'y, = (Wh)j, as prescribed by (3.8).

Having estimated the decomposition of I' onto the Kg—eigenfunctions, we now reconstruct
the Green’s function of various observables of the system. Linear response theory applies only
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to continuous observables, so we here test our methodology on smooth periodic functions on
Tio,27)]- We compare the spectral reconstruction of the Green’s function with direct numerical
results averaged over a large number (5 x 10°) of response experiments. Figure 4.3 exhibits an
excellent agreement between the spectrally reconstructed Green’s function and its numerically
evaluated counterpart. In panel (a) we provide the Green’s functions associated to the basis
of periodic functions on Ty o). We observe a quite peculiar symmetry where the observables
cos(kx) (sin(kx)) k=1,...,5 have vanishing linear response for k even (odd). We have also
tested the spectral reconstruction on observables f ¢ Fx that do not belong to the span
of the dictionary. In particular, panel (b) shows the response for the following observables:
f(x) = (2 +sin(2z))7!,f(z) = ccos(arctan (3sin(x))), f(z) = carctan(20sin(2z)), f(z) =
(1 + sin(22))(2 + cos(10z)) ™!, f(z) = (z — )2, where c represents appropriate constants.
Even though these observables do not belong to Fu, there is very good agreement with the
direct numerical experiments.

Next, we test the robustness of the spectral reconstruction methodology as the hyperpa-
rameters of the problem, such as the length of the trajectory M and the number of dictionary
functions Kz, vary. We show here the results for the observable f(z) = (z — )% ¢ Fy.
We first fix a long trajectory, M = 6 x 10°, and study the performance of the spectral re-
construction of G¢(t) by varying Ki,.,. Panel (a) of Figure 4.4 shows that, as expected,
having a richer dictionary results in a more accurate spectral reconstruction of the Green’s
function associated with an observable f ¢ Fy. A more insightful understanding is gained
when considering the scenario where, fixed a dictionary of K., = 30 modes, the spectral
decomposition is performed on trajectories of different lengths M. In particular, fixed M, we
assess the statistical properties of the spectral reconstruction methodology by performing an
ensemble of 100 different experiments corresponding to trajectories stemming from different
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Figure 4.4. Robustness of the spectral reconstruction of response properties. Panel (a): Robustness to
variations in Kmaz. Graphic conventions are as in Figure 4.3. Different colors refer to different Kpao. Panel
(b): Robustness to variations in M. For visualization purposes, we have dropped the marker (dots and crosses).
The shaded area represents the error bars at each point in time. From top to bottom, M = 2,4,8,16 x 103.
Left column: spectral properties of Ko and po are both evaluated on M data points. Right column: Here po is
evaluated on a long trajectory of length Miong = 6 x 10° points.
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initial conditions on the attractor. For each trajectory, we evaluate an estimate of the Green’s
function G ¢(t) obtained through the spectral decomposition. This procedure not only gives an
estimate of the Green’s function, obtained as the mean over the different ensemble members,
but also provides a quantitative estimate of the statistical uncertainty related to having a
short trajectory. Panel (b) (left column) of Figure 4.4 shows that this estimator performs well
on average (dashed lines) even on short trajectories but such trajectories are associated with
a bigger uncertainty (shaded area). The origin of this uncertainty is twofold. On the one side,
the EDMD algorithm, being a Galerkin method, is expected to poorly perform on shorter
trajectories. On the other side, such uncertainty could arise from a poor representation of the
invariant density po(z), which is a key quantity in the determination of response properties.
We provide numerical evidence that the biggest part of the uncertainty is given by the
latter feature; see the right column of panel (b). This plot shows the results of the same
numerical procedure described above, with the caveat that the unperturbed invariant density
po(x) is now being estimated on a single long trajectory of length M;,,q = 6 x 10°. This shows
that the properties of Ky are accurately captured with EDMD from a relatively short trajec-
tory and that the uncertainty regarding response properties is greatly reduced if a separate
approximation of the unperturbed measure from a longer trajectory is available.

