
HYSICAL
EVIEW
ETTERS

P
R
L

American Physical Society

28 JUNE  2019

Volume 122, Number 25
Published by 

Articles published week ending



 

How to Compute Spectra with Error Control

Matthew J. Colbrook, Bogdan Roman, and Anders C. Hansen
Department of Applied Mathematics and Theoretical Physics, University of Cambridge,

Wilberforce Road, Cambridge CB3 0WA, United Kingdom

(Received 28 November 2018; published 28 June 2019)

Computing the spectra of operators is a fundamental problem in the sciences, with wide-ranging
applications in condensed-matter physics, quantum mechanics and chemistry, statistical mechanics, etc.
While there are algorithms that in certain cases converge to the spectrum, no general procedure is known
that (a) always converges, (b) provides bounds on the errors of approximation, and (c) provides
approximate eigenvectors. This may lead to incorrect simulations. It has been an open problem since
the 1950s to decide whether such reliable methods exist at all. We affirmatively resolve this question, and
the algorithms provided are optimal, realizing the boundary of what digital computers can achieve.
Moreover, they are easy to implement and parallelize, offer fundamental speed-ups, and allow problems
that before, regardless of computing power, were out of reach. Results are demonstrated on difficult
problems such as the spectra of quasicrystals and non-Hermitian phase transitions in optics.
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Introduction.—It is hard to overestimate the importance
of computing the spectra of operators in mathemati-
cal physics, quantum chemistry, condensed-matter physics,
statistical mechanics, Hermitian, as well as non-Hermitian,
quantum mechanics, quasicrystals, optics, and many other
fields. Motivated by the many applications, the topic has
been intensely investigated, by both physicists [1–9] and
mathematicians [10–17], since the 1950s. A reliable algo-
rithm should converge and guarantee that any point of the
output is close to the spectrum, up to a chosen arbitrary small
error tolerance. A key question is whether such algorithms
exist. Despite more than 90 years of quantum theory,
the answer to this question has been unknown, even for
Schrödinger operators.
The importance of this question is highlighted by the

current interest in the spectral properties of systems with
complicated spectra. The study of aperiodic systems, such
as quasicrystals [18,19], often leads to complicated, even
fractal-like spectra [20–24], which can make current
methods of computation difficult. Another example is
given by recent experimental breakthroughs in open sys-
tems in optics, which typically yield non-Hermitian
Hamiltonians as there is no guaranteed energy preservation
[25–29]. No previously known algorithm can handle non-
Hermitian operators.
Questions on the foundations of computation and spec-

tral computations have a rich history in physics. A recent
example is the proof of the undecidability of the spectral
gap [30]. Namely, one cannot construct an algorithm to
determine whether a translationally invariant spin lattice
system is gapped or gapless in the thermodynamic limit, a
surprising result connected to seminal results in condensed-
matter theory [31–33]. Hence, there are limitations to what

a computer can achieve regarding limits of finite-dimen-
sional systems.
In this Letter, we establish the boundaries for spectral

problems in infinite dimensions. We show that it is
impossible to design an algorithm for computing the
spectra of Schrödinger operators which, given ϵ > 0, halts
and produces an output that is ϵ away from the true
spectrum as measured in the Hausdorff metric. In other
words, using information from a finite patch (truncation) of
an operator A, it is impossible to produce an approximation
ΓðAÞ to the spectrum SpðAÞ, which satisfies the two
inequalities (I) dist(z; SpðAÞ) ≤ ϵ, for all z ∈ ΓðAÞ, and
also (II) dist(w;ΓðAÞ) ≤ ϵ, for all w ∈ SpðAÞ, simultane-
ously. However, we show that it is possible to create
approximations, converging to the spectrum, that satisfy
inequality (I). Indeed, we know the approximation is sound
or reliable, but we do not know if we have got every-
thing yet.
Namely, we provide an algorithm Γnð·Þ, which both

converges to the spectrum SpðAÞ in the Hausdorff metric as
n → ∞ and also computes a local error bound function
Eðn; zÞ. Here, n is the size of the truncation of A used to
compute ΓnðAÞ, whereas z ∈ ΓnðAÞ approximates a
member of SpðAÞ. For discrete lattice operators, n corre-
sponds to considering the first n basis sites and their
interactions, whereas, in general, n corresponds to the size
of the truncation with respect to an orthonormal basis of the
Hilbert space. The function Eðn; zÞ [defined in Eq. (4) in
Ref. [34]] bounds the error of the approximations z through
the inequality dist(z; SpðAÞ) ≤ Eðn; zÞ. Moreover, we have

EnðAÞ ≔ sup
z∈ΓnðAÞ

Eðn; zÞ → 0; n → ∞:
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This means that ΓnðAÞ is contained in the true bulk
spectrum of A up to the bound EnðAÞ, regardless of how
A extends outside the patch of size n used to compute
ΓnðAÞ. This is made possible through approximating the
resolvent norm of A via using certain folded Hamiltonians,
as outlined in the methods section.
The algorithm is applied to several problems known to

be difficult in the literature and can also compute approxi-
mate states. The new algorithm has another key advantage
over current methods—it is entirely local or parallelizable.
Statement of the results.—Consider a lattice model G

with countably many vertices VðGÞ (e.g., Zd) and write
v ∼k w for v, w ∈ V if there is a path of at most k edges
connecting v and w. Let ΩG be the class of normal finite
range interaction Hamiltonians on VðGÞ, which are oper-
ators of the form

A ¼
X

v∼kw

αðv; wÞjvihwj ð1Þ

for some k (for more general operators, see [34]). The new
algorithm computes SpðAÞ and provides approximate
eigenvectors (states). More precisely, (i) we prove that,
given ϵ > 0, there does not exist any algorithm Γwith input
A ∈ ΩG that halts and produces an output ΓðAÞ with
dH½ΓðAÞ; SpðAÞ� ≤ ϵ, where dH denotes the Hausdorff
metric. (ii) However, we provide an algorithm, Γnð·Þ, that
uses only the matrix elements αðv; wÞ, which converges in
the Hausdorff metric to SpðAÞ for any A ∈ ΩG as n → ∞
and such that the local error bound functionEðn; zÞ satisfies
dist(z; SpðAÞ) ≤ Eðn; zÞ with EnðAÞ → 0.
This has direct implications in computational boundaries

in quantum mechanics [34]. With a minor modification, the
algorithm also computes the pseudospectrum [15,42],
SpϵðAÞ ¼ fz∶kðA − zIÞ−1k−1 ≤ ϵg, a generalization of
the spectrum (and measure of its stability) which is popular
for non-Hermitian problems, for which the above are still
true. All cases of our algorithm(s) share several key features:
(i) Sharpness.—They realize the boundary of what digital
computers can achieve. (ii)Known error of the output.—The
error bound EnðAÞ is computed with no added complexity.
(iii) Local computation of the spectrum.—Computations are
local and can be restricted to regions such as the extreme
parts or parts in the middle of the spectrum (excited states).
The algorithm can efficiently compute states corresponding
to any chosen part of the output without diagonalizing the
whole matrix. (iv) Parallelization and speed.—Local com-
putation immediately implies parallelization. Every area
where one wants to compute the spectrum can be divided
into suitable subsets that can be handled individually. This
allows for a substantial speed-up given access to several
computer cores.
Methods.—The main ideas of the algorithm for

computing the spectrum of A ∈ ΩG are as follows (see
[34] for generalizations, non-normal operators, proofs, and

pseudocodes). By ordering the vertices or sites, we can
consider A as an infinite matrix acting on l2ðNÞ, the space
of square summable sequences. Given an integer n, con-
sider the first n basis vectors je1i;…; jeni and let fðnÞ be
minimal such that heijAjeji ¼ 0 if j ¼ 1;…; n and
i > fðnÞ. Such a fðnÞ exists by the assumption of the
finite range of interactions. We then consider the rectan-
gular matrix PfðnÞAPn, where Pn denotes orthogonal
projection onto the span of the first n basis vectors.
Physically, the rectangular matrix PfðnÞAPn contains all
of the interactions of the first n sites without needing to
apply boundary conditions (the range of the interactions
controls precisely how rectangular the matrix should be).
The error bound function is then given as

