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Abstract

Title: The Foundations of Infinite-Dimensional Spectral Computations
Author: Matthew J. Colbrook

Spectral computations in infinite dimensions are ubiquitous in the sciences. However, their many applica-
tions and theoretical studies depend on computations which are infamously difficult. This thesis, therefore,
addresses the broad question,

“What is computationally possible within the field of spectral theory of separable Hilbert spaces?”

The boundaries of what computers can achieve in computational spectral theory and mathematical physics
are unknown, leaving many open questions that have been unsolved for decades. This thesis provides
solutions to several such long-standing problems.

To determine these boundaries, we use the Solvability Complexity Index (SCI) hierarchy, an idea which
has its roots in Smale’s comprehensive programme on the foundations of computational mathematics. The
Smale programme led to a real-number counterpart of the Turing machine, yet left a substantial gap between
theory and practice. The SCI hierarchy encompasses both these models and provides universal bounds on
what is computationally possible. What makes spectral problems particularly delicate is that many of the
problems can only be computed by using several limits, a phenomenon also shared in the foundations of
polynomial root-finding as shown by McMullen. We develop and extend the SCI hierarchy to prove opti-
mality of algorithms and construct a myriad of different methods for infinite-dimensional spectral problems,
solving many computational spectral problems for the first time.

For arguably almost any operator of applicable interest, we solve the long-standing computational spec-
tral problem and construct algorithms that compute spectra with error control. This is done for partial
differential operators with coefficients of locally bounded total variation and also for discrete infinite matrix
operators. We also show how to compute spectral measures of normal operators (when the spectrum is a
subset of a regular enough Jordan curve), including spectral measures of classes of self-adjoint operators
with error control and the construction of high-order rational kernel methods. We classify the problems of
computing measures, measure decompositions, types of spectra (pure point, absolutely continuous, singu-
lar continuous), functional calculus, and Radon—-Nikodym derivatives in the SCI hierarchy. We construct
algorithms for and classify; fractal dimensions of spectra, Lebesgue measures of spectra, spectral gaps,
discrete spectra, eigenvalue multiplicities, capacity, different spectral radii and the problem of detecting
algorithmic failure of previous methods (finite section method). The infinite-dimensional QR algorithm is
also analysed, recovering extremal parts of spectra, corresponding eigenvectors, and invariant subspaces,
with convergence rates and error control. Finally, we analyse pseudospectra of pseudoergodic operators (a
generalisation of random operators) on vector-valued [P spaces.

All of the algorithms developed in this thesis are sharp in the sense of the SCI hierarchy. In other words,
we prove that they are optimal, realising the boundaries of what digital computers can achieve. They are
also implementable and practical, and the majority are parallelisable. Extensive numerical examples are
given throughout, demonstrating efficiency and tackling difficult problems taken from mathematics and
also physical applications.

In summary, this thesis allows scientists to rigorously and efficiently compute many spectral properties
for the first time. The framework provided by this thesis also encompasses a vast number of areas in com-
putational mathematics, including the classical problem of polynomial root-finding, as well as optimisation,
neural networks, PDEs and computer-assisted proofs. This framework will be explored in the future work
of the author within these settings.
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Chapter 1

Introduction

1.1 The Problem and Motivation

It is hard to overestimate the importance of computing spectra of infinite-dimensional operators in applied
mathematics, quantum chemistry/mechanics, matter physics, statistical mechanics, optics and many other
fields. Amongst its uses, the spectrum allows scientists to conduct stability, vibrational and asymptotic anal-
ysis, compute the energy levels of physical systems, diagonalise or decompose operators for analysis, and
compute solutions to PDEs. As such, the problem of computing spectra is one of the most studied areas of
computational mathematics over the last half-century, investigated by mathematicians and physicists alike
since the 1950s. However, the many applications and theoretical studies of spectra depend on computations
which are infamously difficult (see §7.1 for a detailed discussion of the finite section method, the most
common approach which, while successful for many problems, can also fail catastrophically).

The ideas of using computational and algorithmic approaches to obtain spectral information date back
to leading physicists and mathematicians such as Anderson [And58], Goldstine [GMVNS59], Kato [Kat49],
Murray [GMVNS59], Schrodinger [Sch40], Schwinger [Sch60b, Sch60a] and von Neumann [GMvVNS59].
Schwinger introduced finite-dimensional approximations to quantum systems in infinite-dimensional spaces
that allow for spectral computations, ideas which were already present in the work of Weyl [Wey50].
In [DVV94], Digernes, Varadarajan, and Varadhan proved convergence of spectra of Schwinger’s finite-
dimensional discretisation matrices for Schrodinger operators with continuous potentials bounded below
and diverging at infinity (the resolvents of which are compact). From an operator point of view, the compu-
tational spectral problem goes back as far as Szeg&’s work [Sze20] on finite section approximations. Since
then, it has been studied intensely by both mathematicians [Aro51, Kat49, DLT85, B6t94, B6t96, LS96,
BS99, BCNO1, Zwo099, BBIN10, BIN11, Zwo13] and physicists [Sch40, And58, BC71, Hof76, Lie05,
DSO06b]. For instance, the seminal work of Fefferman and Seco [FS90, FS92, FS93, FS94b, FS94c, FS95,
FS96b, FS96a, FS94a] on proving the Dirac—Schwinger conjecture is a striking example of computations
used in order to obtain complete information about the asymptotical behaviour of the ground state of a
family of Schrodinger operators. The corresponding literature is vast, and we refer the reader to §1.3 for
further comments. However, whilst the above results undoubtedly represent triumphs for computational
mathematics and theoretical physics, they only partially solve the problem and only hold for specific cases.

A reliable algorithm computing the spectrum should converge locally on compact subsets of C (con-
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verging to the full spectrum and having no limiting points that are not in the spectrum), and guarantee that
any point of the output is close to the spectrum, up to a chosen arbitrarily small error tolerance. A key
question is whether such algorithms exist. Despite more than 90 years of quantum theory, the answer to
this question has been unknown, even for the case of general Schrddinger operators and even when also
excluding the additional property of error control. Arveson, who helped develop the combination of spec-
tral computations and C*-algebra techniques' [Arv93a, Arv93b, Arv94a, Arv94b], summarises this open

question for the problem of computing spectra of general self-adjoint operators,’

“Most operators that arise in practice are not presented in a representation in which they are
diagonalized, and it is often very hard to locate even a single point in the spectrum... Thus, one
often has to settle for numerical approximations [to the spectrum], and this raises the question
of how to implement the methods of finite dimensional numerical linear algebra to compute the
spectra of infinite dimensional operators. Unfortunately, there is a dearth of literature on this

basic problem and, so far as we have been able to tell, there are no proven techniques.”

— W. Arveson, UC Berkeley [Arv94b]

It is precisely the computational spectral problem, encapsulated in Arveson’s question and dating back
to the work of Schwinger in the 1960s [Sch60b, Sch60a], that this thesis addresses. The boundaries of what
computers can achieve in computational spectral theory and mathematical physics are currently unknown,
leaving many open questions that have been unsolved for decades. This thesis provides solutions to several
such long-standing open problems. Mathematically determining these computational boundaries typically
means the development of new algorithms that can handle problems previously out of reach, and providing

mathematical proofs that the new algorithms are optimal.

Computational spectral problem

Questions concerning the foundations of computation and spectral computations have a rich history in math-
ematics and physics. The most well-known case is Hilbert’s question regarding the existence of algorithms
for decision problems [HAS50] that led to Turing’s seminal work [Tur36]. In spectral theory, a more recent
example is the proof of the undecidability of the spectral gap [CPGW15]. Namely, one cannot construct
an algorithm to determine whether a translationally invariant spin-lattice system is gapped or gapless in
the thermodynamic limit. Another example is Smale’s question regarding the existence of purely itera-
tive (rational) generally convergent algorithms for polynomial root-finding [Sma85]. McMullen settled this
problem as follows [McM87, McM88, Sma98]: yes, if the degree is three; no, if the degree is larger. How-
ever, in [DM89] Doyle and McMullen demonstrated a striking phenomenon: this problem can be solved in
the case of the quartic and the quintic using several limits, a concept which we discuss below.

The spectrum of a general operator on a separable Hilbert space cannot be computed in finitely many
operations. This holds even in the finite-dimensional case (which is mathematically equivalent to polyno-
mial root-finding), and, in general, finite-dimensional spectral problems are solved numerically via iterative

methods.> We must, therefore, give a precise meaning to a ‘computational spectral problem’. For instance,

This combination can be traced back to the work of Bottcher and Silbermann [BS83].

2There is, of course, a rich literature on using finite-dimensional algorithms to compute the spectrum of infinite-dimensional
operators - see §1.3. Arveson is referring to the existence of a procedure that converges in general, using, for example, matrix
elements of the operator with respect to an orthonormal basis.

3Computing the eigenvalues and eigenvectors of finite-dimensional matrices dates back to Wilkinson [Wil65] with guaranteed
convergence for self-adjoint matrices via Wilkinson shifts, see [Par98].
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suppose our operator acts on /2(N) and is represented by an infinite matrix

aix aiz2 ais
a21 Q22 @23

A= T, (1.1.1)
asiy azo Q33

with respect to the canonical basis. Consider the case that an ‘algorithm’ can access matrix elements of A,
which is natural for many Hamiltonian operators in physics. The algorithm uses a finite number of matrix
elements, though it can adaptively choose which ones to use, and produces an output I';,(4) C C. For
example, if each a;; is rational (or a rational approximation of a complex number), we could consider the
output being produced by a Turing machine [Tur36] with an infinite input tape corresponding to the matrix
entries. If we allow real number arithmetic, then we could consider a Blum—Shub—Smale (BSS) [BCSS98]
machine. At the very least, we should enforce consistency* in how the algorithm reads information and
produces an output (see Definition 2.1.1 in Chapter 2). The algorithm is written with a subscript n because
it is usual in numerical analysis to have a sequence of approximations (or even a sequence of different
algorithms) that converge as n — oo. For example, in finite dimensions, n could correspond to the number
of iterations of the famous QR algorithm, which converges under favourable conditions (see Chapter 9 for
the infinite-dimensional version). The question is: do algorithms exist that converge in infinite dimensions?
Surprisingly, the answer to this question is ‘no’ for many important problems, regardless of one’s model of
computation.

A key step in addressing the computational spectral problem was made in [Han11]. It was shown that,
without any structural assumptions, it is possible to build an algorithm depending on three parameters, so
that for general bounded operators acting on the canonical Hilbert space 1?(N) the following holds with

respect to the Hausdorff metric

lim  lim  lim Ty, .0, (A) = Sp(A) := {2z € C: (A—2I)~" does not exist as a bounded operator}.

n3—00 N2—00 Ny —00
In other words, the process uses three successive limits. This result has given rise to the solvability com-
plexity index (SCI). Informally, this can be described as the number of successive limits needed to solve
a computational problem, a measure of its difficulty (see Chapter 2). The SCI covers many areas in com-
putational mathematics, extending beyond the spectral problem. It also has roots in the work of Smale
[Sma81, Sma97], and his programme on the foundations of computational mathematics and scientific com-
puting, though it is quite distinct. The notions of Turing computability [Tur36] and computability in the
Blum—Shub—-Smale (BSS) [BCSS98] sense become special cases, and impossibility results that are proven
in the SCT hierarchy hold in all models of computation. The use of three limits in the algorithm of [Han11]
is sharp if we consider the whole class of bounded operators, meaning it is impossible to compute spectra
of completely general operators using two limits (i.e. for all operators, without further information, even
though standard algorithms can converge for different classes of operators) in any model of computation.
This is most easily proven by embedding certain problems of descriptive set theory within the SCI hierarchy
- see Chapter 2. A three limit algorithm is impossible to implement on a finite machine, and hence the result
of [Han11] cannot be used for real-life numerical computation.

The fact that spectral problems are so high up in the SCI hierarchy poses a severe problem in applica-

tions: how can we guarantee that the outputs of numerical simulations converge and are sound? Fortunately,

4Qur discussion can also be extended to the case of random algorithms, though we do not discuss this topic in this thesis.
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there is another class in the SCI hierarchy (developed in §2.2.1): ;. This is the class of problems which
require only one limit and for which there exists a convergent algorithm whose output is guaranteed to be
included in the e-neighbourhood of the spectrum, for an arbitrarily small €. In other words, given an output,
we know that it is sound, but we do not know if we have approximated all of the spectrum yet (though we
must eventually converge to all of the spectrum). This notion is explained further with a simple example
below. One of the most important results of this thesis (Chapter 3) is that under very general assumptions,
the spectral problem lies in 1. We provide a set of algorithms that converge to the spectrum under mild
assumptions which hold in the majority of applications. No previous algorithm converges in this generality,
even for the case of general one-dimensional discrete Schrodinger operators. Furthermore, the algorithms
converge with ¥; error control, and we show that this is sharp, realising the boundary of what digital
computers can achieve. Finally, the algorithms are efficient and parallelisable.

For the simplest case of bounded operators A € B(I?(N)), this result can be understood as follows.
Under very general assumptions,’ there exists an algorithm I',, (A) such that

lim dg (F7L<A)7 Sp(A)) =0,

n—oo
with dy the usual Hausdorff metric on non-empty compact subsets of C. We also obtain error control, in
the sense that the algorithm computes an error bound E,,(A; z) such that

dist(z,Sp(A4)) < Ep(A;2) VzeT,(A) and lim sup E,(4;z)=0. (1.1.2)

n=00 2el, (A)

This notion of error control, denoted by 331, is discussed in detail in §2.2, along with its dual notion II;. The
constructed algorithm is parallelisable and can also be extended to compute quantities such as approximate
states (see §3.4). As an example, Figure 1.1 shows approximate states computed by the algorithm for
the Penrose Laplacian, the canonical model of a 2D quasicrystal (see also §3.6.1). The results hold when
considering infinite matrix representations of operators, and also for partial differential operators when
sampling the coefficients.

However, stricter error control, in the sense of computing F,, with
dit (T (4), Sp(A)) < En(A) (1.1.3)

is in general impossible (we denote this stricter sense of error control by A;) in any model of computation.

As a very simple example, consider the class of all bounded diagonal operators A € B(I1?(N)) of the form
ay
, a; € C. (1.1.4)

as

Since an algorithm can only deal with a finite amount of information at any one time (i.e. finitely many of
the a; - see §2.1), it is clear that the problem of computing the spectrum Sp(A) cannot be done with error
control in the sense of (1.1.3). However, one can simply choose an algorithm I',, to collect {a; }?:1 and

then one trivially has that I",,(A) — Sp(A) as n — co. We also clearly have the extra feature that

', (A) Cc Sp(A4), neN.

5The assumptions hold in the majority of applications. See §3.1.1 and §3.1.2 for the precise details.
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Ground State State Nearest —5 log(Abs Val),

Figure 1.1: The ground ‘state’ for the Penrose Laplacian (from the cover of Physical Review Letters Volume
122, Issue 25 [CRH19]) and an approximate state corresponding to energy nearest —5. The algorithm allows
us to choose which states to compute without direct diagonalisation. It should be emphasised that we are
not necessarily approximating eigenvectors since the spectrum may not consist solely of eigenvalues.

In particular, we have convergence from below, and this is much stronger than just convergence, since
I',,(A) always produces a correct output. Such a type of convergence is incredibly important, since it gives
a guarantee of reliability. The results of this thesis extend this type of convergence (up to an arbitrarily
small user-chosen error tolerance given by the F,, in (1.1.2)) to a vast number of spectral problems. In
some sense, given the above simple example, we show that the computational spectral problem is not
harder than computing the spectrum of a diagonal operator. There are special cases where the stricter form
of error control in the sense of (1.1.3) is possible, such as finite rank perturbations of self-adjoint tridiagonal

Toeplitz operators [WO17]. However, in general, such results require a large amount of structure.

Beyond spectra: a new computational paradigm

In order to classify and understand the difficulty of computational problems and develop techniques for
their solution, one must go beyond the standard philosophy of numerical analysis. Many computational
problems are solved as follows: a sequence of approximations is created by an algorithm, and the solution
to the problem is the limit of this sequence. However, as discussed above, this is impossible for the general
spectral problem and many other problems in computational mathematics. To deal with this, we use the
SCI hierarchy. Current hierarchies in logic and computer science, such as the arithmetic hierarchy for sets
of integers, are insufficient for such classifications. Hence, in order to establish the boundaries of what
computers can achieve in the sciences, the SCI hierarchy is needed. Many existing foundational problems
also become results in the SCI hierarchy.

The framework provided by this thesis encompasses a vast number of areas in computational mathemat-
ics. Establishing the boundaries of what computers can do in spectral theory is related to Smale’s compre-
hensive programme concerning the foundations of computational mathematics initiated in the 1980s. This
thesis closes the substantial current gap between the abstract theory and applications, and the framework is
somewhat different from that of Smale’s programme. Some of the other areas encompassed can be found in
§2.5 and include the classical problem of polynomial root-finding (and its curious resolution by Doyle and
McMullen), optimisation, neural networks, PDEs and computer-assisted proofs. This last point is becoming

an important part of modern pure mathematics:
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“During the next century computers will become sufficiently good at proving theorems that the

practice of pure mathematical research will be completely revolutionized.”

— Sir W.T. Gowers (Fields medal 1998), Cambridge [Gow00]

Computer-assisted proofs are impossible to ignore, with recent examples given in Hales’ proof of Ke-
pler’s conjecture (Hilbert’s 18th problem) [Hal05, HAB™17] and Fefferman (Fields medal 1978) and Seco’s
proof of the Dirac—Schwinger conjecture [FS90, FS92, FS93, FS94b, FS94c, FS95, FS96b, FS96a, FS94a],
see also the discussion of Fefferman’s 2017 Wolf Prize [CSTT17]. A potentially surprising result is that
both of these examples are computer-assisted proofs that use non-computable problems. This can be un-
derstood via the precise notions of error control in §2.2. The theory of computer-assisted proofs has not yet
been developed, since, in general, it is not known which computational problems can be used in computer-

assisted proofs. We provide some of the first results in the corresponding infinite classification theory.

Outline of chapter

The rest of this chapter is as follows. In §1.2 we summarise the contributions of the thesis. A discussion of
relations to previous work is given in §1.3, and we finish the chapter with a summary of basic notation.
Finally, this thesis is written with both pure and applied mathematicians in mind, a reflection of the
true cross-disciplinary flavour of the subject of infinite-dimensional spectral theory (which has its roots in
the physical theory of quantum mechanics and Hilbert’s work on integral equations, blossoming into one
of the most beautiful and technical areas of mathematics). Throughout, standard graduate-level functional

analysis and numerical analysis are assumed, though this thesis is mostly self-contained.

1.2 Summary of Thesis

For a lookup table of the computational spectral problems addressed in this thesis, with theorem and page

numbers, we refer the reader to the concluding remarks on page 263. This thesis is split into three parts:

Part I solves the computational spectral problem, dating back to the work of Szeg6 [Sze20] and
Schwinger [Sch60b, Sch60a], and summarised in the above quotation of Arveson. We show how to compute
spectra (and pseudospectra) of a very large class of operators (both discrete operators and partial differential
operators) with error control in the above 3; sense. We then show how to ‘diagonalise’ normal operators
(including unbounded) whose spectra are subsets of regular enough Jordan curves (such as self-adjoint and
unitary operators) via algorithms that compute spectral measures and spectral decompositions. An example,

demonstrating the efficiency of the new methods for magneto-graphene is shown in Figure 1.2.

Part II goes beyond the spectrum to algorithms that compute further spectral properties. As well as
computing the spectrum, scientists may want to determine features of the spectrum such as its Lebesgue
measure or fractal dimension, different types of spectral radii and numerical ranges, detect band gaps, or
compute capacity, spectral gaps, discrete spectra etc. We use the resolvent norm (and generalisations) to
develop the first algorithms that compute these quantities and many others, and prove that our methods

are sharp in the SCI hierarchy. We also prove the curious result that detecting the failure of the finite
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Figure 1.2: Radon—-Nikodym derivative (1og10 scale) of the measure for various magnetic field strengths
®. The axis label E (energy) stands for the spectral parameter. The Radon—Nikodym derivative is computed
to high precision using a fourth-order kernel method developed in Chapter 4.

section method® (computing an error flag) is strictly harder than computing the spectrum. All of these
problems have strong physical motivations and are themselves important open problems in the spectral

theory community.

Part ITI provides examples where classical finite-dimensional algorithms can be extended to infinite di-
mensions in a useful manner. These provide further classifications in the SCI hierarchy, related to the clas-
sical finite section method. First, we develop results connected to the infinite-dimensional QR algorithm,

and then we prove convergence of pseudospectra of periodic finite sections for pseudoergodic operators.