4.2. Generalized Arnold’s cat map. We consider the stochastic chaotic two-dimensional
map defined on M = T[20 1 generated by the following equations:

(4.4) <$"“> =A (‘T”> + %C(xn + Yns 11) G) +on mod 1,

Yn+1 Yn

where

(4.5) A= (f 1) ,

and ¢ :[0,1) — R is a nonlinear function given by

|p|sin (275 — @)
1—|plcos(2ms —a) )’

(4.6) ((s; ) = arctan <

where p = |u|e’® € C is a parameter with |u| < 1 and phase defined in the interval o € [—7, 7).
We consider here, || =0.88 and a = —2.4. The stochastic source of the dynamics is prescribed
by n, a two-dimensional vector of independent Gaussian variables with vanishing mean and
unitary variance. In its deterministic version, o = 0, this map has been introduced in [86] as
a generalization of the well-known Arnold’s cat map, which is obtained when setting =0 in
the above equations. The Arnold’s cat map belongs to the class of Anosov maps, a subset of
Axiom A dynamical systems corresponding to highly chaotic, mixing, and structurally stable
dynamical systems. The cat map represents the paradigmatical example of a chaotic area-
preserving system. In other terms, its associated invariant measure is the Lebesgue measure,
dpo(x) = dx. The introduction of the nonlinear function ¢ preserves the Anosov property
but makes the physical invariant measure of the system singular with respect to Lebesgue;
see panel (a) of Figure 4.5 for a representation of the underlying chaotic fractal attractor.
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(a) (b)

Figure 4.5. Panel (a): Deterministic fractal attractor for the generalized Arnold map. Panel (b): Invariant
density po(x).

We here consider a low noise intensity ¢ =0.01, corresponding to an invariant measure being
concentrated around the deterministic attractor; see panel (b) of Figure 4.5. The authors in
[86] have shown that, for the deterministic version of the map, EDMD yields eigenvalues that
correspond to the correct deterministic Ruelle-Pollicott resonances when the natural choice
of a Fourier dictionary is made. We here push forward such results and verify first that
EDMD can be used to spectrally reconstruct the mixing properties of the system. Second, we
provide evidence that also the response operators can be estimated, through the FDT, using
the spectral properties obtained with EDMD. The invariant density po(z) is far from being
uniformly smooth on the whole phase space M, hindering, at a practical level, the application
of the FDT and the EDMD’s ability to capture the properties of pg. We fix a Fourier dictionary
W (x) = {thp } := {5 *} | where k = (ky, ky) with ky = =Kz, - --,0,... Kjnee and similarly
for ky. As done in the previous section, we first assess that the eigenvalues v; of the Kolmogorov
matrix K and the eigenfunctions ¢;(x) obtained through EDMD are consistent with the
spectral decomposition (3.11) by checking that C.,,(t) = c|v|t with ¢ being a constant; see
panel (a) of Figure 4.6. Panel (b) instead shows the spectral reconstruction of the mixing
properties of generic observables f, not necessarily in the span Fy of the dictionary. We
observe quite good agreement with the direct numerical simulations.

This map exhibits interesting response properties. Contrary to the previous example, a
uniform perturbation X(x) = 1 would result in a vanishing linear response, which we have
verified (not shown here) both with direct response experiments and with the spectral de-
composition. This allows us to verify whether the spectral reconstruction methodology can
capture the response to space-dependent perturbations. We provide the results for two classes
of perturbations. We first consider a sinusoidal perturbation X;(x)=sin(27(z — 2y))(z + 9),
where & () represents the unitary versor in the direction z (y). This perturbation profile lies
in F and can be fully captured by the dictionary. We thus consider a more complicated type
of profile corresponding to perturbing the element A;; — Aj1 + €T'(t) of the matrix (4.5).
This perturbation is associated to a field Xa(x) =z ¢ Fn.
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Figure 4.6. Panel (a): correlation functions associated with the eigenfunctions . Solid lines refer to
direct numerical simulations, dots to the corresponding pure exponential decay. Correlation functions have
been normalized by their initial value for scale. Panel (b): correlation functions (not normalized) for different
observables of the system. The regularization parameter § is as in the previous section, 6 = 0.1. Crosses
correspond to direct numerical simulations, dots to the spectral decomposition. Dashed lines are introduced for
visualization purposes.