Eðn; zÞ ≈minfkðA − zIÞxk∶x ∈ spanfje1i;…; jenigg;

and we provide an efficient routine for its computation. This
corresponds to an estimate of the distance of z to the
spectrum and physically corresponds to approximating
the square root of the ground state energy of the folded
Hamiltonian PnðA − zIÞ�ðA − zIÞPn on the domain
spanfje1i;…; jenig. We prove that our approximation
converges uniformly to the resolvent norm
kðA − zIÞ−1k−1 ¼ dist(z; SpðAÞ), on compact subsets of
the complex plane. The convergence is also from above,
meaning that we gain the rigorous error bound
dist(z; SpðAÞ) ≤ Eðn; zÞ. It is precisely the use of the
rectangular truncation PfðnÞAPn that leads to convergence
from above, and, in general, taking a square truncation will
not even converge.
Given a region D ⊂ C of interest, the other ingredient of

the algorithm is a search routine that seeks to approximate
the spectrum locally on D. We consider a grid of points
GDðnÞ of spacing δðnÞ → 0 as n → ∞. The resolution
δðnÞ−1 (which can be viewed as a discretization parameter)
can be changed to allow one to vary the number of
computed solutions. In our experiments, we chose δðnÞ
to ensure ≈n solutions for fair comparisons with other
methods. The first step is to compute Eðn; ·Þ over GDðnÞ,
which can be done in parallel. Given z ∈ GDðnÞ, we let Iz
be the points inGDðnÞ at a distance most Eðn; zÞ away from
z. We then letMz be the minimizers of Eðn; ·Þ over the local
set Iz. Since Eðn; ·Þ bounds the distance to the spectrum and
converges to the true distance, Mz approximates the
spectrum near the point z.
The negative result (i) we prove shows that it is, in

general, impossible to know in finite time if we have
computed all of the spectrum up to an arbitrary error
parameter. However, the convergence of the algorithm
[which depends on the use of the above local search radius
Eðn; zÞ] ensures that we will progressively obtain all of the
spectrum through this search routine (and avoid solutions
not in the bulk spectrum). The algorithm’s output ΓnðAÞ is
the union of all such Mz for z such that Eðn; zÞ ≤ 1=2, and
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the error bound is EnðAÞ ¼ maxfEðn; zÞ∶z ∈ ΓnðAÞg. The
approximate states for z ∈ ΓnðAÞ then correspond to
approximate states of the ground state energy of the folded
Hamiltonian ðA − zIÞ�ðA − zIÞ, which can be computed
efficiently using an ldl decomposition and with residual
error bounds. We also give a precise bound on the time
needed for the computations based on the size of the region
GDðnÞ, the resolution δðnÞ−1, and n (Proposition 4 in
Ref. [34]). δðnÞ can also be chosen to vary across D, which
we predict will allow extremely fast computation of states
corresponding to eigenvalues in gaps of the spectrum.
Results.—We now illustrate our algorithm(s) on difficult

models arising in condensed-matter physics or quantum
mechanics. In addition, an example considering the non-
Hermitian Anderson model is included in Ref. [34].
Quasicrystals.—Quasicrystals, and more generally

aperiodic systems, have generated considerable interest
due to their often exotic physical or spectral properties
[18,19]. We present the first rigorous spectral computa-
tional study with error bounds on a Penrose tile, the
standard 2D model of a quasicrystal [22,43,44]. No
previously known algorithm determines the spectrum with
error bounds on the output.
The free Hamiltonian H0 (Laplacian) is given by

ðH0ψÞi ¼
X

i∼j
ðψ j − ψ iÞ; ð2Þ

with a summation over nearest neighbor sites (vertices).
Previous numerical methods study the eigenvalues of the
Hamiltonian restricted to a finite portion of the tiling with a
choice of boundary conditions at the edges (finite section
method) such as periodic approximants [45–49]. This can
cause additional eigenvalues (spectral pollution or “edge
states”) [14] to appear which are not in the spectrum of H0

acting on the infinite tiling. While edge states have a
physical meaning and are important experimentally, it is
often desirable to distinguish these from the “bulk” states of
the operator. Our algorithm could have useful applications
in the fast-growing research area of topological edge
states [50,51].
Figure 1 shows the output of the algorithm for n ¼ 105

and two finite section methods (open boundary conditions
and periodic approximants). The error estimate, computed
(using the algorithm) for both the algorithm and the finite
section method, is displayed at each point. This error
estimate converges uniformly to the true error on compact
subsets of R. Finite section methods produce spurious
points in the gaps of the spectrum.
Figure 1 also shows the benefit of parallelization. The

time taken for the algorithm (ran using 200 cores) and for
the finite section methods (ran using four cores) to reach the
final output suggests a speed-up of about 20 times.
Moreover, the time for the finite section method appears
to grow ∼Oðn2.9Þ and Oðn3.0Þ for open and periodic
boundary conditions, respectively, whereas the time for

the new algorithm grows ∼Oðn2.1Þ, predicting larger
differences for larger n. The direct diagonalization
approach is hard to parallelize and so will have difficulty
competing with our method for large n. It is also possible to
use the algorithm to locally compute approximate states
corresponding to a given energy level without the need to
diagonalize the whole system as shown in Fig. 2.
Finally, we consider a magnetic Hamiltonian [4,52–54]

ðHψÞi ¼ −
X

hi;ji
eiαjiψ j:

A constant perpendicular magnetic field B ¼ Bz
with potential A ¼ ð0; xB; 0Þ is applied, leading to
the Peierls phase factor between sites i and j:

FIG. 1. Top: Large-scale experiment with n ¼ 105 for the
algorithm and finite section with open boundary conditions
and periodic approximants (n ¼ 64079). The top shows an
enlarged section and the high resolution obtained. The approxi-
mation computed with the finite section methods produces
spurious points in band gaps with large errors ∼0.2. Bottom:
The maximum errors as well as time of outputs for the algorithm
(blue) and finite section methods (red for open boundary
conditions, green for periodic).
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αji ¼ ð2π=Φ0Þ
R
ri
rj
A · dl, where Φ0 ¼ hc=e is the flux

quantum. Figure 3 shows the output for the finite section
method and the algorithm for n ¼ 5000 up to the first self-
similar mode B0. The absence of spectral pollution for the
new algorithm is striking and agrees well the periodic
approximant studied in Ref. [55].
Recently, Hofstadter’s butterfly has been experimentally

observed in graphene lattices [20,21,56]. Clearly, numeri-
cal methods that avoid spectral pollution, converge, and
provide error bounds are needed to study such operators
with fractal-like spectra. Although one may also study this
type of problem via periodic approximants as before
[52,55], this places restrictions on the value of B. One
can increase the allowed values by the use of magnetic
translations [57], but the total magnetic flux through a
period cell must still be a multiple of the flux quantum.
Such methods cannot be applied to problems with arbitrary
(even nonconstant) magnetic fields nor models with
large degrees of freedom, whereas the new algorithm
can. Numerical difficulties have previously prevented

theoretical modeling of many experimental results of
quasicrystals in higher dimensions. The new algorithm
can tackle such models, and future work will study 3D
systems.
Open systems in optics.—Open systems typically

yield non-Hermitian Hamiltonians, as there is no guara-
nteed energy preservation. However, non-Hermitian
Hamiltonians can possess real spectra when they respect
parity-time (PT) symmetry [58–60]. Remarkably, many
Hamiltonians undergo a phase transition to complex spectra
if the imaginary part of their potential is increased beyond a
certain threshold, known as symmetry breaking. Such
systems are of wide interest [61–65] and can be realized
in optics [25–29,66–69].
Detecting when symmetry breaking occurs poses a

substantial challenge, since it is very sensitive to surface

FIG. 2. The ground state for the Penrose Laplacian and a state
corresponding to energy nearest −5. The algorithm allows us to
choose which states to compute.

FIG. 3. Comparison of the finite section method and the
algorithm for the magnetic Hamiltonian. The algorithm correctly
leaves out the gaps and is able to capture the complicated
structure with guaranteed error maximum 0.058 for n ¼ 5000.