To classify the computational problems addressed in this thesis, we use the SCI hierarchy mentioned
above and developed in Chapter 2. The computational spectral problem becomes an infinite classification
theory, and there will, necessarily, have to be many different types of algorithms. Characterising the hier-
archy will yield a myriad of different approaches, as different structures on the various classes of operators

will require specific algorithms. We now summarise each chapter.

Chapter 2: The Solvability Complexity Index

In this chapter, we first summarise the basic SCI hierarchy as it already appears in the literature, and then
extend the hierarchy to include notions of error control. This general framework goes beyond spectral
theory, with applications in machine learning, optimisation, PDEs and computer-assisted proofs (see §2.5).
We discuss how all of the algorithms in this thesis can be made to work using just arithmetic operations
over the rationals Q, with inexact input, and in a recursive manner.” This circumvents the current lack of a
universally agreed definition of recursivity for algorithms over the fields R or C. Furthermore, the proven
lower bounds in this thesis hold in any model of computation. In a special case (which does not hold in
general), we provide a link between the SCI hierarchy and the Baire hierarchy from descriptive set theory.

This allows the construction of combinatorial problems arbitrarily high up in the SCI hierarchy, regardless of

SIn its simplest form for operators given by (1.1.1), this corresponds to computing the spectrum of the upper-left 7 x 7 submatrix of
A. Even in the case of tridiagonal self-adjoint operators, this does not converge due to ‘spectral pollution’, the appearance of persistent
eigenvalues in gaps of the essential spectrum that have nothing to do with the spectrum of the full infinite-dimensional operator.
"This also allows their use for computer-assisted proofs and/or implementation using interval arithmetic [Tuc11].
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the model of computation (arithmetical, radical, general etc.). By embedding these combinatorial problems
into spectral problems, this provides the first technique for dealing with problems that have SCI greater
than three, and also greatly simplifies the proofs of results lower down in the SCI hierarchy. We emphasise,
however, that this thesis is not a thesis on logic or descriptive set theory - the contents of this chapter are

self-contained.

Part I: Spectra, Spectral Measures and Spectral Decompositions
Chapter 3: Computing Spectra with Error Control

This chapter, based on [CRH19] and [CH19a], settles the long-standing problem of computing spectra (see
Arveson’s quotation in §1.1). We construct an algorithm computing spectra (and pseudospectra) of many
operators, including non-normal operators, with rigorous error control in the 3; sense. This is done both
in the discrete infinite matrix setting (allowing unbounded operators defined on graphs or lattices), and
also for partial differential operators. In the self-adjoint (or normal) case, the algorithm provides ‘approx-
imate states’. We also consider the decision problem of deciding if a non-empty compact set intersects
the spectrum. The algorithms presented are optimal in the sense of the SCI hierarchy described in §2.2,
and converge whilst also resolving the issue of spectral pollution discussed further in §7.1 and §7.3.2. We
finish by showing that the new class of algorithms are efficient, as well as being completely parallelisable.
Examples include a two-dimensional Penrose tile (a model of a quasicrystal), non-Hermitian Hamiltonians
in superconductor theory and optics, and partial differential operators such as Schrédinger operators on

unbounded domains.

Chapter 4: Computing Spectral Measures

In this chapter, we provide the first general® set of algorithms for the computation of spectral measures,
as given by the classical spectral theorem, for a large class of self-adjoint and unitary operators (and dis-
cuss extensions to more general normal operators). This is an infinite-dimensional analogue of computing
eigenvectors,” and ‘diagonalises’ the operator as an integral, thus resolving the diagonalisation problem
discussed by Arveson in §1.1. We also consider the computation of the functional calculus, and the Radon—
Nikodym derivative of the absolutely continuous part of the measure. We discuss how to accelerate conver-
gence locally for smooth enough measures using different rational kernels with vanishing moments (which
lend themselves to computations with infinite-dimensional operators). Under certain assumptions, this also
allows computation with error control. The new algorithms are parallelisable, allowing large scale compu-
tations. Examples demonstrated include orthogonal polynomials on the real line (recovering the measure
from their recurrence relations), a model of magneto-graphene that demonstrates high-resolution compu-
tation and the avoidance of spectral pollution, fractional diffusion on a quasicrystal and the solution of
infinite-dimensional evolution equations with error control. Partial differential operators on the continuum
are also studied, and the results of this chapter carry over by employing spectral methods to solve the rel-
evant PDEs corresponding to the resolvent. As an example, we study a very efficient numerical method
to compute highly oscillatory bound states of the Dirac operator whilst avoiding spectral pollution (this is

important in computational chemistry).

8 Although there is a rich literature on the theory of spectral measures, most of the efforts to develop computational tools have
focused on specific examples where analytical formulas are available, or perturbations thereof.

90f course eigenvectors exist in the infinite-dimensional case, but not all of the spectrum consists of eigenvalues. The projection-
valued measure generalises the notion of projections onto eigenspaces.
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Chapter 5: Computing Spectral Type

This chapter complements Chapter 4 and classifies the absolutely continuous, singular continuous and pure
point parts of the spectrum in the SCI hierarchy. These different sets often characterise different physical
properties in quantum mechanics, and we provide the first set of algorithms that can compute these quanti-
ties under general conditions. The impossibility results hold in general, even when restricted to tridiagonal
operators, and even for structured operators such as bounded discrete Schrodinger operators on the lattices
N or Z.

Part II: Beyond Spectra
Chapter 6: Discrete Spectra and Spectral Gap

This chapter develops new algorithms for computing the discrete spectrum, multiplicities and eigenspaces of
various classes of normal operators. Of course, a vast number of algorithms exist that compute eigenvalues
of operators (even in infinite dimensions), but the algorithms of this chapter are the first that separate
the discrete spectrum from the essential spectrum. We also provide SCI classifications of the decision
problem of determining if the discrete spectrum is empty, and the spectral gap problem (related to the
dichotomy between the discrete and essential spectrum and motivated from physical applications). For
this last problem, we consider the infinite-dimensional version, as well as an extension to classifying the
geometric/algebraic properties of the bottom of the spectrum. Finally, the effectiveness of the algorithm

computing discrete spectra and eigenvectors is demonstrated.

Chapter 7: Geometric Features and Detecting Finite Section Failure

A highlight of this chapter is the proof that detecting the failure of finite section (computing an error flag)
is harder than computing the spectrum itself (the problem solved in Chapter 3). This also settles the open
problem on computing or detecting gaps in the essential spectrum of self-adjoint operators, a problem which
has received considerable attention in the community. Furthermore, we classify various types of spectral
radii, polynomial operator norms and capacity (useful for the analysis of Krylov numerical methods) in the
SCI hierarchy for different classes of operators. Even in the simplest case of computing the usual spectral
radius, the only previous computational results are for normal operators, where the spectral radius is equal
to the operator norm. The results of this chapter (other than the spectral radius for normal operators) all
present the first algorithms computing their corresponding spectral properties. Finally, we demonstrate the
effectiveness of the algorithms with numerical examples for spectral radii, essential numerical ranges and

capacity of spectra.

Chapter 8: Lebesgue Measure and Fractal Dimensions of Spectra

In this chapter, we consider the open problems of computing the Lebesgue measure of the spectrum (and
pseudospectrum) and different fractal dimensions of the spectrum (box-counting and Hausdorff). This
chapter is motivated by recent progress in the field of Schrédinger operators with random or almost periodic
potentials. We provide the first algorithms solving these computational problems, with classifications in the
SCI hierarchy. Numerical evidence is given that a portion of the spectrum of a two-dimensional model of a

quasicrystal has fractal dimension approximately 0.8.
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Part III: Extensions of Classical Finite-Dimensional Algorithms
Chapter 9: The Infinite-Dimensional QR Algorithm

In this chapter, we discuss how the most famous finite-dimensional algorithm, the QR algorithm, can be
extended to infinite dimensions. The infinite-dimensional QR (IQR) algorithm is at least thirty years old
(dating back to the work of Deift, Li and Tomei [DLT85], see also the work of Hansen [Han08b, Han08a]),
but there is little existing analysis. We provide new convergence theorems for the IQR algorithm with
convergence rates and error control. The results concern eigenvalues, eigenvectors and invariant subspaces
(including non-normal operators). We prove that for infinite matrices with finitely many non-zero entries in
each column, the IQR algorithm can be executed exactly, and that for general invertible operators, it can be
executed with error control. We provide new classification results for the SCI hierarchy: A; classification
for the extremal part of the spectrum and dominant invariant subspaces, and 31 results for spectra of certain
classes of compact operators (the general spectral problem for compact operators is not in >;). We demon-
strate the IQR algorithm and new convergence results on a variety of difficult problems. In some cases,
the IQR algorithm performs much better than predicted by our theory, working on much larger classes of
operators. Hence, we are left with many open problems on the theoretical understanding of the potential of

this algorithm.

Chapter 10: Pseudoergodic Operators and Finite Section

In this chapter, we examine the so-called ‘pseudoergodic’ class of operators (a well-studied class encom-
passing generalisations of many random and non-normal operators in applications). We prove that pseu-
dospectra of finite sections with periodic boundary conditions converge to the pseudospectrum of the full
infinite-dimensional operator as the truncation parameter tends to infinity. This holds in any lattice dimen-
sion, and for any vector-valued [P space with p € [1, 00]. Our results can be considered as a generalisation
of the well-known classical result for banded Laurent operators and their circulant approximations. In terms

of the SCI hierarchy, this gives a 3; classification for the pseudospectral problem.

1.3 Relations to Previous Work

The results presented in this thesis follow in the long tradition of infinite-dimensional spectral computations.
This field contains a vast literature that spans more than half a century, so we can only cite work that has
had the most influence on the author. We split the comments into three categories: spectral computations,

numerical approaches, and foundations of computational mathematics and computer-assisted proofs.

Spectral computations: We have already mentioned the work of Anderson, Digernes, Goldstine,
Kato, Murray, Schrodinger, Schwinger, Varadarajan, Varadhan, von Neumann and Weyl [And58, GMvNS59,
Kat49, Sch40, Sch60b, Sch60a, Wey50, DVV94]. The results of [DVV94] yield an algorithm that converges
in one limit without any form of error control. However, Chapter 3 extends these works considerably by
providing a ¥; classification, and for a much broader class of operators. Not only is the 3, classification
sharp in the SCT hierarchy, but it also provides the useful, practical result of error control.

Arveson [Arv94a, Arv93b, Arv94b, Arv93a] helped pioneer the combination of spectral computations
and C'*-algebra techniques (which dates back to the work of Bottcher and Silbermann [BS83]). Part of

10
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his work considered spectral densities, with weak™ convergence to measures whose support is the essential
spectrum, also related to Szegd’s work [Sze20] on finite section approximations. Similar results are also
obtained by Laptev and Safarov [LS96]. These results motivated the work in Chapter 4 and are related to
the density of states studied in mathematical physics (discussed in detail at the end of §4.1.2). Note that we
compute the spectral measures, which contain more spectral information than the density of states (which
ignores, for example, discrete spectra below the essential spectrum). For instance, [Arv94a] considers a
method to locate essential spectra via “weight[ing] the count of eigenvalues in a way which eliminates
spurious ones”. However, such an approach causes the discrete spectrum to be ignored. Our results extend
the previous work above by showing that it is indeed possible to recover the full spectral measure, which is
supported on the spectrum, and study other aspects such as Radon—Nikodym derivatives, spectral/measure
decompositions and the functional calculus. The results in Chapter 6 also show how to recover the discrete
spectrum.

There is a large physics literature on the spectral gap problem, a problem we address in Chapter 6. The
spectral gap problem is related to the Haldane conjecture [Hal83], which remains unsolved despite numeri-
cal evidence [GJL.94]. Another important related problem is the Yang—Mills mass gap problem [BCDT06].
The seminal paper by Cubitt, Perez—Garcia and Wolf [CPGW15] shows that the spectral gap problem is
undecidable (not computable in the sense of Turing) when considering the thermodynamic limit of finite-
dimensional Hamiltonians. In their conclusion, the authors note, “Thus, any method of extrapolating the
asymptotic behaviour from finite system sizes must fail in general.” This comment also serves as a warning
for other spectral problems, where, in the literature, it is often wrongly assumed that a large system size
captures the infinite-dimensional operator. We note that there is a subtle difference between the thermo-
dynamic limit studied in [CPGW15] and the viewpoint of infinite-dimensional operators in this thesis. We
study the infinite-dimensional version of the problem, determining the existence of a gap for Hamiltonians
on a separable Hilbert space. We prove that the problem generically requires two limits in the SCI hierarchy,
and hence our results can be considered as an extension of [CPGW15].

The finite-section method, intensely studied for spectral computation and often viewed in connection
with Toeplitz theory, is very similar to Schwinger’s idea of approximating in a finite-dimensional sub-
space. Typically, when applied to appropriate subclasses of operators, finite section approaches yield al-
gorithms with no form of error control. The reader may wish to consult the pioneering work by Bottcher
[B6t96, B6t94], Bottcher and Silberman [BS99], Bottcher, Brunner, Iserles and Ngrsett [BBIN10], Brunner,
Iserles and Ngrsett [BIN11]. Some of these papers also discuss the failure of the finite section approach
for certain classes of operators, see also the work of Hansen [Han10, Han08b]. An important result is that
of Shargorodsky [Shal3] demonstrating that second order spectra methods [Dav98] (a variant of the finite
section method) do not in general recover the whole spectrum. All of these have motivated the work on the
problem of spectral pollution in Chapter 7, where we show that it is in general very difficult to detect the
failure of the finite section method. Chapter 7 helps explain the richness of results for specific subclasses
of operators regarding the finite section method.

Chapter 8 is motivated in part by recent progress in the field of Schrodinger operators with random or
almost periodic potentials. For example, relevant work includes that of Avila et. al. [Avi09, Avi08, AJ09,
AKO06, AV07], Puig [Pui04] and Siit6 [Siit89] (see [EDML06, EDMLO8] for numerical work for higher di-
mensional versions of the Fibonacci Hamiltonian) on specific examples of operators, including Cantor-like

spectra. Numerical studies of fractal dimensions of spectra include the work of Han, Thouless, Hiramoto

11
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and Kohmoto on Harper’s equation [HTHK94] and Ketzmerick, Kruse, Kraut and Geisel on wavepacket
spreading [KKKG97] (for many more references connected to this paper, see [KKLO03]). Another well-
studied area where fractal spectral properties appear is optics. For example, following the analytical and
numerical work of Berry and coauthors [BerO1, BSVSO01, Ber04], the fractal structure of modes of non-
Hermitian operators are studied in laser theory [RGSE18, NYWMOL1]. Probably the most famous example
of the Lebesgue measure of spectra is the formula in (8.4.1) for the almost Mathieu operator (the case of
A = 1 was one of Simon’s problems [Sim00]), which was conjectured based on numerical evidence in the
work of Aubry and André [AAS80]. Following this paper, there have been many further numerical studies,
for example, the work of Thouless [Tho83, Tho90] and Thouless and Tan [TT91]. Numerical studies of
such operators typically look at periodic approximates, and computing the Lebesgue measure of periodic
approximates of tridiagonal operators lies in A;. In contrast, the tools we develop are much more general
and do not assume such structure. A verification of our algorithms for the almost Mathieu operator is pre-
sented in §8.4.1. The almost Mathieu operator is only one of many operators with numerical studies of the
Lebesgue measure of their spectra. For others, see, for example, the references in [AJM17, BS91, Sir89].
Whilst results are known for specific examples such as the almost Mathieu operator or the Fibonacci Hamil-
tonian, the problems of computing the Lebesgue measure and fractal dimensions of spectra remain open in
the general case (see remarks in [DGS15] and references therein). Our results show the boundaries of what
can be achieved numerically for different classes of operators.

The IQR algorithm provides another approach to spectral computations, which can be seen as a gener-
alisation of the finite section method. The IQR algorithm was first studied in connection with Toda flows
by Deift, Li and Tomei [DLT85] (covering self-adjoint infinite matrices with real entries). Despite being
purely functional analytic and ignoring implementation issues, these results form some of the basic funda-
mentals of the IQR algorithm and provide a beautiful geometric interpretation. A convergence result for
eigenvectors corresponding to eigenvalues outside the essential numerical range for normal operators was
given in [HanO8b]. However, this paper did not consider convergence rates, actual numerical calculation
nor any classification results (implementation for banded operators was, however, given in [Han08a]). The
results of Chapter 9, therefore, provide a significant step in the analysis of the IQR algorithm by showing
that it can be implemented for invertible operators, and giving convergence results (with convergence rates
and error control) for eigenvalues, eigenvectors and invariant subspaces (including non-normal operators).

Chapter 10 is motivated, in particular, by [B6t94] which shows that pseudospectra converge for trun-
cated Wiener—Hopf operators and Toeplitz operators with piecewise continuous symbols, and further re-
sults concerning Toeplitz operators [BGO05, BS99, B6t96]. In some sense, Chapter 10 is complementary by
studying a generalisation of Toeplitz operators, but now requiring the operators to be banded (or banded in
each lattice dimension). The result we prove was conjectured (for a one-dimensional tridiagonal case) in
[DNS99], but has been an open problem since.

Finally, the work of Zworski [Zwo13, Zwo099] on computing resonances can be viewed in terms of the
SCI hierarchy. In [Zwo13], the computational approach is based on expressing resonances as limits of non-
self-adjoint spectral problems. This gives a two limit process, and hence fits directly into the SCI hierarchy.
Resonances provide a way of studying the time evolution of quantum systems. Another approach, based on
the new algorithms of Chapter 4, is discussed in §4.6.2. The recent work of Ben—Artzi, Marletta and Rosler
[BAMR20a, BAMR20b] on computing resonances is also formulated in terms of the SCI hierarchy, though
the results of [BAMR20a, BAMR20b] do not allow error control at the time of writing.

12
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Numerical methods: Numerically, the point of view in this thesis is closest to the work of Olver,
Townsend and Webb on practical infinite-dimensional linear algebra [OT14, OT13, Olv1l8, OW18, WO17].
This work includes efficient codes, such as the infinite-dimensional QL (IQL) algorithm [Web17], as well
as theoretical results (see also the infinite-dimensional version of the FEAST algorithm in [HT20]). The
key point to note is that all of these methods, including our own, deal with infinite-dimensional operators
directly, rather than the discretise-then-solve paradigm that pervades previous numerical approaches. The
set of algorithms this thesis provides can be considered as new members within the growing family of
infinite-dimensional techniques.

The IQL algorithm is rather different from the IQR algorithm studied in Chapter 9. The IQL algorithm
requires an analytical QL factorisation for the ‘tail’ of the operator (for instance Toeplitz-plus-finite-rank
Jacobi operators). Such a QL factorisation does not always exist for bounded operators. The results of
[Web17] complement Chapter 9 in the following sense. For a bounded Jacobi operator J such that there is
an eigenvalue \g with 0 < |[Ag| < 1 := minycgp()\ 2, |Al- the IQL algorithm converges in the top-left entry
to Ao at rate O(|\o/n|™). In other words, the IQL algorithm gives information on the part of the spectrum
nearest the origin, whereas the IQR algorithm in Chapter 9 gives information on the extremal parts of the
spectrum. There are advantages and disadvantages to both approaches. For example, our analysis of the IQR
algorithm gives little information inside the essential numerical range, except in special cases. However,
the IQL algorithm can deal with discrete spectra near the origin, even if the eigenvalues are surrounded by
essential spectra. On the other hand, for operators which do not have a large amount of structure, computing
the QL decomposition (if it exists) for the IQL algorithm is extremely difficult, whereas the IQR algorithm
does not suffer from this setback.

The work of [WO17] is of particular relevance to Chapters 4 and 5. In [WO17], the authors studied
Jacobi operators that are compact perturbations of Toeplitz operators through connection coefficients. Their

results can be stated in terms of the SCI hierarchy:

* If the perturbation is finite rank (and known), the pure point spectrum can be computed in one limit
with A error control, and the absolutely continuous part of the spectral measure can be computed in

finite time (the absolutely continuous spectrum is known analytically).

* If the perturbation is compact, with a known rate of decay at infinity, then the full spectrum can be

computed in one limit with A; error control.

Chapters 4 and 5 extend the work of [WO17] by considering operators more general than tridiagonal com-
pact perturbations of Toeplitz operators, allowing operators to be unbounded, and building algorithms that
are arithmetic and can cope with inexact input. At the price of this greater generality, some of the objects
we study are not computable with error control. However, they are still computationally useful as we shall
demonstrate (many of them can be computed with one limit). Moreover, with certain regularity assumptions
(see §4.5.2), we can compute spectral measures with error control. Our methods are also entirely different
and rely on estimating the resolvent operator with error control. We also leverage this to construct methods

with arbitrarily high orders of convergence.

Foundations and computer-assisted proofs: Smale’s seminal work [Sma81, Sma97] and his pro-
gramme on the foundations of computational mathematics and scientific computing initiated the pioneering
work by McMullen [McM87, McM88, Sma98], and Doyle and McMullen [DM89] on polynomial root-

finding. These are classification results in the SCI hierarchy.