As a result of pg being concentrated in narrow areas of the phase space corresponding
to the underlying deterministic attractor, the estimation of response properties using (3.14)
as done in the previous section is not reliable. We here then use the alternative procedure
given by (3.16). We first decompose the observables n;(x) = X%(x)po into the dictionary
as =y i nﬁbk and then evaluate the action of the perturbation operator similarly to the
previous section as

(4.7) V&)= Lppo=> Oimi= Y 2mikmfh:=Y iy
i ki K

The coeflicients y; of the decomposition of the observable v onto the Kolmogorov eigenfunc-
tions ¢;(x) can then be obtained using (3.8). Since the dictionary is given by an orthonormal
basis, ijeb = d;; and the Green’s function is readily estimated using (3.16) and (3.17). Fig-
ure 4.7 shows a very good agreement between the spectrally reconstructed Green’s function
and direct numerical response experiments. Here we have used K,,,; = 8 and a trajectory
of length M = 2 x 108 for the evaluation of the Kolmogorov properties using EDMD. It is
remarkable that, even for a relatively low number of dictionary functions, the EDMD spectral
reconstruction can pick up the key features of the response of the quite peaked reference state
po- To fully resolve the properties of the invariant measure, we have here estimated py from
a long trajectory M =107 but have verified that the reconstruction of the G #(t) is stable for
a quite wide range M € [10°,10%]. We have also considered here Green’s functions associated
with periodic observables that belong to Fn so that the discrepancies in the estimation of
the G¢(t) are to be attributed to either quadrature problems in the Galerkin approximation
given by EDMD or by a not perfect representation of 7;(x) = X%(x)po ¢ Fn by the dictionary.
The comparison between panel (a) and (b) of Figure 4.7 shows that the response associated
with X, € Fy is better captured than the response to Xg ¢ Fn. Similarly to the analysis
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Figure 4.7. Green’s functions associated with different observables (from top left to bottom right f(x,y) =
sin(2m(z + vy)), f(z,y) = cos(2m(z + vy)), f(z,y) = sin(27zx)cos(2wy), f(z,y) = cos(2wz)cos(2my)). Panel
(a): Response to the perturbation field X,(x). Panel (b): Response to a perturbation A1 — Ay + T'(t).
Crosses correspond to direct numerical response experiments, dots to the spectral decomposition. Dashed lines
are introduced for visualization purposes.

shown in Figure 4.4, a larger dictionary (associated with a longer trajectory M) results in
a better estimate of the Green’s function. We have here shown the results for K. = 8
to highlight biases and limitations of the spectral reconstruction. We also remark that, in
most applications, the physically relevant quantity is not the Green’s function per se but its
convolution (G *T')(t) with specific time-dependent forcings. A more data-efficient spectral
reconstruction of the response can be obtained by using Method 3, described at the end of
section 3.2. To test the performance and robustness of this method for varying trajectory
lengths, we perform an ensemble of 100 independent experiments and track the average and
standard deviation of the estimate of the Green’s function across the ensemble. Here, spectral
properties of the Kolmogorov operator Ky and projections of the response observable I" are
obtained from the same trajectory data, as opposed to the previous methods. Figure 4.8
shows that on average this reconstruction method is able to accurately estimate the response
with as little as M =500 data points. As expected, a larger data set corresponds to a smaller
standard deviation of the estimate. It is remarkable that this method achieves very good
accuracy with such a small data set, when, in order to estimate the Green’s function from
direct numerical experiments (black line in the figure), one needs to consider an ensemble
of 105 response experiments. To regularize the EDMD procedure we have used a truncated
singular value decomposition G = USUT and retained only the first r singular values o; = Sy;
i=1,...,N for which o; /o1 > 1074,