FIG. 4. Top: Pseudospectra of H computed with the proposed
algorithm and finite sections (spectrum in magenta). Bottom:
Fragile PT-symmetric phase as we increase the system size due to
edge states (caused by spectral pollution) with complex eigen-
values, verifying the unsuitability of algorithms based on finite
sections.
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states arising from standard truncations. We discuss PT
symmetry breaking for the case of an aperiodic potential on
a discrete lattice:

ðHxÞn ¼ xn−1 þ xnþ1 þ Vnxn

acting on l2ðZÞ, where Vn ¼ cosðnÞ þ iγ sinðnÞ and γ ≥ 0.
Here the aperiodicity occurs dues to the incommensura-
bility of the potential and lattice. We stress that the
algorithm can handle any type of potential (such as addi-
tional defects).
In the limit of an increasing system size, the critical

parameter γPT depends on the boundary conditions
imposed, often decreasing as the number of sites increases
with a fragile PT-symmetric phase. This limit can differ
from the value γPT on the infinite lattice due to surface or
edge states [70]. Using the algorithm gives an estimate
for γPT in the infinite lattice case avoiding this fragi-
lity, suggesting that symmetry breaking occurs at
γPT ≈ 1� 0.05. This allows us to rigorously detect edge
states (corresponding to spectral pollution) and the corre-
sponding edge modes. Figure 4 shows pseudospectral plots
generated by the algorithm for γ ¼ 1, 2 as well as the
corresponding plots for finite chains of length 2001 for
open and periodic boundary conditions. We can easily use
the algorithm to separate bulk states from edge states. We
have also shown the values of γPT for the finite chains
showing the fragility of the PT-symmetric phase.
Conclusion.—We have demonstrated the boundaries of

what computers can do in spectral computations in large
areas of applications by presenting the first algorithms that
converge to the spectrum or pseudospectrum with error
control on the output. In contrast, the state of the art finite
section method, even for the cases where it does converge,
does not provide error bounds. The related issue of spectral
pollution has been well studied with previous results
concentrating on the self-adjoint case [71], in particular,
detecting spectral pollution in gaps of the essential
spectrum. However, none of these methods provides con-
vergence to the spectrum, as shown by Shargorodsky in
Ref. [72]. The major difference between the algorithms
presented here and those previously studied is the local
approximation of the resolvent norm using uneven sections.
Physically, for discrete systems, this corresponds to pre-
serving the correct interactions of the first n sites and
avoiding the use of imposed boundary conditions.
The presented method is very general and can be used in

many diverse fields of applications. A significant advantage
is the possibility of error control that will allow scientists to
compare experiments with computational results that are
now guaranteed to be correct up to an accuracy parameter
set by the user. Moreover, the locality of the algorithms
represents a considerable advantage if one is interested only
in certain regions of the spectrum and makes computations
extremely quick.
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Overview

Here we provide statements and proofs of theorems as well as detailed explanations of the algorithm. Let B(l2(N))
denote the set of bounded linear operators acting on l2(N). Given a class Ω ⊂ B(l2(N)) and A ∈ Ω, we are interested
in computing the following from the matrix values (with respect to the canonical basis) of A:

� Sp(A) := {z ∈ C : A− zI is not invertible} (spectrum),

� Spε(A) := {z ∈ C : ‖(A− zI)−1‖−1 ≤ ε}, with ε > 0 (pseudospectrum),

where we interpret ‖B−1‖−1 as 0 if the inverse B−1 does not exist. These are computed in the Hausdor� metric on
non-empty compact subsets of C. Recall that the Hausdor� metric is de�ned as

dH(X,Y ) = max

{
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}
,

where d(x, y) = |x−y| is the usual Euclidean distance. As will be mentioned later, the above problems easily generalise
to arbitrary separable Hilbert spaces, in particular lattice models found in quantum mechanics and condensed matter
physics. We have included a section which states these results explicitly.
For the classes Ω considered, there are two statements in the main manuscript (also for the pseudospectrum):

(i) There does not exists any algorithm that, given any δ > 0 and A ∈ Ω, halts and produces an output Γ(A, δ)
that is no worse than δ away from the spectrum of A in the sense that

dH(Γ(A, δ),Sp(A)) ≤ δ. (1)
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(ii) However, we provide an algorithm, Γn(·), that uses only the matrix elements of A, which converges to the
spectrum of any A ∈ Ω as n → ∞. The algorithm also computes error bounds En(A) → 0, as n → ∞, such
that for any z ∈ Γn(A)

dist(z,Sp(A)) ≤ En(A).

We will prove these statements, and for the user's bene�t, we have provided user-friendly pseudocode for the algorithm
as well as discussing how to implement it e�ciently. Other results such as approximate states and the implications
for computational quantum mechanics are also discussed.
In order to be completely precise with statement (i) we need a (very broad) de�nition of an `algorithm'. Suppose

Ξ represents a mapping from Ω to some metric space that we want to compute (in our case the spectrum or pseu-
dospectrum) and Λ denotes the family of evaluation functions Ω → C that our algorithms can access (in our case
matrix elements of an operator). We call {Ξ,Ω,Λ} a computational problem.

De�nition 1 (General Algorithm). Given a computational problem {Ξ,Ω,Λ}, a general algorithm is a mapping
Γ : Ω→M such that for each A ∈ Ω

(i) there exists a �nite subset of evaluations ΛΓ(A) ⊂ Λ,

(ii) the action of Γ on A only depends on {Af}f∈ΛΓ(A) where Af := f(A),

(iii) for every B ∈ Ω such that Bf = Af for every f ∈ ΛΓ(A), it holds that ΛΓ(B) = ΛΓ(A).

In other words, a general algorithm can only take a �nite amount of information, though it is allowed to adaptively
choose the �nite amount of information it reads depending on the input. Condition (iii) assures that the algorithm
reads the information in a consistent way. The purpose of such a broad de�nition is that the impossibility results
become universal independent of the model of computation, and hence this leads to a stronger statement (i) compared
to a statement based on a particular model such as the Turing model [1], or the Blum-Shub-Smale model [2]. However,
all the algorithms we construct are recursive and can easily be adapted to work with inexact input/restrictions to
arithmetic computations over Q.

The Algorithm

Here we present in more detail the execution of our algorithm and prove our main results. We need to mention the
subroutine Grid. This routine simply makes a grid in the complex plane in the area where one wants to compute the

Function Grid(m)
Input : m ∈ N
Output: The intersection of 1

m
(Z + iZ) with the disc Bm(0) centred at zero.

end

spectrum. Note that if we know an estimate ‖A‖ ≤ C of the norm of the operator, then obviously one will restrict
the grid to the BC(0) disc, as this will save time substantially. However, the norm estimate is not needed for the
algorithm to work.

O�-diagonal decay and bounded dispersion

In the algorithm presented in this paper, the function f : N → N, that describes the o�-diagonal decay of the
in�nite matrix, is crucial. More formally, let A be a bounded operator on l2(N) or l2(Z) interpreted as an in�nite
matrix with respect to the canonical basis {ej}. We de�ne for f : N→ N, f(n) ≥ n

Df,m(A) := max
{∥∥(I − Pf(m))APm

∥∥,∥∥PmA(I − Pf(m))
∥∥}, (2)

where Pn is the projection onto the span of {e1, . . . , en} (or {e−n, . . . , en} in the l2(Z) case), and assume that we have
an estimate Df,m(A) ≤ cm for real numbers cm, where cm → 0 as m → ∞. We say that an operator that has this
property has bounded dispersion. Note that for any in�nite matrix A there is an f such that cm = 1/m, the problem
is to �nd it. Fortunately, in many applications this is quite easy.
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Example 1 (Finding f). If A is a banded matrix �nding f is trivial. However, even for quasi-banded matrices,
that have �nitely many non-zeros in each column and row, this is quite easy. In particular, if l(m) represents an
integer such that the matrix elements Am+j,m = 0 if |j| > l(m) and Am,m+k = 0 if |k| > l(m) then we may take
f(m) = m + l(m) ⇒ Df,m(A) = 0. Note that all �nite range interaction Hamiltonians on graphs will have this
property as explained in Example 2 and Example 3.

The routine DistSpec takes f as an input and is used to estimate the distance of a point z from the spectrum of
A.