13
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Regarding the SCI hierarchy itself, this first appeared in [Han11] where it was shown that the SCI < 3
for the computation of spectra of general operators (without any structural assumptions). This algorithm first
computed pseudospectra with two limits, and then shrunk the pseudospectrum to the spectrum to produce a
three limit algorithm. In Chapter 3, we show how this can be bypassed (for a very large class of operators)
with an algorithm that converges in one limit with ¥y error control.

The number of examples of computer-assisted proofs in the literature is substantial and growing fast, so
we can only mention a few examples (see also §2.5.1). In most cases, in order to prove that the computa-
tional proof is 100% accurate, one implicitly has to prove a classification in the SCI hierarchy. The work by
Fefferman and Seco [FS90, FS92, FS93, FS94b, FS94c, FS95, FS96b, FS96a, FS94a] involves a E‘f‘ clas-
sification (where the superscript refers to restricting to purely arithmetical operations). Similarly, Hales’
Flyspeck programme [Hal05, HAB17], which provided a computer-assisted proof of Kepler’s conjecture,
relies on a ¥4 classification. Both of these examples are computer-assisted proofs done via non-computable
problems. There are also computer-assisted proofs based on A classifications. For instance, the work of
Gabai, Meyerhoff, and Milley [GMMO09] on hyperbolic three-manifolds. Moreover, recent results using
computer-assisted proofs in spectral theory include the work of Brown, Langer, Marletta, Tretter, and Wa-
genhofer [MBLM™ 10] and Bégli, Brown, Marletta, Tretter and Wagenhofer [BBM™14].

1.4 Notation

We end this chapter by listing the basic standard notation used in this thesis. Further notation will be

introduced whenever appropriate.

H separable Hilbert space

B(H) set of bounded linear operators on H

B, (x) closed ball (in a metric space) of radius 7 centred at =
D, (x) open ball (in a metric space) of radius r centred at
cl(S) closure of a set S in a topological space

du(S,7T) Hausdorff distance between compact sets S and 7
Re(z) real part of complex number z

Im(z) imaginary part of complex number z

z conjugate of complex number z

a1(C) smallest singular value of rectangular matrix C, extended to operators in (3.2.1)
A* adjoint of operator A (when defined on a Hilbert space)
D(A) domain of operator A

R(z,A)  resolvent operator of operator A defined as (4 — 2I)~" for z ¢ Sp(A)

Sp(A) spectrum of operator A defined as {z € C : R(z, A) does not exist as a bounded operator }
Sp.(A) pseudospectrum of operator A defined as cl({z € C: ||(A — zI)7!|| > 1/e}) fore > 0
Spy(A) discrete spectrum of operator A (evals. of finite multiplicity isolated from rest of Sp(A))
SPess(A)  essential spectrum of operator A which we define as {z € C : A — zI is not Fredholm}
Tess(A) essential numerical radius of operator A defined as sup{|z| : z € Sp..(4)}

W(A) numerical range of operator A defined as {{A¢, &) : ||€]| = 1}

W.(A) essential numerical range of operator A defined as (¢ compace CHW (A + K))
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We remark that if A € B(H), then the pseudospectrum can equivalently be defined as
Spc(A) = {z € C: ||R(z, A)||7" < e}, (1.4.1)

where we use the convention that ||[S~!|| = co and ||[S~!|7! = 0if S~ does not exist. We also remind

the reader that the Hausdorff distance between S and 7T is

du(S,T) = max {sup dist(A, T), sup dist(A, 8)} , (1.4.2)
AES AET

where dist(\, 7)) = inf e |[p — A|. Finally, when considering decision problems, we will use the discrete

metric on {0, 1}, with 1 interpreted as ‘yes’ and 0 interpreted as ‘no’.
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Chapter 2

The Solvability Complexity Index

This chapter discusses the Solvability Complexity Index (SCI) hierarchy, which is needed to show that the
algorithms in later chapters realise the boundary of what digital computers can achieve. The SCI was first
introduced in [Han11] where it was shown that the SCI < 3 for the computation of spectra of general op-
erators (see §1.1 and §1.3). However, for operators with more structure, the spectral problem is fortunately
much lower in the SCI hierarchy, with the first SCI-sharp algorithms appearing in [CRH19], which are the
topic of Chapter 3. We have sought to place all of the results concerning the hierarchy itself in one chapter,
for ease of reference. It should be mentioned that this is not a thesis on logic or descriptive set theory, and
the contents of this chapter are self-contained.

This chapter begins with the basic set-up of the SCI in §2.1. Notions of error control are discussed in
§2.2, as well as properties of the refined structure. A note on Turing towers and realisable computation is
given in §2.3. This essentially says that all of the algorithms constructed in this thesis can be made recursive
(in the classical Turing sense) with restrictions to arithmetic operations over Q and inexact input. However,
the proven lower bounds in this thesis hold in any model of computation. In other words, it does not matter
which model of computation one uses for a definition of ‘algorithm’, from a classification point of view
they are equivalent for these infinite-dimensional spectral problems. This result is satisfying since it avoids
the current lack of a universally agreed definition of recursivity for algorithms over the fields R or C. In
§2.4, we link the SCT hierarchy to the Baire hierarchy (in a special case), in order to provide combinatorial
array problems arbitrarily high up in the SCI hierarchy. This is the most technical part of the chapter and
we use some tools from descriptive set theory. These results will be used for proving lower bounds, where
we typically embed such a problem within the spectral problem of interest. Any result in this thesis with
SCI > 3 will be proven using this technique and the results of this chapter. Moreover, these are the first
problems in the SCI hierarchy requiring general towers of arbitrarily large height and the tools provided in
this chapter may be used in other areas of computational mathematics. We also state the precise differences
and similarities between the SCI hierarchy and the Baire hierarchy. Finally, we give some examples of the

broader role of the SCI hierarchy in mathematics.

2.1 The Basic SCI Hierarchy

We begin with the basic set-up of the SCI, as it already appears in the literature [Han11, BACHT19]. First,

we define a computational problem. The basic objects of a computational problem are: €2 is some set, called
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the primary set, A is a set of complex-valued functions on 2 (we allow any such function to map to some
finite-dimensional space C™), called the evaluation set, M is a metric space, and = : 2 — M is called
the problem function. The set € is the class of objects that give rise to our computational problems. The
problem function = : {2 — M is the map we are interested in computing. Finally, the set A is the collection
of functions that provide us with the information we are allowed to read. The collection {=, 2, M, A} is
referred to as a computational problem.

For example, we could consider the case that 2 = B(I?(N)) (the set of bounded linear operators acting
on [?(N)) and = the problem function that takes A € 2 and maps it to its spectrum Sp(A). Since the
spectrum is a non-empty compact subset of C (in this case), we can let M be the set of non-empty compact
subsets of C equipped with the Hausdorff metric given by (1.4.2). In this case, A could correspond to the
evaluation of matrix entries (with respect to the canonical basis) of a given A € .

We can now define in the broadest sense, what we mean by an algorithm.

Definition 2.1.1 (General Algorithm). Given a computational problem {=,Q, M, A}, a general algorithm
is a mapping T : © — M such that for each A € )

(i) there exists a (non-empty) finite subset of evaluations Ar(A) C A,
(ii) the action of T on A only depends on { Ay} jep.(a) where Ay := f(A),
(iii) for every B € Q) such that By = Ay for every f € Ar(A), it holds that Ar(B) = Ar(A).

The three properties of a general algorithm are the most basic natural properties we would expect any
deterministic computational device to obey. The first condition says that the algorithm can only take a finite
amount of information, though it is allowed adaptively to choose, depending on the input, the finite amount
of information it reads. The second condition ensures that the algorithm’s output only depends on its input,
or rather the information that it has accessed. The final condition is very important and ensures that the
algorithm produces outputs and accesses information in a consistent manner. In other words, if it sees the
same information for two different inputs, then it cannot behave differently for those inputs.

Note that the definition of a general algorithm allows a stronger form of computation than the definition
of a Turing machine [Tur36] or a Blum—Shub—Smale (BSS) machine [BCSS98]. One can establish that
the SCI hierarchy does not collapse (in particular for the spectral problem) regardless of the model of
computation. A general algorithm has no restrictions on the operations allowed. Whilst complete generality
in this sense may seem to be at odds with practical computation (and the theory of recursion), we use this

model for two primary reasons:

(i) Strongest lower bounds (and complementary strongest upper bounds): Since Definition 2.1.1 is com-
pletely general, the lower bounds hold in any model of computation, such as a Turing machine or a
Blum—Shub—Smale machine. Neither is this an issue for practical computation since the algorithms in
this thesis can be made to work using only arithmetic operations over the rationals (see §2.3). Hence
throughout this thesis, we obtain the strongest possible lower bounds and the strongest possible upper

bounds.

(i1) Focus on information: Using the concept of a general algorithm considerably simplifies the proofs
of lower bounds. The non-computability results (proven lower bounds) of this thesis are due to the

problem at hand being inherently non-computable. In other words, it is not a question of the type of
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operations allowed being too restrictive, but rather that the information about each input available to

the algorithm is insufficient to solve the problem.

With a definition of a general algorithm, we can define the concept of towers of algorithms. This
captures the notion of successive limits discussed in §1.1. However, before we do so, we will discuss the
cases for which we may have a set-valued function. Occasionally we will consider a function = such that
for A € Q) we have that Z2(A) C M. In this case, we still require that a general algorithm produces a single-
valued output i.e. I'(A) € M for A € Q. However, we replace the metric in order to define convergence.
In particular, T",,(A) — Z(A) as n — oo means

inf dp(T,,(A),y) — 0.
o2 (a) m(Tn(A),y)

Definition 2.1.2 (Tower of algorithms). Given a computational problem {Z,Q), M, A}, a tower of algo-
rithms of height k for {Z,Q, M, A} is a collection of sequences of functions

Fpp : Q= M, Tppnp Q=M. .. Tppin : = M,

where ny, ...,n1 € Nand the functions I'y,, ., at the lowest level in the tower are general algorithms in
the sense of Definition 2.1.1. Moreover, for every A € (,
E(A) = lim I, (4),
N —>00

| (A) = lim Ty p, (A)a

Nk —1—>00

with convergence in the metric space M.

Throughout this thesis, a general tower will refer to the very general definition in Definition 2.1.2
specifying that there are no further restrictions. This will be denoted by e = GG. When we specify the type

of tower, we specify requirements on the functions I'y,, ., in the hierarchy, in particular, what kind of

1
operations may be allowed. A tower of algorithms for a computational problem is the toolbox allowed. A
radical tower, as defined below, first appeared in [Hanl1] where it was referred to as a “set of estimating
Sfunctions” for computing spectra. The definition here is substantially more general and allows for the use

of these types of towers for a wide range of problems.

Definition 2.1.3 (Arithmetic and radical towers). Given a computational problem {E, ), M, A}:
(i) An arithmetic tower of algorithms of height k for {Z,Q, M, A} is a tower of algorithms where the
lowest functionsI' =Ty, pn, : 8 — M satisfy the following: For each A € Q the action of I" on A
consists of only performing finitely many arithmetic operations and comparisons on { Ay} sepp ()

where we remind the reader that Ay = f(A).

(ii) A radical tower of algorithms of height k for {Z,Q, M, A} is a tower of algorithms where the lowest
functions I' = T'y,  n, + Q — M satisfy the following: For each A € () the action of I on A

consists of only performing finitely many arithmetic operations, comparisons and extracting radicals

of {As} rear(a)-
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For arithmetic towers we let « = A and for radical towers we let « = R.

Definition 2.1.4 (Solvability Complexity Index). A computational problem {Z,Q, M, A} is said to have
Solvability Complexity Index SCI(Z,Q, M, A), = k, with respect to a tower of algorithms of type «, if k
is the smallest integer for which there exists a tower of algorithms of type « of height k. If no such tower
exists then SCI(Z,Q, M, A), = oo. If there exists a tower {T'y, }nen of type o and height one such that
E =T, for some ny < oo, then we define SCI(Z,Q, M, A), = 0.

With the definition of the SCI, we can define the SCI hierarchy. Without any extra structure on the
metric space M, the Ag‘ classes are the finest refinement we can obtain in terms of the SCI. However, as

described below, when more structure is allowed, the hierarchy becomes much richer.

Definition 2.1.5 (The Solvability Complexity Index hierarchy). Consider a collection C of computational
problems and let T be the collection of all towers of algorithms of type « for the computational problems

in C. Define
A3 = {{2,0) € C| SCIE Q) = 0}
AL ={{8,Q} e C|SCIE, Q)q < m}, m e N,

as well as
AY ={{E,Q} eC|I{Th}lnen € T s.£. VA€ Qd(T',(A),Z(A)) < 27"}
Remark 2.1.6. In other words, a A, 11 problem is one that be computed in m limits.

Remark 2.1.7. In this thesis, we will concern ourselves only with deterministic algorithms. It is possible to
extend the SCI hierarchy to probabilistic algorithms, which is useful for settings such as optimisation, and

this will be the topic of future work.

2.2 Error Control Extensions of the SCI Hierarchy

When there is extra structure on the metric space M, say M = R or M = {0, 1} with the standard metrics
(or more generally, a totally ordered set), one may be able to define convergence of functions from above
or below. This is an extra form of structure that allows for a type of error control. Such error control is
important, for example, in computer-assisted proofs, and of course, crucial in scientific computing. The

following definition is motivated by the arithmetical hierarchy in logic.
Definition 2.2.1. Suppose that M = {0, 1} with the discrete topology. We define the following:

(i) We say that = : Q0 — M permits a representation by an alternating quantifier form of length m if

E= (anm) te (anl)rnm,...,nla

where (Q;) is a list of alternating quantifiers (V) and (3), and all T, . n, : @ — M are general

yeeey

algorithms in the sense of Definition 2.1.1.

(ii) We say that {=,Q} is £2, if an alternating quantifier form of length m exists with Q,, being (3) and
T,.....n, algorithms of type o, and that {2, Q} is IS, if an alternating quantifier form of length m
n, algorithms of type .

.....
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(iii) We say that {Z,Q} is A% if {Z,Q} is ¥ and T1%,.!

Definition 2.2.1, the following theorem and Proposition 2.2.4 are taken from [BACH™ 19]. This section

is based on work done in collaboration in [BACH* 19].

Theorem 2.2.2. Following Definition 2.2.1, and supposing that M = {0, 1}, the following is true.
1. If SCI(E, Q) < m then Zis Ay, ;.
2. If 2is X2, or T2, then SCI(Z,Q), < m.

3. Form € N, we have that SCI(E,Q), = m if and only if m is the smallest integer with = being

A%L-‘rl‘
This motivates the following generalisation when M is a totally ordered set.

Definition 2.2.3 (The SCI Hierarchy for a Totally Ordered Set). Given the set-up in Definition 2.1.5 and
suppose in addition that M is a totally ordered set. Define

S5 =105 = Af,
S ={{E,9} e A | I{T,,} € T s.t. T, (A) /E(A) VA € Q},
¥ = {{E,Q} € Ay | F{T0} € T s.t. T(A) \VE(A) VA € Q},
where /* and "\, denotes convergence from below and above respectively, as well as, for m € N,
Yo ={E 9 eAn 2|3 {Tn, . my €T st Ty (A) S E(A) VA€ QY
Iy ={{E Qe Apia | I{Tnsrm J ET st. Ty (A) \(E(A) VA € Q.

If the metric space M = {0, 1}, it is clearly a totally ordered set and hence, from Definition 2.2.3, we
obtain the SCI hierarchy for arbitrary decision problems. It is not immediately clear whether Definition

2.2.3 and Definition 2.2.1 agree when M = {0, 1}. However, the next proposition provides the link.
Proposition 2.2.4 (Properties of the SCI hierarchy I). Given the above set-up we have the following.
(i) The SCI hierarchy encompasses the arithmetical hierarchy.

(ii) If M = {0, 1}, then Definition 2.2.3 and Definition 2.2.1 are equivalent and hence the SCI encom-
passes generalisations of the arithmetical hierarchy. In particular, this holds for arithmetic towers

which extends the arithmetical hierarchy to arbitrary domains.

(iii) If M = {0, 1}, then A} = ¢ N1IY for all k and o

2.2.1 Extending the hierarchy for spectral problems

We want to generalise the above notions of error control to scenarios suitable for spectral computations. In
the case where M is the collection of non-empty compact subsets of another metric space M/, it is custom
to equip M with the Hausdorff metric

duy(X,Y) = max { sup inf d(z,y),sup inf d(z, .
) = e {sup inf (o). sup i o)}

IThis implies that there exist two alternating quantifier forms with distinct ‘heads’.
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In the case where M is the collection of non-empty closed subsets of M’, we use the Attouch—Wets metric

daw (C1,C5) = Z 27" min {1, SUPg , (20,2)<n |dist(z, C1) — dist(z, Cz)|} ,

n=1
where C and C5 are non-empty closed subsets of C, xg € M’ is some fixed element of M’ and where
d(x,C) is the usual distance between the point = and a set C. Note that daw (C1,C2) € [0,1]. In the
case that M’ = C with the usual metric, we take o = 0 without loss of generality. One should view
the Attouch—Wets metric as a generalisation of the familiar Hausdorff metric on compact subsets. In other
words, we seek local uniform convergence (both metrics can be viewed in terms of metrics on spaces of
continuous functions [Bee93]).

The following provides the generalisation and we remark on the intuition behind this definition below.

Definition 2.2.5 (The SCI Hierarchy (Attouch—Wets/Hausdorff metric)). Given the set-up in Definition
2.1.5 and suppose in addition that (M, d) is the Attouch—Wets or the Hausdor[f metric induced by another
metric space M'. Define for m € N

g =115 = Ag,
5= (2.9} € Ao [ I{Tu} € T, {Xu(A)) € Misit. Tu(A) C Xa(4),
lim T, (4) = Z(4), d(X,(A),Z(4)) <27" VA€ Q},

7 = {{£,0} € A2 [ 3{I0} € T, {Xa(A)} € Msit. E(4) C Xn(A),

lim T,,(A4) = Z(A), d(X,(A),T[,(A)) <27" VA e},

n—roo

where C aq means inclusion in the metric space M’. Moreover,
Z%Jrl = {{Ev Q} € Am+2 | 3 {an+1,...,n1} € T7 {X’ﬂm+1 (A)} C M.t an+1 (A) /g, Xnm+1(A)7
nm%rlfgoo an+1 (A) -

M5y = {59} € Az | 3 {Tnprm} € T2 {Xn, 1 (A} © Mist S(A) € Xo, 1 (4),

(1]

(A)’ d(Xn'm+1 (A)7 E(A)) S 2_nm+1 VA € Q}’

lim T

MNm41—>00

(1]

(A) =E(A), d(Xn,i1(A),Th,, (A) <2774 VA € Q.

Mm+1

Intuitively, this captures convergence from below or above respectively, up to a small error parameter
27", Note that to build a X, algorithm in the Hausdorff case, it is enough (by taking subsequences of n)
to construct I', (A) such that ', (A) C E(A) + Bg, (4)(0) with some computable E,,(A) that converges
to zero. A visual demonstration of these classes for the Hausdorff metric is shown in Figure 2.1. The SCI

hierarchy gives rise to the following structure:

115 s 13
I < < & < &
A3 C AF C SPUTE ¢ A ¢ NGUNE C A ¢
I < < < < S
I Do vy

Note, it is precisely the classes ¢ and II{' that are crucial in computer-assisted proofs (see §2.5.1).
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1L

£

Figure 2.1: Meaning of ¥; and IT; convergence for problem function = computed in the Hausdorff metric.

f2

The red area represents Z(A), whereas the green areas represent the output of the algorithm I',,(A4). 34
convergence means convergence as n — 0o but each output point in I',,(A) is at most distance 2~ from
Z(A). Similarly, in the case of II;, we have convergence as n — oo but any point in Z(A) is at most
distance 2" from I';,(A). The same notion holds for 3; and II; in the Attouch—Wets topology, but now
when restricting to arbitrary compact balls (see Lemma 3.2.2).

Remark 2.2.6 (Warning!). We use the same A}, ¥, 113 notation from, for example, the arithmetical hi-
erarchy. This similarity is deliberate, since classical hierarchies become special cases of the SCI hierarchy
(Proposition 2.2.8). However, there is a substantial difference. In classical hierarchies, each Ay class is
defined via Ay, = 3, N1y, which is not always the case in the SCI hierarchy. The Ay, classes form the core
of the SCI hierarchy, and it is only when there is extra structure on the metric space that the ;. and the 11},

classes can be defined. Furthermore, there may be cases in the SCI hierarchy where
Ay # X N 1.

In addition, classical hierarchies also have that X \ Ap_1 # 0 and T, \ Ag_1 # 0, which may not hold

in general SCI hierarchies.