4.3. Double-well potential. Finally, we consider a stochastic two-dimensional gradient
flow with a double-well potential. While this system is not chaotic, the double well provides
a useful test case for EDMD, as analytic expressions for the invariant measure and related
quantities may be obtained directly, and the Kolmogorov eigenfunctions may be visualized
and have a level of interpretability. Furthermore, in contrast to the discrete maps studied so
far, this is a continuous-time example. We study the two-dimensional SDE
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Figure 4.8. Green’s functions obtained by estimating projections of I' from trajectory data. Panel (a):
Response to the perturbation field X1(x) of observable f(x) = sin(27x)cos(2wy). Panel (b): Response to a
perturbation A1 — A+eT(t) of observable f(x) = cos(2m(x+y)). The shaded area corresponds to one standard
deviation range at each point in time, estimated from an ensemble of 100 independent realizations. The black
line is the Green’s function evaluated from direct response experiments on an ensemble of 10° realizations. The
black shaded area corresponds to uncertainty in the Green’s function evaluated as the standard deviation across
response experiments with different perturbation amplitude . Here, spectral properties of Ko and projections of
I' are evaluated on the same data.

(4.8) dx = —VV(x)dt + cdWy, V(z,y) = (2* — 1)* + 42,

where W, = (W, ,, W, ) is a vector whose components are two independent Wiener processes
and V indicates the customary two-dimensional gradient operator. A Koopman analysis
of the stochastic double-well system has been pursued before [92, 43], and indeed, for this
example, we consider an identical system to that in [43], so that we consider an additive noise
perturbation and select 0 =0.7. In contrast with that example, however, we perform EDMD
by taking a single long trajectory so that our snapshot data is distributed with respect to the
invariant measure as in the previous two sections. Beginning with an initial condition taken
randomly from the region x,y € (—1.5,1.5), we employ an Euler-Maruyama method [41] to
integrate from t =0 to t =5 x 10° with a step size 6t = 1073,

As a consequence of the gradient structure of (4.8), the system preserves the microscopic
detailed balance condition and is thus a classical example of an equilibrium statistical me-
chanical system. Many important theoretical results can be obtained for this system. Firstly,
it is possible to prove that the system converges exponentially fast to the invariant Gibbs
measure

1
(49) 0 (X) — EG_ZV(X)/OQ
with normalization constant Z = [ e 2V(®)/7* 4x. Second, as a consequence of the microscopic
reversibility of the gradient dynamics, it is possible to prove that the Kolmogorov operator is
self-adjoint in Lig [71]. As a result, the stochastic resonances \;’s describing the decay toward

the statistical equilibrium are all real and no oscillations can be observed in the system, as
opposed to the previous two nonequilibrium examples.
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Figure 4.9. Invariant density of the stochastic double-well system, with deterministic dynamics F(x) over-
laid as arrows.

As may be seen from Figure 4.9, the trajectory spends most of the time localized in either
well, so that there is a time-scale separation between inter- and intrawell dynamics.

As the deterministic dynamics F(x) = —VV(x) is expressed in terms of polynomials in z
and y, the natural choice of dictionary for EDMD is one of polynomials. In keeping with [43],
we choose monomials up to order 10 as basis functions, yielding a dictionary with 66 terms:

(4.10) T (x) = (Laz,y,2% 2y, 9%, .. 2y, y'0) .

For the snapshot data, we filter the trajectory and discard an initial transient so that we
consider M = 107 pairs of points separated by time At = 0.05, corresponding to a trajectory
of length T' =5 x 10° time units. Here, we have considered a very long trajectory to obtain
robust and clear pictures of the Kolmogorov eigenfunctions. We anticipate that the spectral
reconstruction of the response is stable over a large range of trajectory lengths. As before, we
calculate the eigenvalues and eigenvectors of the Kolmogorov matrix K given in (3.2).