Function DistSpec(A,n,f(n),z)
Input : n ∈ N, f(n) ∈ N, A ∈ B(l2(N)), z ∈ C
Output: y ∈ R+, an approximation to the function z 7→

∥∥(A− zI)−1
∥∥−1

B = (A− zI)(1 : f(n), 1 : n)
C = (A− zI)∗(1 : f(n), 1 : n)
S = B∗B
T = C∗C
ν = 1, l = 0
while ν = 1 do

l = l + 1
p = IsPosDef(S − l2

n2 )

q = IsPosDef(T − l2

n2 )
ν = min(p, q)

end

y = l
n

end

The IsPosDef routine determines whether a matrix is positive de�nite (returns 1) or not (returns 0). This can
be done by using, for example, a variant of the Cholesky decomposition (chosen for stability reasons and speed of
computation). In practice, we also replace the while loop via an interval bisection method. The idea is to use DistSpec

as an approximation to z 7→
∥∥(A− zI)−1

∥∥−1
which we convert to an approximation to the distance to the spectrum

The Main Routine

Let g : R+ → R+ be a strictly increasing continuous function that vanishes only at 0 and tends to ∞ as x tends
to ∞. Let Ω2 denote the set of all operators with bounded dispersion bounded by f and with a known bound of the
form

‖R(z,A)‖−1 ≥ g(dist(z,Sp(A))),

for z ∈ C. Note that such a g is always guaranteed to exist, however, the it is crucial for the algorithm that one knows
an estimate for g. For example, in the Hermitian and normal case g(x) = x is the trivial choice of g.

We begin by de�ning the subroutine CompInvg that computes an estimate of g−1 (which exists by assumptions on
g). This subroutine is essential in the main routine CompSpec. Note that

g−1(y) ≤ CompInvg (n,y,g) ≤ g−1(y) +
1

n
, (3)

thus, CompInvg approximates g−1 in a controlled way.

Function CompInvg(n,y,g)
Input : n ∈ N, y ∈ R+, g : R+ → R+

Output: m ∈ R+, an approximation to g−1(y)

m = min{k/n : k ∈ N, g(k/n) > y}
end
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... ... ...

FIG. 1. Schematic of the method.

Moreover, in many cases, we can use an explicit form for g−1 and in that case one does not need CompInvg. For
each output z we have an error estimate

E(n, z) = CompInvg (n,DistSpec (A,n,f(n),z)+cn, g), (4)

and this gives a guaranteed estimate which converges uniformly to g−1(‖R(z,A)‖−1
). We can now give the main

routine of the algorithm, shown in CompSpec.

Function CompSpec(A,n,f(n),cn,g)
Input : n, f(n) ∈ N, cn ∈ R+, g : R+ → R+, A ∈ B(l2(N))
Output: Γ ⊂ C, an approximation to Sp(A), E ∈ R+, the error estimate

G = Grid(n)
for z ∈ G do

F (z) = DistSpec(A,n,f(n),z)
if F (z) ≤ 1/2 then

for wj ∈ BCompInvg(n,F (z),g)(z) ∩G = {w1, ..., wk} do
Fj = DistSpec(A,n,f(n),wj)

end

Mz = {wj : Fj = minq{Fq}}
else

Mz = ∅
end

end

Γ = ∪z∈GMz

E = maxz∈Γ{CompInvg(n,DistSpec(A,n,f(n),z)+cn, g)}
end

Algorithm 1: The subroutine CompSpec is the main routine in the algorithm.

Here, Bδ(z) denotes the closed disc of radius δ > 0 centred at z. The simple idea of CompSpec is a local search
routine. If z has DistSpec(A,n, f(n), z) ≤ 1/2, we search in a radius r = CompInvg(n, DistSpec(A,n, f(n), z), g)
around z to minimise the approximated distance to the spectrum. This is our best guess of points in the spectrum
near z. The output is then the collection of these local minimisers. This is shown in Figure 1.

There is also a physical interpretation of the method. If we are dealing with a �nite range interaction Hamiltonian,
then f can be chosen such that Ak,n = 0 for k > f(n). In other words, the rectangular truncation Pf(n)APn contains
all of the interactions of the �rst n sites without needing to apply boundary conditions. The algorithm naturally uses
just enough information to capture these interactions correctly.
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Simpli�cations in the Normal/Hermitian Case

In the Hermitian case (the operator A being normal su�ces), the algorithm is simpli�ed as follows. We only need
to check positive de�niteness corresponding to one matrix in the routine DistSpec, and the altered version is shown
as DistSpecH.

Function DistSpecH(A,n,f(n),z)
Input : n ∈ N, f(n) ∈ N, A ∈ B(l2(N)), z ∈ C
Output: y ∈ R+, an approximation to the function z 7→ dist(z,Sp(A))

B = (A− zI)(1 : f(n), 1 : n)
ν = 1, l = 0
while ν = 1 do

l = l + 1
ν = IsPosDef(B∗B − l2

n2 )

end

y = l
n

end

DistSpecH has the added advantage of converging uniformly on compact subsets to the true error. Hence we can
use it to gain a very good approximation of the error for outputs of other methods such as �nite section. Furthermore,
DistSpecH + cn converges to the true error from above and hence we gain an error control on the output. We can
also take the function g(x) = x in the routine CompSpec, and, in the self-adjoint case, restrict everything to the real
axis. The modi�ed main routine will be denoted by CompSpecH with g suppressed in the notation.

Theorems on Classi�cations

Here we collect together the theorems and proofs of the classi�cation of the spectral problem and prove our algorithm
converges. We begin with the normal case and then extend the proof to the more general case. To state the theorem
we recall that we have f : N→ N, f(n) ≥ n and c = {c1, c2, . . .}, a sequence such that cn → 0 as n→∞. Moreover,
we let Ω1 denote the set of normal bounded operators A on l2(N) such that Df,n(A) ≤ cn.

Theorem 2 (Hermitian and normal case). For A ∈ Ω1, let

[Γn(A), E(n)] = CompSpecH (A,n,f(n),cn).

Then Γn(A) → Sp(A) and E(n) → 0 as n → ∞ and Γn(A) is contained in the E(n) neighbourhood of Sp(A).
Moreover, Γn can be implemented using �nitely many arithmetic operations and comparisons on the matrix elements
of A and the statement (i) on page 1 also holds for this class.

Sketch of proof. From the de�nition of CompSpecH it is clear that this algorithm requires only �nitely many arith-
metic operations and comparisons except for the IsPosDef routine. Note, however, that if the IsPosDef routine is
implemented similar to a Cholesky decomposition (which requires radicals), one does actually not need to form the
full decomposition and can, therefore, execute the routine by using only arithmetic operations and comparisons. By
considering diagonal operators, it is straightforward to see that (i) also holds.

The proof that Γn(A) → Sp(A) and E(n) → 0 as n → ∞, and the fact that Γn(A) is contained in the E(n)
neighbourhood of Sp(A) is close to the more general case in Theorem 3, so we use the Lemma 1 stated there,
replacing h by the identity function. We also vary the de�nitions of γn and γm,n,

γm,n(z) := σ1(Pn(A− zI)Pm), γn(z) := σ1((A− zI)Pn),

where σ1 denotes the smallest singular value (or injection modulus), σ1(T ) = inf{‖Tψ‖ : ‖ψ‖ = 1}. In the case of
T = (A− zI)Pn we take inf over all ψ of norm 1 in the span of {e1, ..., en}. Now de�ne γ(z) := σ1(A− zI). We can
write

DistSpecH(A,n, f(n), z) = min{k/n : k ∈ Z, k/n ≥ γn,f(n)(z)}
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and hence we must have that 0 ≤ DistSpecH(A,n, f(n), z)− γn,f(n)(z) ≤ 1/n. For any compact set K, we then have

‖γ − DistSpecH(A,n, f(n), ·)‖∞,K ≤ ‖γ − γn‖∞,K +
∥∥γn − γn,f(n)

∥∥
∞,K

+
∥∥γn,f(n) − DistSpecH(A,n, f(n), ·)

∥∥
∞,K

≤ ‖γ − γn‖∞,K +
∥∥γn − γn,f(n)

∥∥
∞,K +

1

n
,

(5)

where the subscript K on the norm denotes the restriction of the function to K. It is easy to see that γn is
decreasing and converges pointwise to γ since Pn → I strongly. As γ is continuous, Dini's theorem then gives that
‖γ − γn‖∞,K → 0. By de�nition of f and the fact that f(n) ≥ n we have that

‖Pf(n)(A− zI)Pn − (A− zI)Pn‖ = ‖Pf(n)APn −APn‖ −→ 0, n→∞.