To say a bit more about the structure, we need the following definition (which holds for standard spaces

such as {0, 1} or R with the usual metric).

Definition 2.2.7. Given a totally ordered metric space (M, d), we say that the metric is order respecting if
Sforany a,b,c € M witha < b < ¢ we have d(a,b) < d(a, ¢).

The following proposition gives some insight into the extended SCI hierarchy as defined above, and

shows that the results of later chapters are sharp (see Remark 2.2.9).

Proposition 2.2.8 (Properties of the SCI hierarchy II). Given the above set-up, let (M, d) be either the
Hausdorff or Attouch—Wets metric or a totally ordered metric space with order respecting metric. Let

k = 1,2 or 3, then we have the following.

(i) AG = X¢ NTIE. In particular, if for a problem = : Q — M we have A§ # {Z,Q} € X, where
X = X or Il and o denotes any type of tower, then {=,Q} ¢ Y&, where Y = II or X respectively.

(it) Suppose for a computational problem = : Q0 — M we have a corresponding convergent E? tower
rk x....n, @nd a corresponding convergent I tower T2 r..my - Suppose also that we can compute for

every A € ) the distance d(T), , (A),TZ . (A)) to arbitrary precision using finitely many

arithmetic operations and comparisons. Then {E,Q} € A?.
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Remark 2.2.9. Throughout this thesis, we will prove results of the form AkG F{E,Q} € X Part (i) says
that this is an optimal classification in the SCI hierarchy if k < 3. It is an open problem whether part (i) of

the proposition extends to larger k (the proof for k = 3 is already very technical).

2.2.2 Proof of Proposition 2.2.8

In this subsection we prove Proposition 2.2.8, which we have placed in a separate section, allowing the
reader to skip it if desired. Let (M, d) be a metric space with the Attouch—-Wets or Hausdorff topology
induced by another metric space (M’, daq ). For the Attouch—-Wets topology and any fixed zp € M’ we

set

daw (C1,C3) = Z 27" min {17 SUPg,, (20,2)<n |dist(z, C1) — dist(z, 02)|} ,

n=1
for C1, Cy € CI(M’), where C1(M’) denotes the set of non-empty closed subsets of M’. In the case that

M’ = C with the usual metric we take 2o = 0. We have the following ‘sandwich’ lemma.

Lemma 2.2.10. Suppose that (M, d) is the Hausdor{f or Attouch—Wets topology induced by a metric space
(M’ daqr). Let € > 0. Suppose also that A, A’, B, B',C € M with ACpyp A, C Cpp B', d(C, A") < ¢
and d(B,B’) < €. Then

d(A,C) < d(A,B) + 2e.

Proof. Suppose first that (M, d) is the Hausdorff topology. If € C then x € B’ and dist(z, A) <
d(B', A) < d(A, B) + €. On the other hand, if z € A then z € A" and dist(z,C) < d(A’,C) < e. The
result now follows.

Suppose now that (M, d) is the Attouch-Wets topology and let z € M’. Since C C s B’ we must

have
dist(x, A)—dist(z, C) < dist(z, A)—dist(z, B') < |dist(x, A) — dist(z, B)|+|dist(x, B) — dist(x, B')] .
Similarly, since A C s A’ we must have

dist(z, C) — dist(x, A) < dist(z, C) — dist(z, A’) < |dist(z, C) — dist(z, A")] .
It follows that

|dist(z, A) — dist(x, C)| < |dist(z, A) — dist(x, B)| + |dist(x, B) — dist(x, B')|

+ |dist(z, C) — dist(z, A")]

and this finishes the proof of the Lemma. O

Proposition 2.2.11. Let (M, d) be either a metric space with the Attouch-Wets or Hausdorff topology
induced by another metric space (M, d /) or a totally ordered metric space with order respecting metric.

Suppose we have a computational problem
2:Q-> M,

with a corresponding convergent X5, tower F'}kau-,nl and a corresponding convergent 11§} tower F%k,...,m
(either both arithmetic or both general). Suppose also that 1 < k < 3 and that, in the case of arithmetic
towers, we can compute for every A € Q the distance d(T'},, . (A), T2, (A)) to arbitrary precision

using finitely many arithmetic operations and comparisons. Then {=,Q} € A.
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Remark 2.2.12. This proposition essentially says that we can combine the two notions of error control 11},

and Xy, to reduce the number of limits needed by one.

Proof. Step 1: For k = 1 and the case that (M, d) is either a metric space with the Attouch—Wets or

Hausdorff topology, this is a trivial consequence of Lemma 2.2.10. Let d,,, be an approximation of
d(Ty, (4),T5,(4) +2-27™

from above to accuracy 1/n;. Note that suitable approximations can easily be generated using approxima-
tions of d(T'}; (A), T2 (A)). Let € > 0, then simply choose n; € N minimal such that 6,,, < e. In the case
that (M, d) is totally ordered with order respecting metric

d(Ty,, (4),E(4)) < d(T,,, (4),17,(4)),

and we can take n; large such that the right hand side is less than the given e (recall we can compute the

right hand side to arbitrary precision). Set I'(A) = I''(A), then we have
d(I'(A),Z(4)) <e.

Step 2: For larger k, we use the same idea, but we must be careful to ensure the first £ — 1 limits exist.
For the rest of the proof, d will denote an approximation of d to accuracy 1/n; (which by assumption can
always be computed).

We first deal with the case k = 2. Let ¢ > 0 and consider the intervals J! = [0, ¢] and J? = [2¢, o).

Let 6,,, 5, (A) be an approximation of

AT} . (A),T2 . (A)+2.-27"

n2,n1 n2,ni

from above to accuracy 1/n;. Again note that we can easily construct such approximations. It is clear
that limy,, o0 Oy n, (A) = d(T5,(A), T2 (A)) +2-27"2 =: 6,,,(A) and that d(T'},, (A), E(A)) < 6, (A)
(again appealing to Lemma 2.2.10 if we are in the case of the Attouch—Wets or Hausdorff topologies). Given
n1,m2, let [(n2,ny) < ny be maximal such that &, ;(A) € J! U J2. If no such [ exists or §,, ;(A) € J!
then define Osc(¢; ny,ng, A) = 1 otherwise define Osc(e; nq,n2, A) = 0. Since d,, ,,, (A) cannot oscillate
infinitely often between the two intervals J! and .J2, it follows that

Osc(e;ng, A) := lim Osc(e;ny, ng, A)

ny—roo

exists. Define I's, (A) as follows. Choose j < n; minimal such that Osc(e; n1, j, A) = 1if such a j exists,
and define I';, (A) = T'j », (A). If no such j exists then define I';, (A) = Co where C is any fixed member
of (M, d). In particular, I';, is a type o algorithm. Now for large 7, we must have 6,,,(A) < € and hence
Osc(€;n2, A) = 1. It follows that I¢(A) = lim,,, o I'G, (A) exists and is equal to I'} (A) where N € N
is minimal with Osc(e; N, A) = 1. Tt follows that d(T'°(A),ZE(A)) < 2e.

We will use the I's, (A) to construct a height one tower. Observe first of all that by our assumptions we
can compute d(T'1 (A), T (A)) for m,n € N and €;, e > 0. Given ny, choose j = j(n;) < n; maximal

such that for all 1 < < j we have

d(r2(4),T2 " (A) <4277 +271). 22.1)

ni

25



2.2. Error Control Extensions of the SCI Hierarchy CHAPTER 2. The Solvability Complexity Index

If no such j exists then set I';,, = Cj, otherwise set I',,, (4) = F%Ij(nl) (A). Again, this is easily seen to
be a type o algorithm. Pick any N € N, then by the convergence of the I';, (A4) and d(I'“(A),Z(4)) < 2e,
(2.2.1) must hold for j = N and 1 <[ < N if n; is large enough. Hence by definition of j(n1),

limsup d(T', (A4), 2(A)) < limsupd(T2, " (A),2(A)) + 2>V < 24V,

ni—00 ni—oo

Since N was arbitrary, we must have convergence to =(A).
Step 3: We now deal with k£ = 3. The strategy will be similar to the £ = 2 case but now we construct
s, o, (A) such that I's,_(A) := lim,, o I

Yo (A) exists and is 3¢ close to Z(A) for large ns, but may

na,my
not converge in (M, d). Using this, we will construct a height two type o tower.
As in step 2, let € > 0 and consider the intervals J! = [0, €] and J2 = [2¢,00). Let 8,15 ny.n, (4) be an
approximation of
d(rk (A), T2 (A)+2-27"s,

nsz,n2,ni nz,n2,n1

from above to accuracy 1/n;. Again, we have

m  lm g g, (A) = d(T), (A), T2, (A) +2-27" =: §,,,(A)

ng—>00 N —+00

IN

exists with d(T';,, (A),E(A)) < 6, (A). Given ny,ny and j, let [(j,n2,n1) < nq be maximal such that
8 et (A) € JE U J2. If no such [ exists or §; ,, (A) € J! then define Osc(e; n1, na, j, A) = 1 otherwise
define Osc(€; ny,na, j, A) = 0. Arguing as in step 1 we have that

Osc(e;ng, 7, A) := lim Osc(e;ny,na, j, A)

ny;—o0

exists. Now consider Osc(e; n1, na, 7, A) for j < ng. If such a j exists with Osc(e; nq, no, j, A) = 1 thenlet
(A). Otherwise set T, . (A) = Cy,

n2,n1

j(n1,m2) be the minimal such j and set 'y, . (A4) =Tj, .
where again Cj is some fixed member of (M, d). Since we only deal with finitely many j < na, it is clear
(A) exists
and is defined as follows. Let j(n2) < ns be minimal with Osc(e; ng, j, A) = 1 (if such a j exists). If such
ajexists then I'y, (A) =T, ) (A), otherwise I'y,, (A) = Co.

Now there exists N € N such that 65 (A) < €/2 and hence dx ,,,(A) < € for large ny. But this implies

that I, is a type « algorithm. Furthermore, we must have that I'5, (A) := lim,, ;o I’

€
n2,Mn1 nz,ni

that Osc(e; ng, N, A) = 1. Hence for ny large we must have j(nz) < N. If §;(A) > 2e then for large ny
we must have 9; ,,,(A) > 2¢ and hence Osc(e;ng, I, A) = 0. As ng increases, j(n2) may not converge.
However, the above arguments show that for large ns it can take only finitely many values, say in the set

S ={s1,..., Sm}, all of which must have d5, (A) < 2e. It follows that for large no we must have
d(I'5,,(A),E(4)) < 3e. (2.2.2)

Now we get to work using these ‘towers’ (which do not necessarily converge in the last limit) and the

trick to avoid oscillations. Define
. 7 =3 =1
F(ny,ny, j, 1, A) = d(T3,", (A),T2, . (A)),

F(nQaj7laA) = lim F(n17n27j7l7A) = d(F'IQ'L;J(A)’F?z;l(A))

ny—oo

and the intervals le’l = [0,4(277 + 2_1)],Jﬁl = [8(277 + 271),00). Given j,1,n; and ny, we define
i(j,1,m2,n1) < n; be maximal such that F'(i,ng,j,1, A) € le’l U sz)l. If no such i exists or if it does

and F'(i,n2,7,1,A) € J;,l then define (/)s\c(nl, na, J, 1, A) = 1 otherwise define (/)az(nl,ng,j,l, A)=0.
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Choose j = j(n1,n2) < ny maximal such that for all 1 <[ < j we have (Ss\c(nl,ng,j,l,A) = 1. If no

o P2—j("1 m2)

such j exists then set I',,, ,,, = Cp, otherwise set 'y, n, (A) oy

(A). Again, this is easily seen to
be a type « algorithm.
Arguing as before, we have the existence of
@:(ng,j,l,A) = lim (Ss\c(nl,ng,j,l,A).

nip—00

Now define i = h(nz) < ny maximal such that for all 1 <[ < h we have C/)s\c(ng, h,l, A) = 1. If no such
h exists then we must have

I, (A):= lim T, ,, (4) = Cy,

ni—roo
otherwise we must have
T, (A) = lim Ty, (A) =12 """ (4).

n
ni—o0 2

By (2.2.2), for any fixed j, [ we have 6-8\(?(7’L2,j, [, A) = 1 for large ny and hence h(nz) exists for large no
and diverges to co. Now let IV € N then it follows that

limsupd(T2," " (4),2(4)) < limsupd(T2," (4),2(A4)) + d(T2," " (4),12." (4))
ng—>00 ng—r00
<3-27N 4+ limsup8(2~""2) 4 27Ny < 11.27V,
ng—>00
Since N was arbitrary we must have convergence to Z(A). O

Proof of Proposition 2.2.8. The statement regarding intersections follows directly from Proposition 2.2.11
and the following remark - no assumptions regarding the ability to compute distances between outputs of
algorithms is necessary when considering general towers. For the sharpness result in (i), we deal with
X = ¥ and the X = II follows from an identical argument. Suppose that AY Z {Z,Q} € Z¢. If
{E,Q} € 11, we would have {Z,Q} € Z¢ NII¢ C B¢ NI = AY, a contradiction. O

2.3 Turing Towers and Algorithmic Unification

So far, we have considered algorithms with exact input, which can also store and perform arithmetic on real
numbers. Whilst such assumptions may be useful from a numerical analysis point of view, they are not how
the mechanics of computation operate in the real world. In this section, we aim to cross the bridge between
this point of view and classical computation theory. We conclude that for the problems in this thesis, the
difference in points of view are irrelevant - both give the same classification of computational difficulty in
the SCI hierarchy. This section also shows that the 3; and II; classifications proven in this thesis can be
used for computer-assisted proofs.

Suppose we are given a computational problem {=, 2, M, A}, and that the evaluation set A = {f; :
QO — Cki } jez, where 7 is some countable index set that can be finite or infinite. However, obtaining f;
may be a computational task on its own. For instance, f;(A) could be the number e’ for example or a
matrix value from an inner product integral. Hence, we cannot access f;(A), but rather f; ,(A) where
fin(A) — f;(A) as n — oo. Or, just as for problems that are high up in the SCI hierarchy, it could be that
we need several limits, in particular one may need mappings fj ... ..n, : 2 = [Q 4 iQ]*/ such that

lim ... Hm fi e (A) = fi(A) VAeQ. (2.3.1)

N, —> 0O ni—o0
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In particular, we may view the problem of obtaining f;(A) as a problem in the SCI hierarchy, where A;

classification would correspond to the existence of mappings f; ., : €2 — [Q + iQ]*7 such that
1fin(A) = f;(A)| <27 VAeQ. 232
This idea is formalised in the following definition.

Definition 2.3.1 (A,,-information). Ler {Z,Q, M, A} be a computational problem. For m € N we say
that A has A, 1-information if each f; € A is not available, however, there are mappings fjn,.. . n.
Q — [Q+ Q)% such that (2.3.1) holds. Similarly, for m = 1 there are mappings fj., : Q@ — [Q + iQ]*s
such that (2.3.2) holds. Finally, if k € N and A is a collection of such functions described above such that
A has Ay-information, we say that A provides Ay-information for . Moreover, we denote the family of all

such A by LF(A).
With this definition, we can define a computational problem with A,,,-information.

Definition 2.3.2 (Computational problem with A,,-information). Given m € N, a computational problem
where A has A,,-information is denoted by {Z,Q, M, A}Y*" and denotes the family of computational
problems {Z,Q, M, A} where A € L™(A).

Definition 2.3.3 (Tower with A,,,-information). A fower of algorithms of height k with A,,-information is a
tower of algorithms of height k for the computational problem {Z, 2, M, A}, where A has A,,,-information

such that the tower converges (all m-limits) for any evaluation set Ae L™(A).

The above three definitions are due to discussions between the author and Alex Bastounis. The SCI
hierarchy, given A,,-information, is then defined in the obvious way, where the convergence has to happen

given any A € £™(A). We will use the notation
2,Q,M,A}Am € A

to denote that the computational problem is in A}’ with respect to towers of algorithms with A,,,-information.
Since {Z,Q, M, A}2m is the collection of all computational problems with A replaced by A € £™(A),
we note that the use of € is a slight abuse of notation. When M and A are obvious then we will write

Z,Q}Am € AY for short. In exactly the same way as above, we can define I1¢ and X¢ for {Z, Q, M, A}Am
if the metric space that = maps to is totally ordered or a Attouch—Wets/Hausdorff metric space.

To make a connection with the classical theory of computation, consider the case where A = {f;},ez
has some natural (countably infinite) ordering Z. For example, in the case of spectral computations for
general A € B(I?(N)) we have the matrix evaluations f;(A) = (Aeg,(j), €4, (), Where ¢ = (¢1, ¢2) is an
effective bijection from N to N2. Of course given Ae L(A) we must replace Z by Z x N. By a suitable
effective enumeration of Q 4+ iQ, we can assume each f; ,, maps into N. We can also view the evaluation

functions as an oracle through the mapping defined by

AA): I x N> (j,n) — fjn(A) €N

Now suppose that our metric space (M, d) is the Hausdorff metric on non-empty compact subsets of
C, the Attouch—Wets metric on non-empty closed subsets of C, R with its usual topology or some (at most

countable) discrete ordered space.
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Definition 2.3.4 (Turing Tower). Given a computational problem {Z, Q, M, A} where (M, d) is one of the
above metric spaces, a Turing Tower of Algorithms of height k for {=,Q, M, A} is a tower of algorithms

of height k with A1-information where the lowest level algorithms

=Ty, .0 : Q2= M

)

satisfy the following. For each A € Q and A € £} (A):

1. We can view the output as lying in the space {0, 1}* by a suitable effective enumeration. For example,
if (M, d) = C (or R) with the usual metric, the output T'(A) € Q +iQ (or Q). If (M,d) is the
Hausdorff metric on the non-empty compact subsets of C or the Attouch—Wets metric on non-empty

closed subsets of C, T'(A) is a finite collection of points in Q + iQ.

2. T is an oracle Turing machine such that given the input (nq,...,ny) and oracle A(A), it computes

Such a tower will be denoted by the superscript T.

Remark 2.3.5. Although the above may seem complicated, it can be summarised as follows. A Turing
tower is a tower of algorithms for which the lowest levels can be implemented using a Turing machine.
The Aq-information is needed to model the fact that we can never store an arbitrary real number to full

precision on a finite computer.

Remark 2.3.6. Note that we still require the convergence of our fowers in the original metric space { M, d},

which of course may not be compatible with the metric induced by the coding of our range space.

A remarkable consequence of our results is that for all of the problems considered in this thesis, the SCI
classification does not change if we consider Turing towers instead of general towers or arithmetic towers.
In other words, it does not matter which model of computation one uses for a definition of ‘algorithm’;
from a classification point of view, they are equivalent for these spectral problems. This is a straightforward
application of Church’s thesis, along with a careful analysis of the stability of our algorithms, which are in
general based upon computing (generalisations of) the resolvent or its norm. Explicitly, for the algorithms
based on DistSpec (see §3.5.1) it is possible to carry out an error analysis with Aj-information. If we
know the errors and can also bound numerical errors (or use exact arithmetic on @QQ), then we can incorporate
this uncertainty for the estimation of ||R(z, A)||~" and still gain the same classification of our problems.
This also holds for other algorithms based on similar functions. This leads to rigorous X{! or IIf type error
control suitable for verifiable numerics. In particular, for 3¢ or II{ towers of algorithms, this could be

useful for computer-assisted proofs.

2.4 A Link with Descriptive Set Theory

Next, we shall link the SCI hierarchy in a particular specific case to the Baire hierarchy (on a suitable
topological space). As well as being interesting in its own right, this link provides the only known method
of providing canonical problems high up in the SCI hierarchy. In particular, the results proven here hold
for towers of general algorithms, without restrictions such as arithmetic operations or notions of recursivity.

This fact will be used extensively in the proofs of lower bounds for spectral problems that have SCI >
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2, where we typically reduce the problems discussed in this section to the given spectral problem. The
technique can often be quite fiddly and depends on the problem at hand.

It is beyond the scope of this thesis to provide an extensive discussion of descriptive set theory, but
we refer the reader to [KL87, Mos09] for excellent introductions that cover the main ideas.? It should be
stressed that such a link to existing hierarchies only exists in special cases (when 2 and M are particularly
well-behaved). Even when such a link exists, the induced topology on 2 is often too complicated, unnat-
ural or strong to be useful from a computational viewpoint. We also take the view that for problems of
scientific interest, the mappings A and metric space M are often given to us apriori from the corresponding

applications and may not be compatible with topological viewpoints of computation.

24.1 Recalling some results from descriptive set theory

We briefly recall the definition of the Borel hierarchy as well as some well-known theorems from descriptive

set theory. Let X be a metric space and define
Y(X)={U c X :Uisopen}, II(X)=~%)(X)={F C X : Fisclosed},
where for a class U, ~U denotes the class of complements (in X) of elements of /. Inductively define

SUX) = {Unendn : Ay €I &, <&}, i€ > 1,
IIY(X) =~%(X), AYX)=3¢(X)NI(X).