Since this is a bona fide equilibrium system, as mentioned above, we adopt here the
Hermitian DMD algorithm [27], which basically amounts to imposing hermitianity of the A
matrix defined in (3.4) by setting A — 1/2(A + A*). The good convergence properties of
this algorithm have been recently assessed in detail [12]. We also remark that the direct
application of the standard EDMD provides almost indistinguishable results, both in terms
of eigenvalues and corresponding eigenvectors.

As this is a continuous-time system, the eigenvalues v; depend on our choice of time-
step, At, and the eigenvalues \; of Ky are the physically relevant quantities. The first 15 of
these, sorted in descending order, are printed alongside their corresponding eigenfunctions in
Figure 4.10. The eigenvalues are all negative real numbers, in agreement with the gradient
nature of the system. The absolute value of the subleading eigenvalue A; is two orders of
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Figure 4.10. The leading 15 subdominant eigenfunctions of the Kolmogorov operator for the stochastic
double well, labelled by their corresponding eigenvalue. The first subdominant eigenvector succinctly describes
the left-right transition between the two potential wells. As eigenfunctions are defined up to an arbitrary scaling
factor, only the zero of the color scale is labelled.

magnitude smaller than all the others, and its corresponding eigenfunction is uniform, apart
from a sudden but smooth transition from positive to negative values when going from one
well to the other. In a physical sense, this is related to the transfer of mass between wells, and
we can interpret this as the dominant coarse-grained process in the system [43], which justifies
the usually assumed two-state approximations for this class of models. Intrawell dynamics are
encoded in the higher-order eigenfunctions.

As in the previous examples, we decompose observables into a linear combination of these
eigenvectors (and the 50 higher-order modes not shown) to evaluate correlation functions
according to (3.11). Some examples are shown in Figures 4.11(a) and 4.12(a). Once again,
the success of the EDMD method is demonstrated by the close agreement of results obtained
through spectral decomposition and direct numerical evaluation from trajectory data. As
implied by (3.11), we see exponential decay of general correlation functions with the absence
of oscillations.

Depending on the choice of the observable, we can expect very different rates of decay
of correlation. It is clear that if the observable is not even with respect to z, it will have a
nonnegligible projection over the subdominant mode @1 so that one expects a slow decay of
correlations with a dominant time scale given by 1/|A1| (see Figure 4.11(a)). If the observable
is even with respect to x, one expects a much faster decay of correlations. Specifically, if the
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Figure 4.11. Panel (a): Autocorrelation functions of two observables that are odd in x. The round markers
represent results from direct numerical correlation functions of the observables, while the solid and dashed lines
of the same color correspond to results of spectral decomposition. Panel (b): Decomposition of the correlation
functions from (a) into the individual terms in (3.11) with largest magnitude. The terms from the autocorrelation
function of f(x,y) =z are plotted as thicker blue lines, while the thinner red lines correspond to terms from the
autocorrelation function of f(x,y) =sin(2z) + cos(2z).
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Figure 4.12. Panel (a): Autocorrelation functions of three observables that are even in x. The round
markers represent results from direct numerical correlation functions of the observables, while the solid and
dashed lines of the same color correspond to results of spectral decomposition. Panel (b): Decomposition of
the correlation functions plotted in (a) as in Figure 4.11. The only term from the autocorrelation function of
f(x,y) =y shown is that with k = 2 (blue line), as this term is several orders of magnitude larger than all
others at all times. The other lines in this plot all correspond to terms from the autocorrelation function of
flz,y) =2® 4+ y? (red lines) and f(z,y) = cos(2z) + sin(2y) (magenta lines).

observable is not even with respect to y, the dominant time scale will be given by 1/|\s] <
1/|A1]. In the case the observable is even with respect to both x and y, the dominant time
scale of decorrelation is < 1/|A3| (see Figure 4.12(a)).