We then use the inequality |σ1(B + C) − σ1(B)| ≤ ‖C‖ to gain
∥∥γn − γn,f(n)

∥∥
∞,K → 0. Thus, for any ε > 0, by

Eq. 5, we can choose n large such that ‖γ − DistSpecH(A,n, f(n), ·)‖∞,K < ε. We can then use Lemma 1 to prove
convergence in the same way as the proof of Theorem 3.
To get the error estimate, suppose that z ∈ Γn(A) then we know that dist(z,Sp(A)) = γ(z) ≤ γn(z). In the

case that the operator is quasi-banded with f(m) = l(m) + m we have γn,f(n) = γn and hence dist(z,Sp(A)) ≤
DistSpecH(A,n, f(n), z) =: E(n, z). Since γn ↓ γ = dist(z,Sp(A)) uniformly and dH(Γn(A),Sp(A)) → 0, our error
estimate converges uniformly to 0 over the output Γn(A). If we know cn then

∥∥γn − γn,f(n)

∥∥
∞,K ≤ cn and hence

dist(z,Sp(A)) ≤ DistSpecH(A,n, f(n), z) + cn =: E(n, z)

and we argue as before. Furthermore, in both cases we actually have that

E(n, z)→ dist(z,Sp(A))

uniformly over any compact set. Hence this error estimate gives us a good idea of the error of other methods such as
�nite section.

Note that as well as uniform convergence, the proof makes it clear that, in the quasi-banded case, we have, up to
an error of 1/n, that E(n, z) decreases monotonically from above down to the true error. This can be tweaked to gain
accurate values of γn,f(n) by increasing the search resolution in DistSpecH. We now turn to the general case. Recall
that Ω2 denotes the set of all operators with dispersion bounded by f and with a known bound of the form

‖R(z,A)‖−1 ≥ g(dist(z,Sp(A))),

for z ∈ C.

Theorem 3 (General case with controlled growth of the resolvent). Let A ∈ Ω2 and

[Γn(A), E(n)] = CompSpec (A,n,f(n),cn,g).

Then Γn(A) → Sp(A) and E(n) → 0 as n → ∞ and Γn(A) is contained in the E(n) neighbourhood of Sp(A).
Moreover, Γn can be implemented using �nitely many arithmetic operations and comparisons on the matrix elements
of A and the statement (i) on page 1 also holds for this class.

Sketch of proof. Again by considering diagonal operators we see that (i) holds and hence for the classi�cation it is
enough to prove the statements regarding [Γn(A), E(n)]. Let A ∈ Ω2 and de�ne γ(z) = min{σ1(A−zI), σ1(A∗− z̄I)},
where again σ1 denotes the injection modulus. It is well known (see [3] for example) that γ(z) = ‖R(z,A)‖−1 ≤
dist(z,Sp(A)).
For any ζ : C→ R+ de�ne the algorithm CompSpecII(A,n,f(n),cn,g,ζ) to be the subroutine CompSpec(A,n,f(n),cn,g),

where DistSpec(A,n,f(n),z) is replaced by ζ(z). De�ne

γm,n(z) = min{σ1(Pn(A− zI)Pm), σ1(Pn(A∗ − z̄I)Pm)},
γn(z) = min{σ1((A− zI)Pn), σ1((A∗ − z̄I)Pn)},

and note that in these de�nitions we need to include the adjoint A∗ since our operators may no longer be normal. As
before we can write

DistSpec(A,n, f(n), z) = min{k/n : k ∈ Z, k/n ≥ γn,f(n)(z)}
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with 0 ≤ DistSpec(A,n, f(n), z) − γn,f(n)(z) ≤ 1/n. Thus, by arguing similarly to the proof of Theorem 2 we get
that ‖γ − DistSpec(A,n, f(n), ·)‖∞,K → 0 as n → ∞ for any compact set K. For simplicity let h = g−1 and let
C > 0 such that Sp(A) ⊂ BC(0) (the closed ball of radius C about the origin). We then de�ne

K1 = BC+h(1/2)+1(0), K2 = BC+h(1/2)+h(2C+h(1/2)+2)+2(0).

Of course these are not known but they will be used to prove convergence of the algorithm via the following lemma.
Note that DistSpec(A,n, f(n), ·) satis�es the conditions of the lemma for large n.

Lemma 1. Let K1 and K2 be as above and let 0 < ε < 1/4 and n > 2/ε. Suppose there is a function ζ with
‖ζ − γ‖∞,K2

< ε and ζ(w) > 1/2 for all w ∈ C\K1. Then

dH(CompSpecII(A,n, f(n), cn, g, ζ),Sp(A)) ≤ u(ε),

where u(η) = max{h(3η + h(t+ η)− h(t)) + η : t ∈ [0, 1/2]}. Also, u(ε)→ 0 as ε→ 0.

To �nish the proof we need the establish the remaining part of the theorem regarding the the error. Note that if
cn = 0 we have γn,f(n) = γn and hence g(dist(z,Sp(A))) ≤ DistSpec(A,n, f(n), z). Now de�ne Ẽ(n, z) such that

DistSpec(A,n, f(n), z) =: g(Ẽ(n, z)). Since γn ↓ γ = ‖R(z,A)‖−1 uniformly and dH(Γn(A),Sp(A)) → 0 then our
error estimate converges uniformly to 0 over the output Γn(A). If we know cn ≥

∥∥γn − γn,f(n)

∥∥
∞,K then we have

g(dist(z,Sp(A))) ≤ DistSpec(A,n, f(n), z) + cn =: g(Ẽ(n, z))

and we argue as before. Again, in both cases we have

Ẽ(n, z)→ h(‖R(z,A)‖−1
) (6)

uniformly over any compact set. The �nal result follows from Eq. 3.

Proof of Lemma 1. Let z ∈ Grid(n) with ζ(z) ≤ 1/2 and Iz = BCompInvg(n,ζ(z),g)(z)∩ Grid(n) 6= ∅, the set we compute
local minima over. It follows that z ∈ K1. If v ∈ Iz then

|z − v| ≤ rn(ζ(z)) ≤ rn(γ(z) + ε) (as h increasing)

≤ rn(dist(z,Sp(A)) + ε) ≤ h(dist(z,Sp(A)) + ε) + 1/n

≤ h(2C + h(1/2) + 2) + 1,

where we let rn(y) = CompInvg (n,y,g). This implies that Iz ⊂ K2. Recall Mz from CompSpec and suppose that
Mz 6= ∅. By the growth condition, monotonicity of h and the compactness of Sp(A) there exists some y ∈ Sp(A) of
minimal distance to z with |z−y| ≤ h(γ(z)). By the assumptions on ζ we have |z−y| ≤ h(ζ(z) + ε). If rn(ζ(z)) ≤ 1/n
then |z− y| ≤ h(ζ(z) + ε)−h(ζ(z)) + 2/n and let v = z. If rn(ζ(z)) > 1/n then a simple geometrical argument (which
also works in R) shows that there exists v ∈ Iz with |v− y| ≤ h(ζ(z) + ε)− h(ζ(z)) + 2/n. Now γ(v) ≤ dist(v,Sp(A))
and so, since v ∈ K2, ζ(v) < γ(v) + ε < h(ζ(z) + ε) − h(ζ(z)) + 2ε as 2/n < ε. By de�nition of Mz as a minimiser,
this inequality must hold for all w ∈Mz and hence

dist(w,Sp(A)) = h(g(dist(w,Sp(A)))) ≤ h(γ(w))

≤ h(ζ(w) + ε) ≤ u(ε),

since ζ(z) ≤ 1/2. This holds for all points of CompSpecII(A,n, f(n), cn, g, ζ) since z ∈ Grid(n) was arbitrary.
Conversely, let y ∈ Sp(A) then there must exist some point z ∈ Grid(n) ∩K2 with |z − y| ≤ 1/n. It follows that

ζ(z) < γ(z) + ε ≤ 2ε < 1/2. So Mz is not empty and if w ∈Mz then

|w − y| ≤|w − z|+ |z − y|
≤h(ζ(z)) + 1/n+ |z − y| ≤ h(ζ(z)) + ε ≤ u(ε)

where we use ζ(z) ≤ 2ε in the last line. The claim now follows. To �nish the argument, let u be the maximum over
t of (t, η) 7→ h(h(t+ η)− h(t) + 3η) + η on [0, 1/2]2 which must be uniformly continuous. For �xed t, this function
tends to 0 as η → 0 and hence the convergence must be uniform in t.
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FIG. 2. Speed-up of method when we take advantage of the structure preservation under changes in z and use AMD ordering.
The AMD ordering only needs to be calculated once for each n and can subsequently be used on all test points. Both these
plots are for the operator negative Laplacian H0 on the Penrose tile.
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FIG. 3. Non-zero entries of the matrices S = T with and without permutations of basis elements. The number of non-zero
entries is denoted by nz.