The full Borel hierarchy extends to all { < w; (w; being the first uncountable ordinal) by transfinite induc-

tion but we do not need this here.

Definition 2.4.1 ([KL87]). Given a class of subsets, U, of a metric space X and given another metric space

Y, we say that the function f : X — Y is U-measurable if f~1(U) € U for every open setU C Y.

Given metric spaces X and Y, the Baire hierarchy is defined as follows. A function f : X — Y is
of Baire class 1, written f € By, if it is Zg(X)-measurable. For1 < £ < wy,afunction f : X = Y
is of Baire class &, written f € B, if it is the pointwise limit of a sequence of functions f,, in Be,, with
&, < & The following theorem is well-known (see for example [KL87] section 24) and provides a useful

link between the Borel and Baire hierarchies.

Theorem 2.4.2 (Lebesgue, Hausdorff, Banach). Letr X,Y be metric spaces with Y separable and 1 <
& < wy. Then f € B¢ if and only if it is 22 +1(X) measurable. Furthermore, if X is zero-dimensional
(Hausdorff with a basis of clopen (closed and open) sets) and f € B, then f is the pointwise limit of a

sequence of continuous functions.

The assumption that X is zero-dimensional in the last statement is important. Without any assumptions,
the final statement of the theorem is false, as is easily seen by considering X = R. Examples of zero-
dimensional spaces include products of the discrete space {0, 1} or the Cantor space. Any such space is
necessarily totally disconnected, meaning that the connected components in the space are the one-point sets
(the converse is true for locally compact Hausdorff spaces). Our primary interest will be the cases when Y’

is equal to {0, 1} or [0, 1], both with their natural topologies.

2The reader wishing to assimilate the bare minimum quickly will find Chapter 2 of [KL87] sufficient for this section.
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2.4.2 Linking the SCI hierarchy to the Baire hierarchy in a special case

Definition 2.4.3, Proposition 2.4.4 and the idea of using well-orderings in part of the proof of Theorem 2.4.5
below are due to discussions between the author and Arno Pauly. The following definition will be used as a
sufficient criterion for a topology to exist on €2 such that A; problems are precisely the continuous functions

from €2 to M.

Definition 2.4.3. Given the triple {Q, M, A}, a class of algorithms A is closed under search with respect
to {Q, M, A} if whenever

1. T is an index set,

N

. {ni}tiez a family of natural numbers,

9%

. {Fi,,l Q) — M}igz,lgm C A

N

. AU }iez 1<n, family of basic open sets in M with U;ez Ni<n, Fi_,ll(Ui,l) = Q, where FZ;(UM) =
{r eQ:Ty(x) €U},

5. {¢;i}iez afamily of points in some arbitrary dense subset of M,

then there is some T' € A such that for every x € () there exists some i € T with I'(x) = ¢; and for all
I <n;wehavel'; (z) € U; .

Proposition 2.4.4. Suppose that A is closed under search with respect to {Q), M, A}, then there exists a
topology T on Q such that A{\ is precisely the set of continuous functions from (Q,T) to M.

Proof. Let T be the topology generated by {T~1(B) : I' € A, B C M basic open}. Now, clearly any
I' € A is continuous with respect to this topology. The fact that uniform limits of continuous functions into
metric spaces are also continuous shows that any function in A{! is continuous with respect to 7.

For the other direction, suppose that f : (£2,7) — M is continuous. Choose {¢; };cz C M such that
M C UjezD(c;,27™). Continuity of f implies that f~!(D(c;,27™)) are open. This implies that there
is an index set 7, natural numbers {n; ;}jc 7, a family {I'; ;1 }ic7 je7,1<n, ; (in A) and a family of basic
open sets {U; ;i }ieT,jes 1<n, ; With the property that

FHDe27) = () Tih Ui
JET I<n;,;

It follows that

U ﬂ Fi_,jl,l(Ui,j,l) =Q.

1€L,JET I<n;
Since A is closed under search, there exists f,, € A such that for every x € € there exists some 7 € Z and

Jj € J with fp(x) = ¢; and forall | < n; ;

T € F»_l (UT;JJ).

1,550
But this implies that d(f,,(z), f()) < 27" Since n was arbitrary, we have f € A, O

The generated topology can be very perverse and not every class of algorithms is closed under search.
However, we do have the following useful theorem when €2 (and A) is a particularly simple discrete space,

which shows that the SCI corresponds to the Baire hierarchy index.
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Theorem 2.4.5. Suppose that Q = {0, 1} = {{a;}ien : a; € {0,1}} with the set of evaluation functions
A equal to the set of pointwise evaluations {\;(a) := a; : j € N} and let M be an arbitrary separable
metric space with at least two separated points. Endow ) with the product topology, T, induced by the
discrete topology on {0,1} and consider the Baire hierarchy, {Be((Q,T), M) = B¢ }¢<w,, of functions
f: Q — M. Then for any problem function & : Q@ — M and m € N,

(2,Q,A} € A |, & E€ B,
In other words, the SCI corresponds to the Baire hierarchy index.

Remark 2.4.6. The proof will make clear that we can replace Q by {0, 1}"*N or any other such prod-
uct space (induced by discrete topology) of the form AP with A, B countable, with A the corresponding

component-wise evaluations, as long as M has at least | A| jointly separated points and is separable.

Proof. First we show that general algorithms are closed under search and that the topology 7 in Proposition
2.4.4 is equal to the product topology 7. Without loss of generality we can assume that 7 is well-ordered
by <. Given x € , let k € N be minimal such that there exists i € Z with x € ﬂlgniF;ll(Uu)
and Ar, ,(x) C {A; : j < k} forl < n;. Let i be the <-least index such that this holds for k£ and
define T'(z) = ¢;,. The well-ordering of Z implies that T" is a general algorithm and it clearly satisfies the
requirements in the definition of closed under search. Note that this part of the proof only uses countability
of A.

To equate the topologies, suppose that I' € A§ is a general algorithm. For each a € €, Ar(a) is finite
and we can assume without loss of generality that it is equal to {\; : j < I(a)} for some finite I(a). In
particular, there exists an open set U, such that any b € U, has A\;(b) = \;(a) for j < I(a) and hence
I'(b) = I'(a). Then for any open set B C M

r'‘®= J U
a€l-1(B)
is open. Hence each T" is continuous with respect to the product topology on Q. It follows that 7 C 7.
To prove the converse, we must show that each projection map A; is continuous with respect to 7. Let
x1, T2 be separated points in M and consider f : {0,1} — M with f(0) = x; and f(1) = x2. Then the
composition f o A; is a general algorithm and hence continuous with respect to 7. But this implies that \;
is continuous. It follows from Proposition 2.4.4 that {Z, 2, A} € A{ if and only if = is continuous.

Now the space (€2, T) is zero-dimensional and M is separable, hence by Theorem 2.4.2, any element

of 31 is a limit of continuous functions. The converse holds in greater generality. It follows that = € B,,, if

and only if there are f,,, . n, € A? with

[1]

(@)= lim .. lim f,, . (a¢). 2.4.1)

My, —> 00 ni—oo

If this holds then there exists general algorithms I';, | . ,, such that for all a € €,

371

d(an,...,nl (a)y fnm,...,nl (a)) <2mm

and hence

Jm . lm T, 6, () = E(a)
so that {Z,Q,A} € AG . Conversely if {Z,9Q,A} € AS | with tower of algorithms I, ,,, then
since each general algorithm is continuous, (2.4.1) holds with f,, . n,(a) =Ty, . n- O
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2.4.3 Combinatorial problems high up in the SCI hierarchy

We can now combine the results of the previous two subsections and obtain combinatorial array prob-
lems high up in the SCI hierarchy. Let & € N>, and let 2, denote the collection of all infinite arrays
{aml,_.,mk }ml,.__mkeN with entries an, ... .m, € {0,1}. As usual Ay is the set of component-wise evalua-
tions/projections. Consider the formulas

1, ifHVjIn>jgst am,. my oni=1

P(a,my,...;mp_2) = ,
0, otherwise

1, ifVViIn > st am,....my omi=1
Q(a,ml,...,mk_g) = 5
0, otherwise
where V°° means ‘for all but a finite number of . In words, P decides whether the corresponding matrix has
a column with infinitely many 1’s, whereas () decides whether the matrix has only finitely many columns
with only finitely many 1’s. For R = P, ) consider the problem function for a € 2y,
Imy Vmg ... Vmi_oR(a,my, ...,mp_2), if kiseven

Ek,R(a = )
Ymy Imsg ... Vmg_oR(a, my, ...,mi_s), otherwise

that is, so that all quantifier types alternate.

Theorem 2.4.7. Let M be either {0, 1} with the discrete metric or [0, 1] with the usual metric and consider
the above problems {Zy,, Qy, M, A }. For k € N>o and R = P,Q,

AF Bk R Qe M, A} € AR,

In other words, we can solve the problem via a height k + 1 arithmetic tower but it is impossible to do so

with a height k general tower.

Remark 2.4.8. Note that we allow both discrete and continuous spaces M, which will be important for our
reduction arguments when proving lower bounds for classifications of spectral problems for non-discrete
M. The lower bound is a strong result in the sense that it holds regardless of the model of computation. In

other words, it is the intrinsic combinatorial complexity of the problems that makes the problems hard.

Proof. We will deal with the case of R = P since the case of R = () is completely analogous. It is easy to
see that {Zx p, Qx, M, A} € A?—&-? First consider the case k = 2 and set

mny
Lrgnamna (a) = MAX ¥ (n;,00) (Z ai,j) :
i=1

Jj<ns
This is the decision problem that decides whether there exists a column with index at most ng such that
there are at least ng 1’s in the first ny rows. This is clearly an arithmetic tower and it is straightforward
to show that this converges to =2 p in M (in either of the {0,1} and [0, 1] cases). For k& > 2 we simply
alternate taking products (which corresponds to minima in this case) and maxima. Explicitly, we set

Nk Ty n1
max H H mMax X (ny,o0) Ay, mge—2,ing , if kiseven
TI’L2:1 s

m1<npy1 < ‘
+ my_o=1 J i=1

F’ﬂk+1’m,n1 (a) = MNk+41 N4 ni
max ... H MAX X (n15,00) E Q..M 2,i,j , otherwise.
ma<ng Jj<ns P

mi=1 mp_o=1
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Again, this is an arithmetic tower and it is straightforward to show that this converges to = p in M. It also
holds that {E, p, Q, M, A} € B¢, if k is even and {Z, p, Ok, M, Ay} € TI7}, | if k is odd (not to be
confused with the notation for the Borel hierarchy).

Recall the topology 7 on €, form Theorem 2.4.5. For the lower bound we note that P is X9 complete
(in the literature it is known as the problem ‘S3’, see for example [KL87] section 23). This is terminology
from the Wadge hierarchy, but in our case since (2, 7) is zero-dimensional, a theorem of Wadge implies
that this means that P is the indicator function of a set, also denoted by P, which lies in ¥3(€;) but not
I3 (Q). It also follows that Zj, p is X, () complete if k is even and II}, , ; () complete otherwise.
Now suppose for a contradiction that {Zx_p, Q, M, AL} € Akc_H. But then Theorem 2.4.5 implies that
Ekp € Bi(Q, M) and hence by Theorem 2.4.2, =, p is ng(Qk) measurable. = p is the indicator
function of set, also denoted by =, p, which is either X7 , | () or II{ , ; () complete depending on the
parity of k. But 0 and 1 are separated in M and hence since Z, p is 22 +1(Qk) measurable, = p and its
complement both lie in X0 | (Q). It follows that Z; p € X9 (Qx) N 1LY, (), contradicting the stated

completeness. O

For our applications to spectral problems, we will use €2 to denote 2, and consider

[1]x
[1]
[1]

1= EZ2.p, 2=Ep, Z3=E3p, EZ1=CZ30.

We see clearly from the proof of Theorem 2.4.7 that it holds for a much wider class of decision problems,

but these four are the only ones that we shall use in the sequel.

Remark 2.4.9. The results of this section point towards the extension of the SCI hierarchy to countable

ordinals and beg the question of whether this could be useful. This will be explored in future work.

2.4.4 Key similarities and differences between the SCI and Baire hierarchies

We end this section by discussing the key similarities and differences between the SCI and Baire hierarchies.
Similarities between the SCI and Baire hierarchies. The main similarity between the hierarchies is
the concept of pointwise limits. In some special cases, we have equivalence (see Theorem 2.4.5), but, in
general, this is not the case.
Differences between the SCI and Baire hierarchies. The hierarchies describe very different problems

and have different motivations.

(1) (Generality). The SCI hierarchy is designed to be able to handle all types of computational problems
such as Smale’s problem on iterative polynomial root-finding, spectral problems, and solving PDEs.

This is not within the scope, nor is it the intention of the Baire hierarchy.

(ii) (Refinements). When extra structure on M is available, the SCI hierarchy can be refined as in §2.2.
In particular, we obtain the >} and IIf classes. This type of refinement is not captured by the Baire

hierarchy.

(iii) (Topology vs information). The most striking difference is that the Baire hierarchy is based on (metris-
able) topologies, whereas the SCI hierarchy is based on the information A available to the algorithm.
This makes the SCI hierarchy a more natural fit for scientific computation - often the type of infor-

mation presented to us is fixed and cannot be changed. To illustrate this, consider the computational
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spectral problem. Let = : Q > A — Sp(A) € M where () is the set of self-adjoint operators in
B(I*(N)) and M is the collection of non-empty compact subsets of C with the Hausdorff metric.
The spectrum then depends continuously on the operator norm and hence, if we equip 2 with the
operator norm topology, = is Baire class 0. However, the SCI for this computational problem is two
if A consists of matrix entry evaluations. Changing the metric on {2, causes the Baire class to change,
but does not alter the SCI. Instead, the SCI changes with A (becoming one if we have the bounded

dispersion information in Chapter 3).

2.5 The Role of the SCI Hierarchy in Mathematics

The SCT hierarchy encompasses many key computational problems in the history of mathematics with many

applications in the mathematical sciences. To end this chapter, we discuss a non-exhaustive list below.

2.5.1 The SCI hierarchy and computer-assisted proofs

Computer-assisted proofs are quickly becoming a central part of mathematics (see, for example, the quo-
tation of Gowers in §1.1). Any computation that arises in a proof must be performed reliably with 100%
verification. At first, one might expect that this can only be achieved with AT computational problems,
i.e. problems that are computable in the classical Turing sense. However, this is not the case and bears a
resemblance to the notion of recursively enumerable sets in classical computation theory. For example, the
computer-assisted proof of Kepler’s conjecture is based on problems that are in 34! but not A¥. There are

several examples of this kind:

* Kepler’s Conjecture (Hilbert’s 18th problem) - SCI classification: € ¥3', ¢ A : Kepler conjec-
tured that no packing of congruent balls in Euclidean three space has density greater than that of
the face-centred cubic packing. The Flyspeck programme, led by Hales [Hal05, HAB'17], provides
a fully computer-assisted verification. The key computational part relies on deciding about 50000
linear programs with irrational inputs. More specifically, to decide whether there exists an 2 € RY
such that

(z,c)x < M subjectto Az =y, x>0, 2.5.1)

(x,¢) g = [105(z,c)|1075, KeN, MecQ.

Since A and y can be irrational, one can think of this as a decision problem with inexact input (a

Rme

Turing machine or a BSS machine that can access A € in the form of an oracle O 4 such that

|0 (i, 4, k) — A; j| < 27F). The following facts about the problem (2.5.1) and its classification hold:

(i) For any integer K > 1 there exists a class of inputs  such that the problem (2.5.1) with
K = K is ¢ ¥¢. However, with the same input class 2, we have that the problem (2.5.1), with
K=K —1lise Af.

(i) The raises the question of how the computer-assisted proof of Kepler’s conjecture was at all
possible, given that (2.5.1) must be decided for K = 6. Given the class €2 in (i), if the inequality
(x,c)g < M in (2.5.1) is replaced by a strict inequality (z, ¢)x < M, then the problem is in
4. A similar (though much more complicated) analysis occurs, and leads to a series of %1

problems which are solved in the Flyspeck programme.
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* Dirac-Schwinger conjecture - SCI classification: € ¥4, ¢ A: The Dirac—Schwinger conjecture
was proven in a series of papers by Fefferman and Seco [FS90, FS92, FS93, FS94b, FS94c, FS95,

FS96b, FS96a, FS94a]. Consider the Hamiltonian
d

Hiz =Y (=Dg, = Zlap|™) + > oy —ai ™!

k=1 1<j<k<d
acting on antisymmetric functions in L?(IR3?). The ground state energy E(d, Z) for d electrons and

a nucleus of charge Z is then defined by
E(d, Z) = mf{)\ S Sp(Hdz)}.

The ground state energy of an atom is then defined as E(Z) := ming>; E(d, Z). The key result is
asymptotic behaviour of E(Z) for large Z:

1
E(Z> = _COZ7/3 + gZQ — 01Z5/3 + 0(25/3_1/2835)’

for some explicitly defined constants cq and ¢; . In order to show this, the proof verified that F”' (w) <
¢ < 0 for some specific function F', for some ¢ and for all w € (0, w,.) where w,. is specifically defined.
A full discussion of the details is beyond the scope of this thesis, but the intricate computer-assisted
proof hinges on several problems that are ¢ A% but € ¢! (see, for example, Algorithm 3.7 and

Algorithm 3.8 in [FS96b]).

* Boolean Pythagorean triples problem - SCI classification: € 117}, ¢ A§: The Boolean Pythagorean
triples problem asks if it is possible to colour each of the positive integers either red or blue, so that no
Pythagorean triple of integers a, b, c, satisfying a® + b*> = ¢? are all the same colour. This is true up
to n = 7824, and the proof, performed by Heule, Kullmann, and Marek (2016) [HKM16], is based
on computations showing that this is not true for n = 7825. Clearly, for any finite set of integers,
the combinatorial problem lies € AZ', but it is not € A§ for the whole set N. However, by checking
each successive integer, it is clear that the problem does lie € IT{*. Such proofs for counterexamples

are common for disproving conjectures within number theory.

* Group theory: Aut(Fs) has property (T) - SCI classification : € Y1, ¢ A§{: The fact that the
automorphism group of the free group on five generators has Kazhdan’s property (7°), was shown
by Kaluba, Nowak and Ozawa [KNO19]. The key computational problem involves a (root of a)
minimiser of a semi-definite program. This is computed using floating-point arithmetic, which, at
best, is equivalent to solving the semi-definite program with inexact input. This problem is ¢ A{ but
is € A4'. There is no concept of ¥4' for minimisers of semi-definite programs, but the reasoning in

the paper [KNO19] regarding the verification implies that the final decision problem is € X7,

Remark 2.5.1 (Proving ¢! or Hf‘ results). A key part in all of the examples above is that one must prove
either ¥4 or I classifications in order to demonstrate that the verification is possible. This is trivial in the

Boolean Pythagorean triples problem, but is very technical in the proof of the Dirac—Schwinger conjecture.

2.5.2 Smale’s problem on iterative generally convergent algorithms and the SCI

In the 1980s, Smale initiated a comprehensive programme concerning the foundations of computational
mathematics [Sma81, BCSS98], focusing on problems in scientific computing rather than classical com-

puter science (the goal being to establish a rigorous complexity theory for real-number calculations). One
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of the key problems considered was polynomial root-finding. Newton’s method may not converge for this
problem, even for a cubic polynomial. A natural question was formulated in terms of the existence of
iterative generally convergent algorithms [Sma85], “Is there any purely iterative generally convergent al-
gorithm for polynomial zero finding?” McMullen [McM87, McM88, Sma98] answered this problem as
follows: yes, if the degree is three; no, if the degree is higher. Doyle and McMullen later demonstrated a
striking phenomenon [DM89]: this problem can be solved in the case of the quartic and the quintic using
several limits. They introduced a ‘tower of algorithms’ in order to make this precise and showed that one
could not handle the problem for degree six or larger, regardless of the height of the tower (number of limits
used). In particular, Smale’s problem on the existence of iterative generally convergent algorithms and the
theory of McMullen and Doyle become classification problems in the SCI (with a certain restriction on the

type of algorithm allowed).

2.5.3 Further examples

(1) Insolvability of the quintic: The insolvability of the quintic becomes a classification problem in the
SCI hierarchy. The classic Abel-Ruffini theorem (insolvability of the quintic) shows that the SCI of
the problem of computing the zeros of a polynomial, when one can only use arithmetic operations and
radicals, is greater than zero for polynomials of degree five. Note that this (along with a construction
of a convergent algorithm) shows the general finite-dimensional computational spectral problem lies

in Af" and not in AJ.