In Figures 4.11(b) and 4.12(b), we decompose the autocorrelation functions plotted in the
corresponding (a) panels into their constituent terms described in (3.11) that have the largest
contribution to the sum.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/14/26 to 14.202.149.35 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

KOOPMANISM AND RESPONSE THEORY 221

The separation of time scales between interwell and intrawell dynamics is clearly seen in
Figure 4.11(a). For long times, both correlation functions are dominated by the leading term
in the sum, as both functions, having a dominating odd component in x, project strongly onto
1. For up to t 1, one can see the effect of the faster decaying modes, which are responsible
for what on the time scale depicted in Figure 4.11(a) appears as an almost instantaneous
decrease of the value of the correlation function. As the rate of the decay of the subdominant
mode is two orders of magnitude slower than all higher-order terms, in the log-lin plot depicted
in Figure 4.11(b) it appears as an approximately horizontal line.

The slow interwell dynamics are absent in Figure 4.12(b). As expected, the function
f(z,y) =y projects most strongly onto ¢2, and indeed all other terms in the decomposition
given in (3.11) have a negligible role. The leading contribution of the decay of correlation
for f(x,y) = cos(2z) + sin(2y) is also given by the second subdominant model. Finally, as
f(z,y) =22 +4y? is even in y, it does not project onto the second subdominant mode and has
an even faster leading decorrelation rate.

To test the linear response properties of the system, we consider two different types of
perturbation: a uniform perturbation X;(x) = (1,0) which is equivalent to tilting the potential
V(z,y) in the z-direction, and a space-dependent perturbation equivalent to varying the
distance between the two minima x* = (£1,0) of the wells as x* — x* £ (¢7'(¢),0). It is simple
to see that such perturbation corresponds to a profile Xo(x) = (42,0). The Green’s functions
associated with these perturbations are then correlation functions involving the observables

d(log po) 3(10gpo)> _

(4.11) Ty(x)=———2> o

. To(x)=-— <4—|—4x

As we have access to the analytic form of the invariant density (4.9), we have

d(log po) 2 0V

4.12 S = o e
(412) ox o2z’

so we can simplify these expressions:

4.13 T(x) = — (4a” — 4 Ta(x) = 2 (2% — 2?) — 4
(4.13) 1(x)—§(x—x), g(x)—ﬁ(m —z%) — 4.

These are functions that are already written as a combination of just three of our dictionary
functions, so it is straightforward to obtain a decomposition in terms of ¢;(x). The response
of the observable f(x,y) = x to the uniform perturbation X; is plotted in Figure 4.13(a),
where results of spectral decomposition are seen to agree well with numerical experiments.
The Green’s function exhibits two distinct time scales: rapid initial decay, followed by a much
slower decay to zero. This suggests that I'; projects strongly on eigenfunctions ¢;, j > 1, and
so terms in the sum given in (3.14) with & > 1 dominate at early times, with a crossover to
slower decay set by A at ¢t ~1/|\2| = 0.5, as clear from the inset in Figure 4.13(a).

We note that I's is an even function of x. Hence, any observable that is odd in = will
have a vanishing response to the perturbation Xs. We consider the response of the observable
f(x,y) = 2%+ 9% Again, Figure 4.13(b) shows good agreement between our spectral decom-
position method and direct numerical response experiments. As there is no projection onto

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/14/26 to 14.202.149.35 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

222 N. ZAGLI, M. J. COLBROOK, V. LUCARINI, I. MEZIC, AND J. MORONEY

1[—T =5 x 10? 1 —T =5x10°
T=5x10° T=5x10°
08 T=:5% 10* T=5x10*
T—=T=5%x10° =.,4 ] 6 —T =5x10°
- Numerical exp. © - Numerical exp.
G 0.6 G
- ) =4
O 04 0 0.5 1 1.5 2 o
t
0 — 0
0 10 20 30 40 50 0 0.2 0.4 0.6 0.8 1 1.2
t t
(a) (b)