Numerical Implementation and Speed-up

For sparse matrices A, the �nite truncations A(1 : f(n), 1 : n) will be sparse but the matrices S, T in DistSpec may
be far from banded. To take advantage that S, T have the same shape as we vary our test point z, we can calculate a
permutation of the indices corresponding to an Approximate Minimum Degree (AMD) ordering. This is a standard
procedure to reduce the number of operations needed for Cholesky Decomposition or Gaussian Elimination. This can
be computed with the Matlab commands [∼,∼,Q1]=chol(S-speye(m)) and [∼,∼,Q2]=chol(T-speye(m)), where
S, T are m × m. We can then replace S, T by S(Q1, Q1) and T (Q2, Q2) in subsequent calculations. As shown in
Figure 2 this o�ers considerable speed-up, especially in two-dimensional models where the initial matrix A is not
banded. For the case considered in the text, the time taken was of order ∼ O(n2.1) and ∼ O(n2.8) for large n with
and without the AMD ordering respectively (shown as reference lines). For the case of self-adjoint operators and real
z, S = T and Figure 3 shows the non-zero entry patterns of these matrices and their permutations for n = 1000 and
the operator H0 on the Penrose tile. Of course, for large sparse rectangular truncations Pn(A − zI)Pm, there exist
e�cient iterative methods to approximate the smallest singular value. We found the partial Cholesky approach (with
interval bisection and AMD ordering) slightly faster for the examples in this paper, but note that the user can easily
use di�erent subroutines for the computation of the smallest singular value. For the case of computing pseudospectra
(e.g. Fig. 4), using the partial Cholesky positive de�nite test is more e�cient since we can test levels of the resolvent
norm on a logarithmic scale and we found it to be more stable for non-normal A. It is also easier to implement the
incomplete Cholesky approach when using interval arithmetic, allowing completely rigorous error bounds.
The number of operations, pre-AMD ordering can be bounded in the following way.

Proposition 4. Let A be a bounded operator and suppose that for large n, f(n)−n ∼ Cnα, where f is the dispersion
function, C a constant and α ∈ [0, 1). Suppose that f is non-decreasing and also describes the o�-diagonal sparsity
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structure of A in the sense that An,k, Ak,n = 0 if k > f(n). If we use m1(n) test points and an accuracy of 1/m2(n)
for DistSpec, then the proposed algorithm can be computed in

O(m1(n)n(α+1)α+1 log(m2(n)))

operations.

Proof. We will show �rst that testing positive de�niteness of S − ε in DistSpec can be achieved in O(n(α+1)α+1)
operations. Is is then clear that the computations of all the estimates using DistSpec can be achieved in
O(m1(n)n(α+1)α+1 log(m2(n))) operations if we use a binary search routine. It is easily seen that the rest of
CompSpec can be executed in O(m1(n)n) operations, yielding the result.

To test positive de�niteness (IsPos) we checked whether a Cholesky decomposition of the matrix S−ε was possible.
One can see that S also has a dispersion function f̃(n)−n ∼ C̃nα and hence without loss of generality we can assume
f = f̃ . Furthermore, S − ε is sparse with f describing its sparsity structure. We refer the reader to [4] Chapter 23
where Cholesky factorisation is explained. Following the notation there, one computes (assuming S > ε)

S − ε = R∗1...R
∗
mRm...R1

with R = Rm...R1 upper triangular. Using the fact that f is non-decreasing with f(n) ≥ n it is straightforward to
prove that all Ri's used to compute R have the same sparsity/dispersion function f . A simple operation count gives
complexity of order

n∑
k=1

f(k)∑
j=k+1

(f(j)− j) .
n∑
k=1

f(k)∑
j=k+1

jα .
n∑
k=1

(f(k)α+1 − kα+1) .
n∑
k=1

k(α+1)α . n(α+1)α+1

and we get the result.

Remark 5. If we are studying a �nite range Hamiltonian on the lattice l2(Zd) then one can choose α = (d−1)/d and
in the general case of such Hamiltonians this is easily seen to be optimal. If m1 = Ln,m2 = n then in two dimensions
for a constant L this reduces to n2.75 log(n) which is the slope in Figure 2.

Approximate States

In this section we mention how the proposed algorithm can be used to gain states corresponding to elements in
the spectrum in addition to the spectrum itself. For simplicity we will consider an operator on l2(N). For such an
operator, not all of the spectrum is composed of eigenvalues. In the normal/Hermitian case, given z ∈ Sp(A), there
exists a sequence of unit vectors xn ∈ l2(N) such that∥∥Pf(n)(A− zI)Pnxn

∥∥→ 0 as n→∞.

Such a sequence is known as an approximate eigenvector sequence or an approximate eigenstate sequence. In the
non-normal case, one only has the existence of xn such that at least one of the quantities

∥∥Pf(n)(A− zI)Pnxn
∥∥ and∥∥Pf(n)(A

∗ − zI)Pnxn
∥∥ converge to zero. The question is whether given a z in the output Γn(A) of the algorithm and

an approximation of γn,f(n)(z), we can �nd a xn satisfying

min{‖(A− zI)xn‖ , ‖(A∗ − zI)xn‖} ≤ γn,f(n)(z).

The convergence proof of the algorithm shows that such a sequence will be an approximate eigenvector sequence.

Theorem 6 (Approximate States). Suppose A is a bounded operator with dispersion bound f . Given any z ∈ Γn(A)
with computed bound on γn,f(n)(z), we can compute a corresponding vector xn satisfying

min{
∥∥Pf(n)(A− zI)Pnxn

∥∥ ,∥∥Pf(n)(A
∗ − zI)Pnxn

∥∥} ≤ γn,f(n)(z)

in �nitely many arithmetic and square root operations without any iterative procedure.



10

Function ApproxState(A,n,f(n),z,ε)
Input : n ∈ N, f(n) ∈ N, A ∈ B(l2(N)), z ∈ C, ε = E(n, z)2

Output: xn ∈ Cn, a vector satisfying
∥∥Pf(n)(A− zI)Pnxn

∥∥ ≤ E(n, z)

B = [(A− zI)(1 : f(n), 1 : n)]∗[(A− zI)(1 : f(n), 1 : n)]− εI
[L,D] = ldl(B)
if D is diagonal then

Find i with D(i, i) ≤ 0
y = ei

else
Find y eigenvector of D with eigenvalue ≤ 0

end
Solve upper triangular system for xn with y = L∗xn.

end

Algorithm 2: The subroutine ApproxState computes approximate eigenvalues/states. The ldl denotes a
standard subroutine that computes the LDL∗ decomposition.

Proof. We will deal with the normal case and note that dealing with the general case is simply a matter of applying
the following argument to (A∗, z) as well as (A, z). Let ε = (γn,f(n)(z))

2 and consider the matrix

B = [(A− zI)(1 : f(n), 1 : n)]∗[(A− zI)(1 : f(n), 1 : n)]− εI

then B is a Hermitian matrix but not positive de�nite. It follows that B can be put into the form

PBPT = LDL∗,

where L is lower triangular with 1's along its diagonal, D is block diagonal with block sizes 1 or 2 and P is a
permutation matrix. This can be computed in �nitely many arithmetic operations. Without loss of generality we
assume that P = I. Let x be an eigenvector of B with non-positive eigenvalue then set y = L∗x. Such an x exists by
assumption. Note that

〈y,Dy〉 = 〈L∗x,DL∗x〉 = 〈x,Bx〉 ≤ 0.

It follows that there exists a unit vector yn with 〈yn, Dyn〉 ≤ 0. Such a vector is easy to spot by either considering 1
blocks or 2 blocks (where we need to extract square roots) in the block diagonal matrix D. L∗ is invertible and upper
triangular so we can e�ciently solve for x̃n = (L∗)−1yn and then normalise to get xn. Finally note that

∥∥Pf(n)(A− zI)Pnxn
∥∥2

= 〈xn, Bxn〉+ ε =
1

‖x̃n‖2
〈yn, Dyn〉+ ε ≤ ε.