(i) Optimisation: As discussed in §2.5.1, deciding feasibility of linear programs given irrational inputs
is not only undecidable (¢ A{) but ¢ X§. This also holds for many other key problems in optimi-
sation such as finding minimisers of Basis pursuit and Lasso. These form the basis of many areas of

information theory, such as compressed sensing, statistical estimation, areas of machine learning etc.

(iii) Spectral problems: As discussed in §1.1, in the nineties Arveson noted, regarding the lack of algo-
rithms that could handle general spectral problems, that [Arv94b], “Unfortunately, there is a dearth
of literature on this basic problem, and so far as we have been able to tell, there are no proven
techniques.” Due to the example of the diagonal matrices in (1.1.4), most infinite-dimensional com-
putational spectral problems of interest are not in A{'. Many are also not AS. Hence, none of the
existing methods at the time could handle them. This explains the problem in Arveson’s quotation
- the standard methods were based on one limit approaches, and would therefore never capture the
depth of the computational spectral problem. However, an important exception is given by the algo-
rithms and computational problems in Chapter 3. It is also true that devising towers of algorithms

can often inform us which information is needed to reduce the SCI of a problem.

Most of the classical literature on spectral computation is devoted to establishing algorithms that,
in view of the SCI hierarchy, would provide A3' classification for specific subclasses of operators.
Note that according to Turing’s definition of computability, problems that are not in A" are non-
computable. Hence, the field of computational spectral theory has, even from the beginning, been

concerned with non-computable problems.
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Chapter 3

Computing Spectra with Error Control

We begin the study of infinite-dimensional spectral computations with the problem of computing the spec-
trum. This chapter is based on the article [CRH19] and the generalisations to unbounded operators in
[CH19a]. These algorithms compute spectra of a wide class of operators defined on separable Hilbert
spaces. Moreover, the algorithms have the following desirable properties:

* They converge to the entire spectral set.

* They can be efficiently implemented.

* They are local (one can compute the spectrum in any desired region of the complex plane) and hence

inherently parallelisable.

* They provide bounds on the error of the output, which converge to zero.

In the self-adjoint (or normal) case, they provide ‘approximate states’.

It has been a long-standing open problem to design such methods, even in the case of general one-
dimensional discrete self-adjoint Schrodinger operators.! Previous methods aimed at tackling the general
problem either suffer from spectral pollution (discussed further in §7.1 and §7.3.2) or do not converge to the
full spectrum. Even in the cases where it converges, the finite section method only gives a Ay algorithm (no
error control). The problem of detecting spectral pollution is very difficult (see §7.3.2 for classification in
the SCI hierarchy). The algorithms presented here are optimal in the sense of the SCI hierarchy described
in Chapter 2 and can be used directly in many models in the physical sciences.

The cases covered include unbounded operators on graphs and partial differential operators (PDOs),
where we consider the determination of the spectrum from the coefficients of the PDO. In the case that the
coefficients have locally bounded total variation on compact sets, we do this via point evaluations of the
coefficients. In the analytic case, we do this via the power series representation of the coefficients. The main

idea, as outlined in §3.1.3, is to approximate the reciprocal of the resolvent norm, ||R(z, A)[| "

, uniformly
on compact subsets of C, and use a local search routine. This idea will reappear in Chapters 68, since it
allows us to grasp geometric properties of the spectrum. Similar ideas used to compute this approximation

can be used to compute ‘approximate states’.

I'There are examples where such methods exist in certain cases - see §1.3.
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Computing spectra of operators is a fundamental problem in the sciences, and it is hard to overestimate
its importance, with wide-ranging applications (outlined in §1.1). This is highlighted by the current interest
in the spectral properties of systems with complicated spectra. The study of aperiodic systems, such as qua-
sicrystals [SBGC84, Stal2], often leads to complicated, even fractal-like spectra [HSYY 13, DWM™T13],
which can make current methods of computation difficult. Another example is given by recent experimen-
tal breakthroughs in open systems in optics, which typically yield non-Hermitian Hamiltonians, as there
is no guaranteed energy preservation [RBMT12, GSD*09, RMEGT10]. We shall demonstrate how the
algorithms of this chapter can be implemented in a computationally efficient manner, allowing us to tackle
problems that before, regardless of computing power, seemed unreachable. Examples provided include a
two-dimensional Penrose tile (a model of a quasicrystal), non-Hermitian Hamiltonians in superconductor

theory and optics, and partial differential operators such as Schrodinger operators.

3.1 Main Results

The spectrum (and pseudospectrum) of unbounded operators are closed but not necessarily bounded. When
approximating the spectrum, we assume the operator to have non-empty spectrum (for the SCI of testing
if the spectrum intersected with a compact set is empty, see Theorem 3.1.6) and hence non-empty pseu-
dospectrum when approximating pseudospectra, so we must introduce a metric on the set of non-empty
closed subsets of C, denoted by C1(C).

Definition 3.1.1 (Attouch—Wets topology). The Attouch—Wets metric is defined by

daw (C1,C3) = Z 27" min {1, sup |dist(x,Cy) — dist(z, Cg)|} ,
n=1

lz|<n
for C1,Cs € CI(C).

Throughout this section we take our metric space (M, d) to be (C1(C), daw). One should view this
metric as a generalisation of the familiar Hausdorff metric on compact subsets defined in (1.4.2). Indeed,
both can be viewed in terms of metrics on spaces of continuous functions [Bee93]. In other words, we seek
local uniform convergence. We must also be careful when defining the pseudospectrum, since the resolvent
norm of an unbounded operator can be constant on open sets [Sha08]. The following definition agrees with

the usual one for bounded operators given in (1.4.1).

Definition 3.1.2. Let A be a closed and densely defined operator acting on a separable Hilbert space H
and € > 0. We define the (e— )pseudospectrum of A by

Sp.(A) = cl ({z eC: |R(zA)| " < e}) ,
the closure of the set of points with resolvent norm greater than 1/e.

The pseudospectrum Sp_(A) [KSTV15, TE05] is a generalisation of the spectrum (and measure of its
stability), which is popular for non-Hermitian problems.

The main results of this chapter, Theorems 3.1.4 and 3.1.10 below, also hold true when restricting the
classes of operators to Schrodinger operators (on lattice systems in the discrete case and on L?(R%) or simi-

lar domains in the continuous case) and hence our results have direct implications within the computational
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boundaries in quantum mechanics, as discussed in [CRH19]. Some of the results of this chapter also build
upon and extend work done by the author in collaboration in [BACH™ 19] and classification results higher

up in the SCI hierarchy can be found in [BACH™ 19].

3.1.1 Spectra of unbounded operators on graphs

Consider a possibly unbounded operator A with domain D(A) C [?(N) and non-empty spectrum. We

consider the problems of computing
Z1(A) =Sp(A) and Z5(A) = Sp.(A4).

To define the computational problem we have to define the domain €2 as well as A, the set of evaluation
functions. Let C(I?(N)) denote the set of closed, densely defined operators on [?(N), and consider the

following assumptions.

(1) The subspace span{e, : n € N} forms a core for both A and A*, where {e;}cn is the canonical

basis for [?(N).

(2) Givenany f : N — Nwith f(n) > n define

Dyn(A) = max {[|(T = Py ) AP, [|(T = Pyny) A™ P

1, 3.1.1)

where P, is the projection onto the span of {ey, ..., e, } of the canonical basis. We say that an oper-
ator has bounded dispersion with respect to f if lim,, o, Dy ,(A) = 0. We will assume knowledge

of a sequence {c, }nen C Q that converges to zero with Dy ,,(A) < ¢p,.

(3) We assume knowledge of a sequence {g,, } of strictly increasing continuous functions g, : R>¢ —

R>¢ vanishing at 0 and with lim,_,+ g, () = oo such that
gm(dist(z,Sp(A))) < |R(z, A)|7", Vz € Bn(0). (3.12)

In this case we say that A has resolvent bounded by {g,, }. Note that this implicitly assumes that the

spectrum of A is non-empty (which always holds for bounded operators).

The concept of bounded dispersion in (3.1.1) generalises the notion of a banded or sparse matrix to
knowledge of off-diagonal decay of our operator viewed as a matrix. Moreover, given any operator with
assumption (1), there exists an f such that lim,,_, o Dy ,(A) = 0. The function f will be used to construct
certain rectangular truncations of our operators (see §3.1.3), which is a key difference to previous methods
that typically use square truncations.

In order to handle non-normal operators, we need to be able to control the resolvent as in (3.1.2). If A
has Sp(A) # (), then a simple compactness argument implies the existence of such a sequence of continuous
functions. Suppose that A is bounded and we can take g = g,,,, then we can view the function g as a measure
of stability of the spectrum of A through the formula

Sp.(A) = U Sp(A + B).
BeB(?(N)), || B||<e
Hence the functions {g,, } generalise the notion of condition number in the problem of computing Sp(A).
Note that if our operator is normal, we can simply choose the functions g,,(z) = g(x) = x through the
identity dist(z,Sp(A4)) = ||R(z, A)||~!. There are examples where such functions are known for non-

normal operators, such as perturbations of self-adjoint operators [Gil03].
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Defining 2 and A

Let f be as described in assumption (2) above, and {2 be the class of all A € C(I2(N)) such that (1) and (2)
hold and such that the spectrum is non-empty. Given a sequence as described in (3), let £, be the class of

all A € ) such that (3.1.2) holds. We also let 2 denote the operators in () that are diagonal.

Operators on graphs: For operators on graphs, consider any connected, undirected graph G, such the set
of vertices V' = V/(G) is countably infinite. We consider operators on [?(V') that are closed, densely defined

and of the form

A= > a(w)lv) (wl, (3.1.3)

v,weV
for some v : V x V' — C. We have also used the classical Dirac notation in (3.1.3) and identified any
v € V by the element in v, € [2(V), such that 1, (v) = 1 and 9, (w) = 0 for w # v. When writing this,
we assume that the linear span of such vectors forms a core of both A and its adjoint. We also assume that
for any v € V/, the set of vertices w with (v, w) # 0 or a(w, v) # 0 is finite. We then let Q9 be the class
of all such A with non-empty spectrum and Qg operators in 9 of known {g,, } such that (3.1.2) holds. We
also assume that with respect to some given enumeration {ej, ez, ...} of V, we have access to a function

S : N — Nsuch that if m > S(n) then a(e,, em) = alem, e,) = 0.

Remark 3.1.3 (Defining A). For operators on I?(N), A contains the collection of matrix value evaluation
functions, the functions describing the dispersion, and the family of the functions g, controlling the growth
of the resolvent. For operators on 1?(V'), A contains the functions o, the function S and, in the case of QY,

the family g, for m € N.
We can now state our main result in this section:

Theorem 3.1.4. Let =, be the problem function Sp(-) and Z5 be the problem function Sp_(+) for € > 0,

where these map into the metric space (C1(C), daw). Then

A #{21,Qp} € B, A #{E1,Q,} e 21, AT #{21,00} e o,
A? % {E2aQD} € Efa A? % {EQaQ} € 21143 A? % {E2an} € 21147

and in the case of Zs, the output of the constructed algorithm is guaranteed to be inside the true pseu-

dospectrum.

Remark 3.1.5. If any of the information given through the functions f or { gy, } is missing, then the spectral
problem does not lie in AS (i.e. cannot be computed in one limit, regardless of the model of computation).
Hence the above conditions give a characterisation of when the spectral problem can be solved compu-
tationally in one limit. In other words, both types of information, the column decay structure and the

conditioning of the spectrum, are needed.

The algorithm used to compute the pseudospectrum can be applied to cases where the spectrum or
pseudospectrum are empty and we provide a numerical example of this below. Finally, we consider two
discrete problems which also include the case when the spectrum may be empty. Let K be a non-empty

and compact set in C and denote the collection of such subsets by K(C). Consider

S5 (A, K) = Is Sp(A) N K = 0?
Z4: (A, K) > IsSp(A) N K = (7
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More precisely, the information we consider available to the algorithms in the I?(N) (12(V (G))) case is given
by the matrix elements of A (the functions «), the dispersion function f and dispersion bounds {c, } (the
finite sets .S,,), and a sequence of finite sets K,, C Q + iQ, with the property that dy (K, K) < 2= (n+1) 2
For these problems, we take (M, d) to be {0, 1} with the discrete metric (recall that 1 is interpreted as ‘yes’
and 0 as ‘no’). Although the pseudospectrum is easier to compute as a whole, the following shows that this
is not the case for testing on a given set. We also see that these discrete problems are harder than computing

the spectrum.

Theorem 3.1.6. We have the following classifications for j = 3, 4:
AT F{E;, Ax KO} elly,  AF F{Z;,2 xK(C)} €113,
A #{=;,09 x £(C)} € 13

Furthermore, the proof will make clear that the lower bounds also hold when we restrict the allowed com-

pact sets to any fixed compact subset of R.

Remark 3.1.7. By considering singletons K = {z}, we can test whether a point lies in the spectrum or
pseudospectrum. Even when restricting to such K, the proof makes clear that the classification remains the

same.

3.1.2 Spectra of partial differential operators

In this section, we provide classification results for general classes of differential operators. What may
be surprising is that with very general assumptions, we obtain ¥¢! classifications for the spectrum. This
means that despite these operators being hard to analyse for spectral theoretical purposes, the problem of
computing their spectra is not harder than computing the spectra of diagonal matrices (see §1.1). Moreover,
the computational problem can also be used for computer-assisted proofs. Finally, we establish how the
problem makes a jump in the SCI hierarchy. In particular, with slightly weaker assumptions, the spectral
problem ¢ ¢ UTI{.
For N € N, consider the operator formally defined on L?(R?) by

Tu(z) = Z ar(z)0%u(z), (3.1.4)
KEZL o, [k| <N
where throughout we use multi-index notation with |k| = max{|k1|, ..., |kq|} and 8% = 9510k2...9%. We

will assume that the coefficients ay, () are complex-valued measurable functions on R. Suppose also that
T can be defined on an appropriate domain D(T") such that T is closed and has a non-empty spectrum. Our
aim is to compute the spectrum and pseudospectrum from the functions aj. We consider two cases. First,
the algorithm can access point samples of the functions, and second, the algorithm can access coefficients
in the series expansion of the functions (in the case that the a;, are analytic on the whole of R?). Note that

these are very different computational problems.

The set-up

To make our problems well-defined, we let {2 consist of all such 7" such that the following assumptions

hold:

2This is an example where functions in A take values in C? - for a given n the first coordinate tells us how many points are in K,
then we can use a bijection C!Enl| & C to encode the set K. - in the second coordinate
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(1) The set C§°(R%) of smooth, compactly supported functions forms a core of 7' and its adjoint T°*.

(2) The adjoint operator 7 can be initially defined on C§°(R%) via

Tru(z)= Y d(x)d*u(x),

keZL ), |k|<N
where dy, () are complex-valued measurable functions on R

(3) For each of the functions ax(x) and ay(z), there exists a positive constant A, and an integer By, such
that
la(@)] @) < Ak (1-+]2™)

almost everywhere on RY, that is, we have at most polynomial growth.

(4) Asin the case of §3.1.1, we have access to functions {g,, } (see (3.1.2) and the assumptions on {g,, })
such that
gm(dist(z,Sp(T))) < [|R(z,T)||~", Vz e Bny(0).

(5) Sp(T') (and hence Sp, (7)) is non-empty.

Hence we consider the operator T defined as the closure of 7" acting on C5°(IR?). The initial domain
Cg§°(R?) is commonly encountered in applications, and it is straightforward to adapt our methods to other

initial domains such as Schwartz space.

Remark 3.1.8 (The open problem of computing spectra of differential operators). There is no existing gen-
eral theory or method guaranteeing convergence for PDOs (3.1.4), even when each ay, is a polynomial. The
standard procedure is to discretise the differential operator via methods such as finite differences, truncate
and then handle the finite matrix with standard algorithms designed for finite-dimensional problems. Such
an approach does not always converge, and would at best give a A3 classification. Despite this, we prove

below that one can achieve X1 classification for a large class of operators.

In the numerical applications, we will demonstrate this on anharmonic oscillators of the form
d
H=-A+ Z(ajxj + bjx?) + Z cla)z®,
j=1 lo| <M

where a;,b;,c(a) € R (as well as more general Schrodinger operators). The multi-indices < are chosen
such that 3, , s c(@)z is bounded from below. To the best of our knowledge, our algorithm is the first
that computes the spectrum of such operators with error control in the sense of ¢, As described, this
has a wide number of applications and the problem has received a lot of attention [BO13, Wen96, BW73,
FMT89].

Remark 3.1.9. Throughout this section, the functions { g., } are not needed to compute the pseudospectrum.

General case with function evaluations

In this section we consider the computation of the spectra/pseudospectra of operators 7' € €2 from evalua-

tions of the functions ay and ay. For dimension d and r > 0 consider the space
AT = {f € M([—?} r]d) : ”f”oo + TV[—r,r]d(f) < OO},
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where M ([—r,7]%) denotes the set of measurable functions on the hypercube [—r,r]* and TV/|_, ,a the
total variation norm in the sense of Hardy and Krause (see [Nie92]). This space becomes a Banach algebra

when equipped with the norm
[ll4, = Ifllee + 0TV(—rppa(f)

with o = 3% + 1 (see [BT89]). We will assume that each of the (appropriate restrictions of) a;, and ay, lie

in A, for all » > 0 and that we are given a sequence of positive numbers such that
laklla, > llakll 4, < cny cn>0,mn €N, k[ <N. (3.1.5)

The extra readable information is completely analogous to using bounded dispersion for matrix problems,

and we shall see that it cannot be omitted if one wishes to gain error control in the sense of ;. Let
Q%V = {T € Q] such that (1) — (5) and (3.1.5) hold}.

In this case, A! contains functions that allow us to sample the functions {gm}meN,{ak,ﬁkh k)<~ and the
constants { A, Bi}|k|<n> {Cn}nen. Consider the weaker assumption on A that we can evaluate b,, > 0
(and not the Ay, By, and the c¢,,) such that

max{||la a |kl <N
e P Y PR ES.
neN bn

With a slight abuse of notation, we use 2., to denote the class of problems where we have this weaker

requirement. We can now define the mappings

—_1 — Sp<T) € MAW7 j =1
:;,:?:Q}FV,Q%VBT»—) .
Spe(T) S MAW7 J = 27

and state the first theorem.

Theorem 3.1.10. Let =}, =5, QL and Q3w be as above. Then for j = 1,2

A? ? {Ejlvﬂ’lI‘V} € Z1147
Y UNT # {25, 04v) € A7
The proof also shows the stronger result that even if we had included the information { Ay, Bk}\k\g N

for operators in 3.y, we would still have {3, Q7. } ¢ ¢ UTI{.

Remark 3.1.11. This result is of interest since it gives a computational problem where no % or Il error

control is available in its corresponding A (SCI) class.

Analytic coefficients

In this section, we assume that the functions ay and aj, are analytic on the whole of Re. In particular, we
assume we can evaluate {c;};en, an enumeration (where we know the ordering) of the coefficients of the
power series of each of the ay(x). In this special case, we can compute the corresponding coefficients of
the Gy («) using finitely many arithmetic operations on {c; }. We will assume that as well as the information
{gm}, {c;} and { Ay, By}, our algorithms can read the following information. Given

ag(x) = Z aprx™, ag(z) = Z apta™,

me(Zso)? me(Zxo)?
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for each n € N we know a constant d,, such that
lait | @] < da(n+ 17" Vm € (Zx0)? [k < N. (3.1.6)

It is straightforward to show that such a d,, must exist using the fact that the power series converges abso-

lutely on the whole of R, Let
Qhn = {T € Q| such that (1) — (5), the functions ay, are analytic and (3.1.6) hold}.

Moreover, in this case we let A! contain functions that allow us to access sample of the functions { g, }men,
the constants {Ag, By }|x|<~, {Cn}tnen, and {d, }nen. As the proof makes clear, the information d,, can
be replaced by any suitable information that allows us to control the remainder term in the truncated Taylor
series uniformly on compact subsets of R?. For example, we could use Cauchy’s formula, together with
bounds on the functions aj on compact subsets of C%. One could consider a weaker requirement on A' by

replacing knowledge of Ay, By and d,, by some sequence of positive numbers b,, with

m ™l fam D™l k| < N
o sup mllap] (4 )L ot M < N)

neEN me(Zso)? by,

With a slight abuse of notation, we use Q3 to denote the class of problems where we have this weaker
requirement. Moreover, let £, denote the class of operators in Q3 such that each aj, is a polynomial

(where we can let b,, be n! say). We can now define the mappings

Sp(T) € Maw, j=1
Spe(T) S MAWa .7 = 27

—3 =4 . Ol 2
=2 E Oy, Q3N 2 3 T s

and state the second theorem.