Figure 4.13. Panel (a): Green’s functions measuring the response of the observable f(z,y) = x to the
perturbation X1. Black points correspond to direct numerical response experiments, solid lines to results obtained
through spectral decomposition. The inset emphasizes the transition between two regimes of response fort~ 1.
Panel (b): Green’s functions for f(x,y) = z* +y*> and Xz2. Note the much faster decay rate as compared to
Panel (a). Green’s functions obtained through the spectral method are averaged over 60 independent EDMD
runs for 4 different trajectory lengths, T. The shaded area corresponds to one standard deviation range at each
point in time and is vanishingly small for most values of T'.

the slow-decaying, leading term in (3.14), the decay of this Green’s function is exponential on
a much faster time scale than in the case portrayed in Figure 4.13(a).

We tested the robustness of our method by varying the length T' of the trajectory used to
evaluate the Kolmogorov properties. For each T', we performed an ensemble of 60 independent
realizations and tracked the average and standard deviation of our estimate. Figure 4.13(b)
shows that robust and reliable response properties are well identified with a trajectory as
short as T'=500. On the contrary, Figure 4.13(a) shows that longer trajectories are needed to
obtain an unbiased estimate of the Green’s function, with its standard deviation decreasing,
as expected, for longer trajectories.

Such a difference in data requirements between panel (a) and (b) in 4.13 is to be expected.
Panel (b) refers to observables that are agnostic to the interwell dynamics, that is, they do not
distinguish between the two wells. On the contrary, panel (a) corresponds to the observable
f(z,y) =z, which is strongly affected by the hopping of the system between the two wells. To
properly estimate dynamical properties of such observables the training data should include
visits to both wells. Since we are using an ergodic sampling, observing transitions between
the wells in the training data is rare and longer trajectories are needed to properly sample
the full phase space.

5. Conclusions. Koopmanism provides a powerful theory-informed data-driven method
for analyzing a large class of dynamical systems, be they deterministic or stochastic, and for
deducing from a sufficient amount of sufficiently precise observations the laws that determine
the evolution of rather general observables of the system under consideration. Such informa-
tion can be typically collected by observing one long trajectory or multiple short trajectories,
each starting from different initial conditions. These two scenarios correspond to separate
experimental situations.
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The evolution is controlled by the Koopman (or Kolmogorov in the case of diffusive sto-
chastic systems) operator. The spectral properties of this linear operator enable one to define
the invariant measure describing the long term one-time statistics, as well as to compute the
rate of decay of correlations between general observables of the system. We have used this
latter property to reinterpret the FDT, which links the response of the system to (possibly
time-dependent) forcings with its steady state correlation properties.

Indeed, by taking into account the eigenvalues and eigenvectors of the unperturbed system,
it is possible to express the Green’s function describing the response of a system to a forcing
as a sum of terms, each associated with a specific mode of variability, thus vastly increasing
the interpretability of the FDT, and becoming able to identify feedback acting at different
spatial and temporal scales.

We have applied this novel framework to the study of three conceptual mathematical
models, namely, a deterministic one-dimensional chaotic map, a two-dimensional stochastic
map, and a two-dimensional gradient flow, the latter one corresponding to a paradigmatic
case of statistical mechanical equilibrium. Using the EDMD algorithm we have computed the
eigenvectors and eigenvalues of the Koopman/Kolmogorov operators, which are then used as
building blocks for finding explicit expressions for correlation functions of general observables
and response operators for given acting forcings and target observables. The reconstructed
correlation and Green’s functions feature an excellent agreement with those derived by per-
forming direct numerical experiments. The choice of a suitable set of dictionary functions that
allows for capturing the correlation properties of dynamical systems is an important feature
intrinsic to the EDMD algorithm. The results presented here, and in [58] for the paradigmat-
ical Lorenz 63 model, suggest that the spectral reconstruction methodology is overall robust
when reasonable dictionary functions are employed. Generally, it is advisable to choose dic-
tionary functions that form a basis for Lzo so that strong operator convergence properties
of the EDMD algorithm guarantee the convergence of the estimated correlation functions as
the number of dictionary functions increase [91]. While analytically designing such a basis is
quite a complicated task, this can be achieved in a data-driven, nonparametric way leveraging
diffusion maps algorithms for dynamical systems with a smooth invariant measure [11, 90].
Combining diffusion maps techniques with the estimation of response properties of complex
systems is left for future work.