The upshot of this is that the algorithm not only computes Γn(A) converging to the spectrum of A, but it also
computes approximating eigenvector sequences for the spectrum. Since not all of the spectrum is necessarily composed
of eigenvectors in the in�nite dimensional case, this is the best any algorithm can hope to achieve in generality.
Furthermore, even in the �nite dimensional case this is the best possible owing to numerical errors due to round-
o� and �nite precision. Finally, we note that this method is very quick and can be e�ciently implemented. The
algorithm is shown in the subroutine ApproxState for the Hermitian case which takes as input A, n, f(n), z and the
corresponding error bound ε = E(n, z)2 and computes the corresponding approximate state xn.

Computing Pseudospectra

Here we state and prove the theorem on the use of the algorithm to compute pseudospectra, as well as show that
the algorithm produces output without error in this case. Recall that if A is a bounded linear operator on a Hilbert
space H and ε > 0, then the ε-pseudospectrum of A is de�ned as

Spε(A) = {z :
∥∥(A− zI)−1

∥∥ ≥ ε−1}.
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Function PseudoSpec(A,n,f(n),cn, ε)
Input : n, f(n) ∈ N, cn ∈ RN

+, A ∈ B(l2(N)), ε > 0
Output: Γ ⊂ C, an approximation to Spε(A)

G = Grid(n)
m = min{k ≥ n | ck < ε}
for z ∈ G do

B = (A− zI)(1 : f(m), 1 : m)
C = (A− zI)∗(1 : f(m), 1 : m)
S = B∗B
T = C∗C
p = IsPosDef(S − (ε− cm)2)
q = IsPosDef(T − (ε− cm)2)
ν(z) = min(p, q)

end
Γ =

⋃
{z ∈ G |ν(z) = 0}

end

Algorithm 3: The PseudoSpec routine computes an approximation to the true pseudospectrum of the operator
with the property that it is always inside the true pseudospectrum, and of course converges as n becomes large.

We now let Ω3 be the set of all (bounded) operators A on l2(N) such that Df,n(A) ≤ cn. Consider �rst ψn(A, z) =
min{σ1(Pf(n)(A− zI)Pn), σ1(Pf(n)(A

∗ − z̄I)Pn)} where σ1 is the usual injection modulus and de�ne

Γ̃εn(A) = {z ∈ Grid(m) : ψn(A, z) ≤ ε}. (7)

In the case that A is quasi-banded with f(m) = m+ l(m) then it is clear that the output is guaranteed to be inside
the pseudospectrum, since the resolvent norm estimate can only increase as we increase n (see the proof of Theorem
3). If we know that Df,n(A) ≤ cn, we can use the following trick even with no known behaviour of ‖R(z,A)‖ between
level sets. Recall that |σ1(B + C) − σ1(B)| ≤ ‖C‖ for bounded operators B,C and let n be large such that cn < ε.
Replace Γ̃εn(A) by Γ̃ε−cmm (A) with m ≥ n such that cm < ε.

Theorem 7 (Pseudospectra). Let A ∈ Ω3 and

Γn(A) = PseudoSpec(A,n, f(n), cn, ε).

Then Γn(A) → Spε(A) as n → ∞ and E(n) = 0. Moreover, Γn can be implemented using �nitely many arithmetic
operations and comparisons on the matrix elements of A and the statement (i) on page 1 also holds for this class.

Proof. If D is a diagonal operator and M the closure of its diagonal matrix elements then we have Spε = M +Bε(0).
Extending the usual argument for the spectrum, it is clear that (i) holds.
To show the convergence result, �rst we consider the case when cm = 0 for all m. We use the de�nition of γn, γ as

in the proof of Theorem 3. Recall that f(m) ≥ m and we have

ψn(A, z) = min
{
σ1(Pf(n)(A− zI)Pn), σ1(Pf(n)(A

∗ − zI)Pn)
}
,

Γn(A) = Γ̃εn(A) = {z ∈ Grid(n) : ψn(A, z) ≤ ε}.

Note that Γn(A) relies on arithmetic operations on only �nitely many computations of A's matrix elements. Let
|z| > ‖A‖ then we know via a standard series argument that A− zI is invertible with

‖R(z,A)‖ ≤ 1

|z| − ‖A‖
.

Consider R̃n(z) := R(z, Pf(n)APf(n)) ∈ B(Pf(n)H) and note that for any operator B, σ1(BPm1) ≥ σ1(BPm2) for
m1 ≤ m2. By considering the Banach algebra B(Pf(n)H) we have

ψn(A, z) ≥ 1∥∥∥R̃n(z)
∥∥∥ ≥ |z| −

∥∥Pf(n)APf(n)

∥∥ ≥ |z| − ‖A‖ .
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Similarly γn(z) ≥ |z| − ‖A‖ for all such z. It follows that, given ε > 0, we can choose a compact subset K ⊂ C with
γn(z) > 2ε and ψn(A, z) > 2ε for all z ∈ C\K and for all n. We have already seen that ‖γn − ψn‖∞,K → 0 as n→∞.
As proven before, γn ↓ γ locally uniformly as n→∞ and hence ψn → γ uniformly on K as n→∞. By the uniform
convergence and the Arzelá-Ascoli theorem we can choose δn ↓ 0 such that for all n,

|ψn(A, z)− ψn(A,w)| < δn for all z, w ∈ K with |z − w| < 1/n (8)

and such that |ψn − γn| < δn on K. Now de�ne the sets

Ψε,n = {z ∈ C : ψn(A, z) ≤ ε}, Υε,n = {z ∈ C : γn(z) ≤ ε}.

The above shows that we have for n ≥ k

Υε−δk,n ⊂ Υε−δn,n ⊂ Ψε,n ⊂ Υε+δn,n ⊂ Υε+δk,n. (9)

We have that Γn(A) ⊂ Ψε,n(A) and we assume n is large so that K ⊂ Qn(0), where Qn(0) denotes the closed square
centred at 0 with side length 2n. We can write Grid(n) = (n−1(Z+ iZ))∩Qn(0). If this holds and z1 ∈ Ψε−δn,n then
there exists some z2 ∈ Grid(n) with |z1−z2| < 1/n and hence |ψn(A, z1)−ψn(A, z2)| < δn. It follows that z2 ∈ Γn(A)
and hence

Ψε−δn,n(A) ⊂ Γn(A) +B1/n(0).

Putting these together and using that δn ↓ 0, we get for n ≥ k

Ψε−δk,n(A) ⊂ Ψε−δn,n(A) ⊂ Γn(A) +B1/n(0) ⊂ Ψε,n(A) +B1/n(0). (10)

As γn ↓ γ it is clear that Υε,n ⊂ Spε(A). A simple proof by contradiction using compactness of K and the fact that
γ(z) ≥ 2ε on C\K shows that we must have limn→∞ dH(Υε,n,Spε(A)) = 0. Using Eq. 9 and the fact that Spε(A) is
continuous in ε (with respect to the Hausdor� metric) we must have limn→∞ dH(Ψε,n,Spε(A)) = 0. Similarly, letting
n→∞ and then k →∞ in Eq. 10 we deduce that limn→∞ dH(Γn,Spε(A)) = 0.
To prove that the algorithm converges with non-zero cm's, let δ < ε. For large m with cm < δ we have that

Γ̃ε−δm (A) ⊂ Γ̃ε−cmm (A) ⊂ Spε(A).

Hence, using the convergence proven above we have

lim sup
m→∞

dH(Γ̃ε−cmm (A),Spε(A)) ≤ dH(Spε−δ(A),Spε(A)).

We then note that Γn(A) = Γ̃
ε−cm(n)

m(n) (A) with m(n) ≥ n. Letting δ ↓ 0 and using continuity of the pseudospectrum

we get the result.

To produce diagrams like those shown in the main text, we choose a grid, corresponding to the wanted resolution in
the diagram, and compute the approximation of the resolvent norm at each point. One may also choose the accuracy
of the approximation wanted for a given n, which corresponds to a choice of di�erent ε or level sets of the resolvent
norm. In all cases, the output is guaranteed to be inside the pseudospectrum, i.e. we under-estimate the resolvent
norm. Keeping the ε constant and increasing n, we have an approximation that �lls up each pseudospectrum.