Theorem 3.1.12. Let E:;-, E?, QL Q4 and Q, be as above. Then for j = 1,2

AT Z {55, Q5 enf,  TTUNV Z{E], 0%} €as,  ITUNV Z{E],9) € Ay,

3.1.3 Idea of the algorithms

To explain the idea of the algorithms, consider the case of computing the spectrum of a sparse self-adjoint
A € Qg, such that the function f, which bounds the dispersion, also describes the sparsity structure in the
sense that A; ; = 0if j > f(i) ori > f(j). Given 2, we consider the rectangular matrix Py ,,)(A — 2I)P,.
In the case of finite range lattice models in condensed matter physics, which we can view as sparse matrices
acting on [?(N), there is a nice physical interpretation. The rectangular truncation Py AP, contains
all of the interactions of the first n sites without needing to apply boundary conditions. Using this, we
approximate

Ey(2) = 01(Pr(n)(A — 2I)|p, a2(vy))-

This corresponds to an estimate of the distance of z to the spectrum and physically corresponds to approxi-
mating the square root of the ground state energy of the folded Hamiltonian P, (A — zI)*(A — zI)P,,. We
|! = dist(z, Sp(A)),

on compact subsets of the complex plane. The convergence is also from above, meaning that we gain the

prove that our approximation converges uniformly to the resolvent norm || R(z,T')

rigorous error bound dist(z, Sp(A4)) < E,(z). It is precisely the use of the rectangular truncation that
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leads to convergence from above, and, in general, taking a square truncation will not even converge. In the
non-normal case, we use the functions {g,, } to relate the approximation of | R(z,T)| ™" to dist(z, Sp(A)).

Given a region R C C of interest, the other ingredient of the algorithm is a search routine that seeks
to approximate the spectrum locally on R. We consider a grid of points G (n) of spacing §(n) — 0 as
n — oo. The resolution 6(n)~! (which can be viewed as a discretisation parameter) can be changed to allow
one to vary the number of computed solutions. In our experiments, we chose §(n) to ensure approximately
n solutions for fair comparisons with other methods. The first step is to compute E,, (-) over Gz (n), which
can be done in parallel. Given z € Gg(n), we let I, be the points in Gz (n) at distance most E,,(z) away
from z. We then let M, be the minimisers of E,, (-) over the local set I.. Since E,,(-) bounds the distance to
the spectrum and converges to the true distance, M, approximates the spectrum near the point z. This is a
completely different approach to most previous methods, which typically seek to solve a finite-dimensional
(linear and, in some cases, nonlinear) eigenvalue problem approximating the operator (and do not converge
in general - see §7.1).

When dealing with PDOs, we construct an appropriate matrix representation of the operator with respect
to a basis {¢,, } by sampling the coefficients. Our results rigorously indicate the sampling size and strategy

needed, using the theory of quasi-Monte Carlo integration. We approximate inner products of the form

<(T - ZI)’wrrm (T - ZI)¢7L>

directly, which allows us to compute a convergent upper bound of || R(z, T')|| ~!. Once this is obtained, we

can use a local search routine as before.

3.2 Proofs: Unbounded Operators on Graphs

We will now prove the theorems in §3.1.1. The following argument shows that it is sufficient to consider
the 1?(N) case. Given the graph G and enumeration {ej, es, ...} of the vertices, consider the induced iso-
morphism [%(V(G)) = [2(N). This induces a corresponding operator on [?(N), where the functions o now
become matrix values. For the lower bounds, we can consider diagonal operators in Q9 (that is, a(v, w) = 0
if v # w) with the trivial choice of S(n) = n. Hence lower bounds for {2, translate to lower bounds for Q9
and Qg. For the upper bounds, the construction of algorithms for /?(N) will make clear that given the above
isomorphism, we can compute a dispersion bounding function f for the induced operator on /2(N) simply
by taking f(n) = S(n). This has D¢ ,(A) = 0. Note that any of the functions in A for the relevant class of
operators on [?(N) can be computed via the above isomorphism using functions in A for the relevant class
of operators on [2(V(G)). For instance, to evaluate matrix elements, we use a(e;, €;).

There is a useful characterisation of the Attouch—Wets topology. For any closed non-empty sets C' and
C,, the convergence daw (C,, C') — 0 holds if and only if dx (C,,, C') — 0 for any compact K C C where

dK(Cl,C’g)zmaX{ sup dist(a,Cs), sup dist(b,C’l)}7
a€CINK bECINK

with the convention that the supremum over the empty set is 0. This occurs if and only if for any 6 > 0 and
K, there exists NV such thatif n > N then C,, N K C C + Bs(0) and CN K C C,, + Bs(0). Furthermore,
it is enough to consider K of the form B, (0), the closed ball of radius m about the origin for m € N, for

m large. Throughout this section we take our metric space (M, d) to be (C1(C), daw).
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Remark 3.2.1 (A note on the empty set). There is a slight subtlety regarding the empty set. It could be
the case that the output of our algorithm is the empty set and hence I',,(A) does not map to the required
metric space. However, the proofs will make clear that for large n, T',(A) is non-empty and we gain
convergence (this is also very rarely a problem in practice for n 2 10). By successively computing T',,(A)
and outputting Iy, ,,) (A), where m(n) > n is minimal with T, (,,) (A) # 0, we see that this does not matter

for the classification, but the algorithm in this case is adaptive.

The following lemma is a useful criterion for determining ¥4 error control in the Attouch—-Wets topol-

ogy and will be used in the proofs without further comment.

Lemma 3.2.2. Suppose that = : Q — (CI(C),daw) is a problem function and T, is a sequence of

arithmetic algorithms with each output a finite set such that

lim dAW (Fn (A) 5

n—oo

(1]

(4)=0, VAeQ.
Suppose also that there is a function E,, provided by T",, (and defined over the output of I';,), such that

lim sup E,.(z)=0
N0 2el, (A)NBm (0)

for all m € N and such that
dist(z,2(A)) < E,(z), VzeTl,(A).

Then:

1. For each m € N and given T',,(A), we can compute in finitely many arithmetic operations and

comparisons a sequence of non-negative numbers a,' — 0 (as n — oo) such that

T,,(A) N B,y (0) C Z(A) + Bar (0).

2. GivenT,,(A), we can compute in finitely many arithmetic operations and comparisons a sequence of

non-negative numbers b, — 0 such that
r.(A) C A,
for some A,, € C1(C) with daw (A, E(A)) < by,
Hence we can convert T, to a 7' tower using the sequence {b,,} by taking subsequences if necessary.

Proof. For the proof of (1), we may take a?' = sup {F,,(z) : z € I',(4) N B, (0)} and the result follows.
Note that we need T',,(A) to be finite to be able to compute this number with finitely many arithmetic

operations and comparisons. We next show (2) by defining

s
3
I

((E(A) + By (0)) N B (0)) U (T (A) N {2« [2] > m}).

It is clear that T',,(A) C A’ and given I',,(A) we can easily compute a lower bound m; such that Z(A) N
B,,,(0) # 0. Compute this from I';(A) and then fix it. Suppose that m > 4m;, and suppose that

|z| < |m/4]. Then the points in A7 and Z(A) nearest to z must lie in B,,(0) and hence

dist(z, A7) < dist(z,2(4)), dist(z,Z2(A)) < dist(z, A7) + ap'.

50



3.2. Proofs: Unbounded Operators on Graphs CHAPTER 3. Computing Spectra with Error Control

It follows that

daw (A", E(A)) < a + 27 m/4),
We now choose a sequence m(n) such that setting A, = Ar™ and b, = a'™ + 2-1m(/4 proves
the result. Clearly it is enough to ensure that b,, converges to zero. If n < 4m; then set m(n) = 4m,
otherwise consider 4m; < k < n. If such a k exists with afl < 27F then let m(n) be the maximal such k
and finally if no such k exists then set m(n) = 4m;. For a fixed m, a/* — 0 as n — oo. It follows that for

large n, a™™ < 9=m(n) and that m(n) — oo. O

Remark 3.2.3. We will only consider algorithms where the output of T',,(A) is at most finite for each n.

Hence the above restriction does not matter in what follows.

In order to build our algorithms, we will need to characterise the reciprocal of resolvent norm in terms

of the injection modulus. For A € C(I?(N)) define the injection modulus as
o1(A) = inf{||Az|| : x € D(A), ||z| = 1}, (3.2.1)

and define the function
v(z,A) = min{oy (A — zI),01(A* — ZI)}.

Lemma 3.24. For A € C(I*(N)), v(z,A) = 1/||R(z, A)
2I)~1 and we adopt the convention that 1/ || R(z, A)|| = 0 if z € Sp(A).

, where R(z, A) denotes the resolvent (A —

Proof. We deal with the case z ¢ Sp(A) first, where we prove 0(A — zI) = o(A* — ZI) = 1/ |R(z, 4)||.
We show this for o (A — zI) and the other case is similar using the fact that R(z, A)* = R(z, A*) and
IR(z, A)|| = || R(z, A)*||. Let x € D(A) with ||z| = 1 then

1= ||R(z, A)(A = zD)z|| < [|R(z, A [[(A = 2D)z]|
and hence upon taking infinum, o1(A — 2I) > 1/|R(z, A)|. Conversely, let x,, € [?(N) such that
|zn|l = 1 and | R(z, A)xy,|| — || R(z, A)||. It follows that

1=|(A—=zI)R(z, A)xy|| > 01(A — 2I) |R(z, A)xy]| -

Letting n — oo we get o1 (A — 2I) <1/ ||R(z, A)||.

Now suppose that z € Sp(A). If at least one of A — zI or A* — ZI is not injective on their respective
domain then we are done, so assume both are one to one. Suppose also that o4 (A — zI),01(A* — ZI) >0
otherwise we are done. It follows that R(A — zI) is dense in [?(N) by injectivity of A* — zI since
R(A — 2I)+ = N(A* — zI). Tt follows that we can define (A — 2I)~!, bounded on the dense set
R(A — zI). We can extend this inverse to a bounded operator on the whole of /2(N). Closedness of A now
implies that (A — 2I)(A — zI)~! = I. Clearly (A — 2I)"*(A — 2I)z = z for all z € D(A). Hence,
(A—2I)"1 = R(z,A) € B(I*(N)) so that z ¢ Sp(A), a contradiction. O

Suppose we have a sequence of functions ,(z, A) that converge uniformly to v(z, A) on compact
subsets of C. Define the grid
1
Grid(n) = —(Z+iZ) N B,(0). (3.2.2)
n

For a strictly increasing continuous function g : R>g — R>¢, with g(0) = 0 and lim,_, «, g(z) = oo, for

n € Nand y € Ry define

CompInvg(n,y,g) =min{k/n: k € N,g(k/n) > y}. (3.2.3)
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Note that CompInvg(n,y,g) can be computed from finitely many evaluations of the function g. We
now build the algorithm converging to the spectrum step by step using the functions in (3.1.2). For each
z € Grid(n), let

Tho= BCompInvg(m%(z,A),gnzn)(Z) NGrid(n).
-1
If v, (2, A) > (|z|2 + 1) then set M, = (), otherwise set

M,={weT,,:wmw A) = min ,(v,A)}.

V€Y,
Finally define I';,(A) = U.cgriqm)M:. It is clear that if 7, (z, A) can be computed in finitely many
arithmetic operations and comparisons from the relevant functions in A for each problem, then this defines
an arithmetic algorithm. If A € C(I?(N)) with non-empty spectrum then there exists z € B,,(0) with
v(z, A) < (m? +1)~1/2 and, for large n, z, € Grid(n) sufficiently close to z with y(z,, A) < (|z,|* +
1)~1. Hence, by computing successive I',,(A), we can assume that I',,(A) # () without loss of generality

(see Remark 3.2.1).

Proposition 3.2.5. Suppose A € C(1?(N)) with non-empty spectrum and we have a function v, (z, A) that

converges uniformly to v(z, A) on compact subsets of C. Suppose also that (3.1.2) holds, namely
gun(dist (2, Sp(A)) < [R(z, A", V2 € Bu(0).

Then T, (A) converges in the Attouch—Wets topology to Sp(A) (assuming T, (A) # O without loss of
generality).

Proof. We use the characterisation of the Attouch—Wets topology. Suppose that m € N is large such
that B,,(0) N Sp(A) # 0. We must show that given § > 0, there exists N such that if n > N then
I'n(A) N By, (0) C Sp(A) + Bs(0) and Sp(A) N B,,(0) C T',(A) + Bs(0). Throughout the rest of the
proof we fix such an m. Let €, = || (-, 4) = v(+, Al 5, ., (0)» Where the notation means the supremum
norm over the set By, 11(0).

We deal with the second inclusion first. Suppose that z € Sp(A) N B,,(0), then there exists some
w € Grid(n) such that |w — z| < 1/n. It follows that

Yo (w, A) < y(w, A) + €, < dist(w, Sp(A4)) + €, < €, + 1/n.

By choosing n large, we can ensure that €, < (2m?+2)~! and that 1/n < (2m?+2)~! so that v, (w, A) <
(Jw|® + 1)~1. It follows that M,, is non-empty. If y € M,, then

ly— 2| < |w— 2|+ |y — w| < Un+ 1/n + g (ya(w, 4)).
But the gi’s are non-increasing in k, strictly increasing continuous functions with g;(0) = 0. Since
Yn(w, A) < €, + 1/n, it follows that
ly — 2l < 2/n+ g, (en + 1/n). (3.2.4)

There exists N such that if n > N then (3.2.4) holds and 2/n + g, (e, + 1/n) < & and this gives the
second inclusion.

For the first inclusion, suppose for a contradiction that this is false. Then there exists n; — 00, § > 0
and z,; € 'y, (A)N By (0) such that dist(zy,,, Sp(A)) > 6. Then zy,; € My, for some wy,; € Grid(n;).
Let

I(]) = BCompInvg(nj,’ynj (wnj ,A),gﬂwnj il ) (wnJ) N Grid(nj)7
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the set over which we compute minima of v,,. Let y,, € Sp(A) be of minimal distance to Wy, (such

a yn, exists since the spectrum restricted to any compact ball is compact). It follows that |y, — wp, ‘ <

9[_\111; A (v(wn,, A)). A simple geometrical argument (which also works when we restrict everything to the
i

real line for self-adjoint operators), shows that there must be a v,,; in I(j) so that

4
’U”j _y"j| < n7j+g[

W(V(U}njaA)) _gfl ](’Ynj (wnj7A))'

Wn

1
Wn

Since zy,, minimises 7, over I(j) and My, - is non-empty, it follows that

1
P ey (Unj s A) + €n,.

Wny;

V(zn, ;s A) < ny(2n,, A) +eny < min{

This implies that

1
d < dist(zn,,Sp(A)) < g;l min{ ——5——, Y, (Un,;, A) p +€n; |, (3.2.5)
where we recall that g;bl is continuous. It follows that the Wp,; must be bounded and hence so are the Unj -

Due to the local uniform convergence of ,, to v, it follows that

4 -1 -1
g T I, V000 A)) =7

(Y, (wy,, A)) = 0, asn; — oo.
n; []h

|“’".7’

But then
Y(Vn;, A) < dist(vn,, Sp(A)) < |vnj — ynj} — 0.

Again the local uniform convergence implies that ,,, (v, , A) — 0, which contradicts (3.2.5) and completes

the proof. O

Next, given such a sequence -,,, we would like to provide an algorithm for computing the pseudospec-
trum. However, care must be taken in the unbounded case since the resolvent norm can be constant on open

subsets of C [Sha08]. Simply taking
Grid(n)N{z:yu(z,A) <€}

is not guaranteed to converge, as can be seen in the case that -, is identically v and A is such that
|R(z, A)|| " = € has non-empty interior. To get around this, we will need an extra assumption on the

functions ~,,.

Lemma 3.2.6. Suppose A € C(12(N)) with non-empty spectrum and let ¢ > 0. Suppose we have a sequence

-1
I

of functions v, (z, A) that converge uniformly to | R(z, A) on compact subsets of C. Set

¢ (A) = Grid(n) N{z : (2, A) < €}.

For large n, T (A) # () so we can assume this without loss of generality. Suppose also AN € N (pos-
sibly dependent on A but independent of z) such that if n > N then v, (z, A) > ||R(z, A)||"". Then
daw (TS (A),Sp.(A)) = 0asn — oo

Proof. Since the pseudospectrum is non-empty, for large n, I'¢ (A) # () so by our usual argument of
computing successive I';, (see Remark 3.2.1) we may assume that this holds for all n without loss of

generality. We use the characterisation of the Attouch—Wets topology. Suppose that m is large such that
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B (0) N Sp.(A) # 0. AN € N such that if n > N then v, (z, A) > |[R(z, A)||”" and hence T¢, (4) N

B,,(0) C Sp.(A). Hence we must show that given 6 > 0, there exists /N7 such that if n > N; then
Sp.(4) N B,,(0) C T¢(A) + Bs(0). Suppose for a contradiction that this were false. Then there exists
Zn; € Sp(A) N B (0), 6 > 0and n; — oo such that dist(zy,, 1, (A)) > é. Without loss of generality,
we can assume that z,, — z € Sp_(A4) N B,,(0). There exists some w with |R(w, A)|| " < € and
|z —w| < §/2. Assuming n; > m + 4, there exists y,, € Grid(n;) with |y,, — w| < 1/n;. It follows
that

Yooy Wrys A) < Yy Uy A) = Y Yy s A)| + [7(w, A) = Yy, A)| + | R(w, A)[| 7

But v is continuous and +y,,; converges uniformly to «y on compact subsets. Hence for large n;, it follows
that vy, (yn;, A) < €so thaty,,; € I'}, (A). But yn, — 2| < |z — w|+ |yn, — w| < 6/2+1/n;, which is

smaller than ¢ for large n;. This gives the required contradiction. [

Now suppose that A € Qandlet D rn(A) < ¢,. The following shows that we can construct the required
sequence 7y, (z, A), each function output requiring finitely many arithmetic operations and comparisons of

the corresponding input information.
Theorem 3.2.7. Let A € Y and define the function
ﬁ/n(z, A) = min{01 (Pf(") (A — ZI)|Pn(l2(N)))v 01 (Pf(n) (A* — 2I)|Pn,(l2(N)))}'

We can compute 7,, up to precision 1/n using finitely many arithmetic operations and comparisons. We

call this approximation 4, and set
Yn(2, A) = Fn(z, A) + ¢ + 1/n.
Then v, (z, A) converges uniformly to v(z, A) on compact subsets of C and v, (z, A) > v(z, A).

Proof. We will first prove that o1 ((A — 21I)

po2))) 4 01(A — 2I) as n — oo. Itis trivial that oy ((A —
20)|p,a2vy)) = 01(A — 2I) and that oy ((A — z1)|p, 12())) is non-increasing in n. Using Lemma 3.2.4,
lete > 0and z € D(A) such that ||z|| = 1 and ||(A — z])z| < 01(A — 2I) + €. Since span{e,, : n € N}
forms a core of A, AP, x,, — Az and P, z,, — x for some n; — oo and some sequence of vectors z,;

that we can assume have norm 1. It follows that for large n;

HPn

o1((A—2D)|p, 2a0) < = (A - 2D)al| < 01(A— =)+

Since € > 0 was arbitrary, this shows the convergence of o1 ((A — zI)|p, 12(w)))- The fact that span{e,, :
n € N} forms a core of A* can also be used to show that o1 ((A — 2I)*|p, 12(rvy)) 4 01 (A* = ZI).
Next we will use the assumption of bounded dispersion. For any bounded operators B, C, it holds that

|o1(A) — 01(B)| < ||A — Bj| . The definition of bounded dispersion now implies that

Hn(z, A) —min{o1((A — 21I)|p,a2v))), 01 (A — 2I)* (N)))}’ < cp.

The monotone convergence of min{oy((A — 2I)|p, i2))), o1 ((A — 21)*|p, 12(v))) }» together with Dini’s
theorem, imply that 7,,(z, A) converges uniformly to the continuous function v(z, A) on compact subsets

of C with 7, (2, A) + ¢, > v(2, A).
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The proof will be complete if we can show that we can compute 7, (z, A) to precision 1/n using finitely

many arithmetic operations and comparisons. To do this, consider the matrices
By (2) = Po(A —21)" Py (A — 2I)P,,  Cn(2) = Po(A — 2I)Ppiny (A — 21)" P,

By an interval search routine and Lemma 3.2.8 below, we can determine the smallest [ € N such that at
least one of B,,(z) — (I/n)?I or C,,(z) — (I/n)*I has a negative eigenvalue. We then output [ /n to get the
1/n bound. O

Recall that every finite Hermitian matrix B (not necessarily positive definite) has a decomposition
PBPT = LDL*,

where L is lower triangular with 1’s along its diagonal, D is block diagonal with block sizes 1 or 2 and P
is a permutation matrix. Furthermore, this decomposition can be computed with finitely many arithmetic
operations and comparisons. Throughout, we will assume without loss of generality that P is the identity

matrix.