Thanks to the spectral decomposition, we are able to explore the multiscale nature of the
different temporal scales and spatial patterns associated with the various modes of variability
of the system and identify under which circumstances specific forcings resonate with the
underlying modes of variability of the system. We remind the reader however that there is
no guarantee that the output of the EDMD algorithm converges to spectral properties of
the actual Koopman/Kolmogorov operator. Hence, one should in general carefully test the
physical and mathematical meaningfulness of each term of the decomposition by employing
ResDMD, a more sophisticated version of the algorithm allowing for rigorous error control
[24, 21].

In each of the cases studied we have performed EDMD taking into account information
gathered using only forward trajectory exploring the (ergodic) invariant measure of the sys-
tem. This corresponds, in statistical mechanical terms, to a specific and fairly realistic way
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of preparing the system. This, though, comes with some disadvantages in stochastic settings.
In particular, our procedure makes it hard to estimate the uncertainty of the obtained esti-
mates of (eigenvalue, eigenvector) pairs. A careful analysis requires investigating dynamical
processes associated with higher-order Koopman modes [22]. Nonetheless, the high quality of
the reconstruction we have obtained for correlation and response functions strongly supports
the robustness of our analysis.

The key finding of this paper is the first evidence of how Koopman analysis can be used to
interpret and predict the response of a system to perturbations. This has clear implications
in many areas of complex system science and provides a way forward for studying critical
behavior, which is usually associated with the onset of slow decay of correlations and diverging
response operators, and for identifying the physical processes responsible for it.

The full deployment of the methodology presented here relies on having complete knowl-
edge of the state of the system, while in many cases only partial information can be retrieved.
In this case, one should consider response theory for a coarse-grained system. In the case where
it is possible to treat the coarse-grained system as approximately Markovian, the protocol pro-
posed here is still valid because coarse-graining amounts, by and large, to projecting out the
rapidly decaying Kolmogorov modes and considering the dynamics over relatively long time
scales. Linear response is not affected much by the coarse-graining procedure [44]. A natural
and algorithmically feasible approach for linking forced and free variability for coarse-grained
systems as done here could be provided by using response theory for finite state Markov chains
[54, 80], which may become practically relevant when analyzing complex systems if combined
with Markov state modelling [69, 39]. The first attempt in this direction has led to rather
promising results [55]. Koopman analysis, in combination with the use of time delay measure-
ments, can be used to effectively study systems that are only partially observed [4, 25, 40, 91].
Adapting the results presented in this paper to such a case by blending time delays with other
dictionary functions will be the subject of future investigation. We mention that care should
be taken when evaluating Koopman features with time delay observables in stochastic sys-
tems [91]. Response theory for non-Markovian systems presents nontrivial challenges [37, 33],
despite recent advances in the understanding of the link between Ruelle-Pollicott resonances
of full vs. partially observed systems [17]. It is helpful to remark that the Koopman operator
formalism has proved key to showing how to recast as a simpler multilevel Markovian model
[81] the integrodifferential equations resulting from the application of the Mori-Zwanzig pro-
jection operator associated with partial observation [67, 96]. Hence, the Koopman operator
formalism might provide a way ahead for predicting accurately how non-Markovian systems
respond to perturbations.
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