Non-Hermitian Anderson model

Here we give another example of the algorithm in action. Hatano and Nelson initiated the study of the non-
Hermitian Anderson model in the context of vortex pinning in type-II superconductors [5]. Their model showed
that an imaginary gauge �eld in a disordered one-dimensional lattice can induce a delocalisation transition. Whilst
synthesising such an imaginary vector potential is a challenge in condensed-matter physics, this phenomenon has been
investigated in the �eld of optics [6]. From a computational point of view, non-Hermitian Hamiltonians pose a serious
challenge as no previous algorithm is known to work for computing pseudospectra of non-Hermitian operators and
providing error bounds. The operator on l2(Z) can be written as

(Hx)n = e−gxn−1 + egxn+1 + Vnxn
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FIG. 4. Pseudospectra of the �nite section method with non-periodic boundary conditions shown as contours of the resolvent
norm ‖(Hn − zI)−1‖ for n = 106. Similar plots for periodic boundary conditions, the new algorithm with and without varying
p. Bounds on the spectrum are shown in green and the set E +M in red.

where g > 0 and V is a random potential and also has applications in population biology [7].
Spectral computations of H are delicate. Once truncated to a �nite lattice of size n, the spectrum and pseu-

dospectrum of the �nite section Hn depend on the boundary conditions imposed. Non-periodic boundary conditions
(standard �nite-section) yield an entirely real spectrum, completely di�erent to the complex spectrum of H. Hatano
and Nelson argued that a more physical model would be periodic boundary conditions. However, there is no guarantee
that this is correct. In our case, periodic boundary conditions lead to spectra that converge to a curve in the complex
plane strictly contained in the spectrum [8].
If (Vn)n∈Z are i.i.d. random variables, then Sp(H) and Spε(H) only depend on M , the support of the potential,

almost surely. We consider the Bernoulli caseM = {±1} where Vn = 1 with probability p ∈ (0, 1). This choice ensures
the spectrum has a hole in it by a standard series argument. De�ning the ellipse E = {eg+iθ + e−g−iθ : θ ∈ [0, 2π)},
we also have E ± 1 ⊂ Sp(H) which is contained in the convex hull of E + [−1, 1]. Fig. 4 shows the result of the �nite
section i.e. the pseudospectra of Hn for n = 106 (corresponding to a matrix size of 2n + 1) and the new algorithm
with g = 1/2 and p = 1/2. Non-periodic boundary conditions give the wrong set in the limit n→∞, �lling the hole
in the spectrum and converging to the interval [−3, 3] (this can be proven).
We can take advantage of the fact that, up to round o� errors, the new algorithm has zero error in its output and

that the pseudospectrum is invariant under changes in p ∈ (0, 1). Thus, we have also shown the output over a union
of varying p. This gives a very good estimate of the spectrum and the pseudospectrum given that the computation is
guaranteed without error.

Computational Boundaries in Quantum Mechanics

In this section we extend our results to the problem of computing spectra and pseudospectra of Hamiltonians on
graphs. Consider a connected, undirected graph G, such that the degree of each vertex is �nite and such that the set
of vertices V (G) is countably in�nite. Throughout this section we consider an arbitrary, but �xed, such G. We may
then pick any vertex v and label it e1. We can enumerate v′s neighbours (including itself) as S1 = {e1, e2, ..., eq1} for
some �nite q1. Consider the set of neighbours of these vertices and label these as S2 = {e1, ..., eq2} for some �nite q2

where we continue the enumeration of S1. Continue this process inductively enumerating Sm. By the connectivity
assumption and countability of V , we may identify {e1, e2, ...} with an orthonormal basis of l2(V (G)). In what follows,
we write v ∼k w for two vertices v, w ∈ V if there is a path of at most k edges in E (the set of edges) connecting v
and w. In other words v, w are k-th nearest neighbours. We will also use the abuse of notation of identifying each
v ∈ V with its corresponding ei in l

2(V (G)), including in the use of the inner product 〈·, ·〉 on l2(V (G)).
Now let Ω4 denote the set of all bounded operators A on l2(V (G)) ∼= l2(N) such that A has the property that the

set S(v) := {w ∈ V : 〈w,Av〉 6= 0 or 〈w,A∗v〉 6= 0} is �nite for any v ∈ V . This is the analogue of quasi-bandedness
and covers a large range of operators in mathematical physics. We also assume we can control the resolvent of A by
a known function g as before (for instance, if the A is self-adjoint or normal). It is clear that, with respect to the
chosen basis, the matrix of A is quasi-banded. If we know S(v) for all v ∈ V then it is also clear that the above
basis construction also allows us to �nd an f : N→ N such that Aj,m = 0 if |j| > f(m) and Am,k = 0 if |k| > f(m),
where {Aij} are the matrix elements of A with respect to the basis {e1, e2, ...}. Hence, we assume the knowledge
of this f and that Λ contains the functions providing the matrix elements {Ai,j}. Note that �nding such an f is
straightforward for Hamiltonians as the next example demonstrates.
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Example 2. Suppose that the bounded operator A can be written (using the Dirac notation |v〉 to represent the
vertex v) as

A =
∑
v∼kw

α(v, w) |v〉 〈w| (11)

for some k ∈ N and α : V × V → C (i.e. A only involves k-th nearest neighbour interactions). Suppose also that the
vertex degree of G is bounded by M . We must have en ∈ Sn and {w ∈ V : v ∼k w} ⊂ Sn+k. Inductively we have
|Sm| ≤ (M + 1)m and hence we may take the upper bound

f(n) = (M + 1)n+k.

In most cases a smaller f can be used and explicitly computed such as in the construction of the Penrose tile. Note
also that the form of A in (11) includes all �nite range interaction Hamiltonians on the discrete lattice G.

Example 3. Consider a nearest neighbour operator (k = 1 in Eq. 11) on l2(Zd). We have |Sm| ∼ O(md) whilst
|Sm+1 − Sm| ∼ O(md−1) (think of the S as radial spheres). It is easy to see that we can choose a suitable f such that

f(n)− n ∼ O(n
d−1
d ),

i.e. f grows at most linearly.

Now consider the case that the vertex degree is bounded, we can then compute the spectrum of any Schrödinger
operator on any such graph. Furthermore, statements (i) and (ii) hold for this class also. Recall that the (negative)
Laplacian or free Hamiltonian H0 acts on ψ ∈ l2(V (G)) ∼= l2(N) by

(H0ψ)(x) =
∑
y∼x

(ψ(y)− ψ(x)) . (12)

The vertex degree being bounded is equivalent to H0 being a bounded operator. We de�ne a Schrödinger operator
on G to be an operator of the form

H = H0 + V,

where V is a bounded multiplication operator

(V ψ)(x) = V (x)ψ(x).

Denote this smaller class by Ω5 then we have the following.

Theorem 8. Statements (i) and (ii) (page 1) hold for the classes Ω4 and Ω5 when considering Sp(·) or Spε(·).

Proof. The existence of algorithms (part (ii)) follow immediately from the above remarks and Theorems 2, 3 and 7.
For statement (i), we can argue as before for the class Ω4. We will prove statement (i) for Ω5 when considering the
spectrum Sp(·). The proof for the pseudospectrum follows from similar reasoning, and we omit the details.
Let {ej} be a basis generated as described above. We argue by contradiction and assume that given δ > 0 there

does exist an algorithm Γ such that given A ∈ Ω5 we have

dH(Γ(A),Sp(A)) ≤ δ.

Now let A = H0 as de�ned in Eq. 12 and let C = ‖H0‖. Then there exists a N(δ, A) ∈ N such that Γ(A) only depends
on 〈Aej , ei〉 with i, j ≤ N(δ, A). We may then choose a potential Vδ by

Vδ(em) =

{
0, m ≤ N(δ,H0)

3C, m > N(δ,H0)

and set Tδ = H0 + Vδ. By the de�nition of a General Algorithm, in particular by (iii) in De�nition 1, we must have
that Γ(Tδ) = Γ(A). Now Vδ and Tδ are both normal and hence

dH(Sp(Vδ),Sp(Tδ)) ≤ ‖Vδ − Tδ‖ = C.

It follows that

dH(Sp(Vδ),Sp(A)) ≤ dH(Sp(Vδ),Sp(Tδ)) + dH(Sp(Tδ),Γ(Tδ)) + dH(Γ(Tδ),Sp(A)) ≤ C + 2δ.

But by construction, Sp(Vδ) = {0, 3C} and Sp(A) ⊂ B0(C) so we gain a contradiction for small enough δ.
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