Lemma 3.2.8. Let B € C" be self-adjoint (Hermitian), then we can determine the number of negative
eigenvalues of B in finitely many arithmetic operations and comparisons (assuming no round-off errors) on

the matrix entries of B.

Proof. We can compute the decomposition B = LD L™ in finitely many arithmetical operations and com-
parisons. By Sylvester’s law of inertia (the Hermitian version), D has the same number of negative eigen-
values as B. It is then clear that we only need to deal with 2 X 2 matrices corresponding to the maximum
block size of D. Let A1, Ao be the two eigenvalues of such a matrix, then we can determine their sign pattern

from the trace and determinant of the matrix. O

This lemma has a corollary that will be useful in §6.3.

Corollary 3.2.9. Let B € C" be self-adjoint (Hermitian) and list its eigenvalues in increasing order,
including multiplicity, as A1 < Xo < ... < \,. In exact arithmetic, given ¢ > 0, we can compute

A1, A2, ... Ay, o precision € using only finitely many arithmetic operations and comparisons.

Proof. Consider A(A\) = B — A\I. We will apply Lemma 3.2.8 to A(\) for various A. First by considering
the sequences —1, —2,...and 1,2, ... we can find m; € N such that Sp(B) C (—m1,m1). Now let ms € N
such that 1/my < eand let a; be the output of Lemma 3.2.8 applied to A(j/mq) for —mime < j < mima.
Set

e = min{j: —mimg < j <mime,a; >k}, k=1,..,n.

If \i € [j/ma, (j +1)/ms) then A\, = (j + 1)/mq and hence ‘S\k — )\k‘ <1/mg <e. O

Remark 3.2.10. Of course, in practice, there are much more computationally efficient ways to numerically
compute eigenvalues or singular values - the above is purely used to show this can be done to any precision

with finitely many arithmetic operations.

Note that by taking successive minima, v, (z, A) = min;<;<y, Yn(2, 4), we can obtain a sequence of
functions v,, that converge uniformly on compact subsets of C to v(z, A) monotonically from above. Hence
without loss of generality, we will always assume that ,, have this property. We can now prove our main

result.
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Proof of Theorem 3.1.4. By considering bounded diagonal operators, it is straightforward to see that none
of the problems (spectra or pseudospectra) lie in AY. We first deal with convergence of height one arith-
metical towers. For the spectrum, we use the function ~,, described in Theorem 3.2.7 together with Propo-
sition 3.2.5 and its described algorithm. For the pseudospectrum, we use the same function +y,, described in
Theorem 3.2.7 and convergence follows from using the algorithm in Proposition 3.2.6.

We are left with proving that our algorithms have ' error control. For any A € Q, the output of
the algorithm in Proposition 3.2.6 is contained in the true pseudospectrum since v, (z, 4) > v(z,4) =
|R(z, A)||". Hence we need only show that the algorithm in Proposition 3.2.5 provides ¥4 error control

for input A € §2,. Denote the algorithm by I';, and set
En(2) = CompInvg(n,yn (2, A), 9727)

onT',,(A) and zero on C\I',, (A). Since y,,(z, A) > ||R(z, A)|| ", the assumptions on {g,, } imply that
dist(z,Sp(4)) < E,(z), VzeTl,(A).

Suppose for a contradiction that £,, does not converge uniformly to zero on compact subsets of C. Then
there exists some compact set K, some € > 0, a sequence n; — oo and Zn; € K such that Enj (sz) > e
It follows that z,,; € I',,; (A). Without loss of generality, z,,; — 2. By convergence of I',,;(A), z € Sp(A)
and hence 7y, (2n;, A) — 7(2, A) = 0. Now choose M large such that K C Bs(0). But then

- 1
Enj (Z’rbj) S ng(’Y’!Lj (Z’VIJ7A)) + ;J — 0)

the required contradiction. O

Remark 3.2.11. The above makes it clear that E, (z) converges uniformly to the function gﬂiH (v(z, A))

as n — oo on compact subsets of C.
Finally, we consider the decision problems =3 and =4.

Proof of Theorem 3.1.6. 1t is clearly enough to prove the lower bounds for Q , x C(C) and the existence of
towers for  x K(C). The proof of lower bounds for Q x K(C) can also be trivially adapted to the more
restrictive versions of the problem described in the theorem.

Step 1: {Z3,0p x K(C)} ¢ AS. Suppose this were false, and T, is a height one tower solving the
problem. For every A and n there exists a finite number N(A,n) € N such that the evaluations from
Ar, (A) only take the matrix entries A;; = (Ae;,e;) with 4,5 < N(A,n) into account. Without loss of
generality (by shifting our argument), we assume that K N [0,1] = {0}. We will consider the operators
Ay, = diag{1,1/2,...,1/m} € C™*™, B, = diag{1,1,...,1} € C™*™ and C' = diag{1,1,...}. Set
A=, _ (B, ® Ay, ), where we choose an increasing sequence k,, inductively as follows.

Set k1 = 1 and suppose that k1, ..., k,, have been chosen. Sp(By, & Ag, © ... By, ® Ay, & C) =
{1,1/2,...,1/m} and hence

Z3(Bi, ® Ay ... ® By, ® Ay, ®C) =0,
so there exists some n,, > m such that if n > n,,, then

I (Bk, @ Ak, ©...® By, ® A, ®C) =0.

m
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Now let kp+1 > max{N(By, ® Ax, ® ... ® By,, ® Ag,, © C,np,), km + 1}. By assumption (iii) in
Definition 2.1.1 it follows that Ap, (B, ® Ak, © ... ® B, ® Ag,, ® C) = Ar, (A) and hence by
assumption (ii) in the same definition that T, (A) =T, (B, ® Ak, ® ... ® By, ® A, & C) =0. But
0 € Sp(A) and so must have lim,,_, . I';,(A) = 1, a contradiction.

Step 2: {Z4,Qp} ¢ AS. The same proof as step 1, but replacing A by A + eI works in this case.

Step 3: {Z3,Q x K(C)} € II4'. Recall that we can compute, with finitely many arithmetic operations
and comparisons, a function 7, that converges monotonically down to || R(z, A)|| " uniformly on compacts.
Set

Iy, ny (A) = Does there exist some z € K,,, such that v,, (z, A) < 1/2"2?

It is clear that this is an arithmetic algorithm since each K, is finite and that

lim T, n, (A) = Does there exist some z € K,,, such that | R(z, A)|| "' < 1/2"27 =: T',,, (A).

n3—0o0

If K NSp(A) = 0, then ||R(z, A)||~" is bounded below on the compact set K and hence for large no,
I',.,(A) = 0. However, if z € Sp(A4) N K then let z,,, € K,,, minimise the distance to z. Then

1R (20,5 A)|| " < dist(zn,, Sp(A)) < 1/27

and hence T',,, (A) = 1 for all ny. This also shows the 13" classification.
Step 4: {Z4, Q) x K(C)} € IT4. Set

T, n, (A) = Does there exist some z € K, such that v, (z, A) < 1/2"2 + ¢€?,

then the same argument used in step 3 works in this case. O

3.3 Proofs: Partial Differential Operators

Here we shall prove Theorems 3.1.10 and 3.1.12. The constructed algorithms involve technical error es-

timates with parameters depending on these estimates. In the construction of the algorithms, our strategy

will be to reduce the problem to one handled by the proofs in §3.2. In order to do so, we must first select

a suitable basis and then compute matrix values. Recall that our aim is to compute the spectrum and pseu-

dospectrum from the information given to us regarding the functions aj and ay, with the information we
2 = 4

. . ,:1 : 3 ,: . . .
can evaluate made precise by the mappings =;, =7, =7 and =7. We will start by constructing the algorithms

used for the positive results in Theorems 3.1.10 and 3.1.12 and then prove the lower bounds.
3.3.1 Construction of algorithms

We begin with the description for d = 1 and comment how this can easily be extended to arbitrary dimen-

sions. As an orthonormal basis of L?(R) we choose the Hermite functions
P (x) = (2’”m!\/%)_1/26_’”2/2Hm(x),m € Z>o,
where H,, denotes the n-th Hermite polynomial defined by
d’ﬂ

H,(z)=(-1)" exp(:c2)dw—n exp(—xQ).
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These obey the recurrence relations

1
Yo () = %zbm_l(z) - %wmﬂ(x) (3.3.1)
m m+1
xwm(x) = 5¢m—1($) + 9 ¢m+1($)- (3.3.2)
—22/2

We let Cy(R) = span{t,, : m € Z>o}. Note that since the Hermite functions decay like e (up to
polynomials) and the functions ay and aj can only grow polynomially, the formal differential operator 7'
and its formal adjoint 7% make sense as operators from Cgr(R) to L?(R). The next proposition says that

we can use the chosen basis.
Proposition 3.3.1. Consider an operator T € Q. Then Cy(R) forms a core of both T and T*.

Proof. Let f € Cy(R) and choose ¢ € C§°(R) (the space of compactly supported smooth functions)
bounded by 1 such that ¢(x) = 1 for all |z| < 1. It is straightforward using the fact that the a’s are
polynomially bounded to show that

lim ¢(x/n)f(z) = f(x), lim To(x/n)f(z) = (Tf)(x)

n—oo n—oo

in L2(R), where T'f is the formal differential operator applied to f. The fact that T is closed implies that
f € D(T). Let T denote the closure of the formal operator 7', acting on C'zy (R), then we have shown that
T exists with T C T Hence to show that Cz;(R) forms a core of T, we must show that C§°(R) € D(T).
Let g € C5°(R) then in the L? sense write

9= bmtm.

m>0

Define g, = >

m—0 Dm¥m then, since T is closed, it is enough to show that T'g,, converges as n — co. Let

H denote the closure of the operator —d? /dz? 4+ x? with initial domain C§°(R) then Htb,, = (2m+ 1)),
and H is self-adjoint. Note also that g € D(H™) for any n € N. But (Hg, ¥,) = (2m + 1){g,¢¥m) =
(2m 4+ 1)by,, so {(2m+1) |b,|} is square summable. We can repeat this argument any number of times to
get that the coefficients b,, decay faster than any inverse polynomial. To prove the required convergence, it
is enough to consider one of the terms ay, ()" that defines T acting on C'z(R). The coefficient ay, () is

polynomially bounded almost everywhere, and for some A, and By,
(ar0F by, apdF1hy) < Ai/(l + |x\2B")Zakwm(m)akwm(x)da:.
R

But we can use the recurrence relations for the derivatives of the Hermite functions and orthogonality to
bound the right hand side by a polynomial in m. The convergence now follows since Ty, is a Cauchy

sequence due to the rapid decay of the {b,, }. Exactly the same argument works for 7. [
Clearly, all of the above analysis holds in higher dimensions by considering tensor products
Cr(RY) := span{th,, @ ... ® Yy, | M1, ..., Mg € Z>o}

of Hermite functions. We will abuse notation and write ¥, = ¥y, @ ... ® V¥m,. It will be clear from
the context when we are dealing with the multi-dimensional case. In order to build the required algorithms

with ¥4 error control, we need to select an enumeration of Zio in order to represent 7' as an operator
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acting on [?(N). A simple way to do this is to consider successive half spheres S,, = {m € Z%o :
|m| < n}. Welist Sy as {ej,...,er, } and given an enumeration {ey, ..., e, } of S,, we list S, 11\ Sn
as {€r, 41, €r,,, . We will then list our basis functions as ej, ez, ... with 1, = ej(m). In practice,
it is often more efficient (especially for large d) to consider other orderings such as the hyperbolic cross
[Lub08], or, in the semiclassical regime, to use Hagedorn functions [LL20]. Now that we have a suitable
basis, the next question to ask is how to recover the matrix elements of 7'. In §3.2 the key construction is a
function, that can be computed from the information given to us, v, (z,T'), which also converges uniformly

from above to || R(z, T)|| " on compact subsets of C. Such a sequence of functions is given by

U, (2,T) == min{o1((T — 2I)|p,2v))) o1 (T = 21| p, a2 v))) }

as long as the linear span of the basis forms a core of 7" and 7. In §3.2 we used the notion of bounded
dispersion to approximate this function. Here we have no such notion, but we can use the information given

to us to replace this. It turns out that to approximate v, (z, "), it suffices to use the following.

Lemma 3.3.2. Let € > 0 and n € N, and suppose that we can compute, with finitely many arithmetic

operations and comparisons, the matrices

{Wa()}yy = (T = 2D)e;, (T = z)es) + B} (2)
{Va(2)}ig = (T = 21)"ej, (T — 21)"es) + B}y (2)

for 1 < i,5 < n where the entrywise errors E:L 5—1 and E:L 5—2 have magnitude at most €. Then
‘\I/n(z,T)2 — min{oy(W,), al(Vn)}‘ < ne.

It follows that if € is known, we can compute V,,(z,T)? to within 2ne. If € is unknown, then for any § > 0,
we can compute V,,(z,T)? to within ne + J. (In each case with finitely many arithmetic operations and

comparisons.)

Proof. Given {W,(z)};;, note that ({W,(2)}i; + {Wn(2)};i)/2 still has an entrywise absolute error
bounded by €. Hence without loss of generality we can assume that the approximations W,,(z) and V,,(2)

are self-adjoint. Call the matrices with no errors W, (z) and V,,(z) then note that

min{o1((T — 2I)|p, q2vy)), o1 ((T* = ZI)|p, a2v)) }* = min{o1(W,,), 01 (V) }

and

min{o, (W), al(f/n)} — min{o; (W), al(Vn)}‘ < max{HWn - W, Vi, — Vi

9

} . (333)

But for a finite matrix M, we can bound || M| by its Frobenius norm y/3 |M;;|*. Hence the right hand
side of (3.3.3) is at most ne. In order to use finitely many arithmetic operations and comparisons, we note
that given a self-adjoint positive semi-definite matrix M, we can compute o (M) to arbitrary precision
using finitely many arithmetic operations and comparisons via the argument in the proof of Theorem 3.2.7.

The lemma now follows. O

Finally, we will need some results from the subject of quasi-Monte Carlo numerical integration, which
we use to build the algorithm. Note that with either no prior information concerning the coefficients or for
large d, this is the type of approach one would use in practice. We start with some definitions and theorems

which we include here for completeness. An excellent reference for these results is [Nie92].
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Definition 3.3.3. Let {t1,...,t;} be a sequence in [0,1]% and let K denote all subsets of [0,1]? of the form
HZ:1 [0, yx) for yi € (0,1]. Then we define the star discrepancy of {t1, ..., t;} to be

* 1 !
Di({t1,....t;}) = sup EZXK(tJ’) - K]},
k=1

KeKk

where X i denotes the characteristic function of K.

Definition 3.3.4 ([Hal60]). For any integer b > 2, the radical-inverse function n is defined on Z>o by

Za] )b,

where n = Z;io a; (n)b/ is the (necessarily terminating) digit expansion of n. Given integers by, ...,bs >

2, the Halton sequence {xy, }nen C [0,1]® in the bases by, ..., bs is defined by

T = (Mo, (0= 1), 70, (2 = 1), ocsmp, (0 = 1)).

Theorem 3.3.5 ([Hal60]). If {t;}ren is the Halton sequence in [0,1]% in the pairwise relatively prime

bases q1, ..., qq, then

% . qr +1
Di({t1,....t;} < d,.1 H(QIquk 0g(j) + = >

Note that given d (and suitable g¢1,..., g4), We can easily compute in finitely many arithmetic operations

and comparisons a constant C'(d) such that the above implies

Di({tr, .. t;}) < C(d )(log“;“)d (33.4)

The following theorem says why this is useful.

Theorem 3.3.6 (Koksma-Hlawka inequality [Nie92]). If f has bounded variation TV o 14 (f) on the hy-
percube [0,1]? then for any t1, ..., t; in [0, 1]¢

1 J
‘j;ﬂtk)— /W f(x)da

By re-scaling, if f has bounded variation TV |_,. ja(f) and sy, = 2rty, — (r,7, ..., )T then we obtain

S f(se) - / f(@)dz

k=1 [_Tvr]d

< TVioa(f)D; ({t1, s t5})-

7)é

< (2r)* TV, qa(F)D] ({1, - t5}).

Finally, in order to deal with our choice of basis, we need the following.

Lemma 3.3.7. Consider the tensor product V¥, (x) 1= P, (21) * ... - Ym, (zq) in d dimensions and let
r > 0. Then

o () < (1 +2r/2(m| + 1))d L

Proof. We will use an alternative form of the total variation which holds for smooth enough functions and

can be found in [Nie92]:

S

k=11<i1<..<ip<d

Y

0%, .. 830%( 7)

dﬁCil dSCZk ;
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where T has Z; = x; for j = i1, ...,7; and Z; = r otherwise. We can use the recurrence relation (3.3.1) and
the rough bound |, (2)| < 1 (which follows from Cramér’s inequality which bounds the one-dimensional
Hermite functions [Ind61]) to gain the bound

/_ /_ "t

k
P ka( )‘dl‘“ dx;, < (QT 2(|m| 1))
TV [—7-,7']d(wm) <

It follows that

(27" 2(|m|+1)>k Yoo

1<ir<...<ip<d

(2r 2(|m|+1))k<Z) = (1+2r 2(|m|—|—1)>d—1.

M= IM-

~
Il
_

Proposition 3.3.8. Given T' € QL or T € Q}  and € > 0, we can approximate the matrix values
(T = z2D)tpm, (T — zD)py)  and (T — zI)" Y, (T — 2zI)*hy,)

to within € using ﬁnitely many arithmetical operations and comparisons of the relevant information (cap-

tured by Z; Yand = ln §3.1.2) given to us in each class.

Proof. LetT € Qk, or T € Qf and € > 0. Recall that
T= Z ap(z)ok, T* = Z ap(z)0",
|k|<N k| <N

so by expanding out the inner products and also considering the case aj = 1, it is sufficient to approximate
(kO a;7y)  and  (ap0* Py, a;071n)

for all relevant k, j,m and n. Due to the symmetry in the assumptions of 7" and 7, we only need to
show that one can compute the first inner product, the proof for the second one is identical. Note that
by the specific choice of the basis functions 1),,, it follows that 9%1),,, can be written as a finite linear
combination of tensor products of Hermite functions using the recurrence relations (the coefficients in the
linear combinations are thus recursively defined as a function of k). Hence, in the inner product, we can
assume that there are no partial derivatives. In doing this, we have assumed that we can compute square
roots of integers (which occur in the coefficients) to arbitrary precision (recall we want an arithmetic tower)
which can be achieved by a simple interval bisection routine. It follows that we only need to consider
approximations of inner products of the form (ax¥.,, a;j¥n).

To do so let R > 1 then, by Holder’s inequality and the assumption of polynomially bounded growth

on the coefficients aj, we have

li| >R

1/2
< A ( /|R (1+1aP5) (14 |x|2Bﬂ')2wm<x>2dx) ( /lmwnu)%x)

The first integral on the right hand side can be bounded by

1/2

16/ |27 o (2)2da < 16/ (z3+ ...+ m?l)B U ()2 de,
R4 Rd
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for B = 4(By, + By), since we restrict to |z;| > R with R > 1 and |z| < ||z||,. B is even so we can
expand out the product (z? + ... + 27)? /24, using the recurrence relations for the Hermite functions. In

one dimension this gives

m m+1

T¢m+1(x)7

- n;( Tn2_1'(/)m—2($)+\/§wm(l‘)> +\/m;—1 (\/m;1¢m(x)+ m;_21pm+2(x)>7

and so on. We can do the same for tensor products of Hermite functions. In particular, multiplying a tensor
product of Hermite functions, t,,, by (2% + ... +22) induces a linear combination of at most 4d such tensor
products, each with a coefficient of magnitude at most (|m| + 2)? and index with [°° norm bounded by
|m| + 2 (allowing repetitions). It follows that (27 + ... + 22)5/2¢),,, can be written as a linear combination
of at most (4d)5/? such tensor products, each with a coefficient of magnitude at most (|m|+ B)Z. Squaring
this and integrating, the orthogonality and normalisation of the tensor product of Hermite functions implies
that
16/Rd<w% T oo+ 03P (2)de < 16(4d) %% (|m] + B)?E =: pi (jm).

For the other integral, define ps(|n|) := 4d(|n| + 2)*. We then have

1 p2(nl)
2d <—/ Lylde < 20U
/$i>an x— R4 Rd ‘Jf| wn 'T— R4 )

by using the same argument as above but with B = 2.
So given 6 > 0 and n,m, B, Ay, A;, (and d) we can choose r € N large such that

(Im])'/2p2(In|)*/2
r2

<.

/ law@; | [Ymibn| de < AkAjpl
|z |>r

We now have to consider the cases T' € Q% or T' € Q)  separately, noting that it is sufficient to approxi-

mate the integral f‘m <, Qk@;m Py dx to any given precision. For notational convenience, let

Lo(m) = {1 to ((1 +2r\/m)d - 1)}

so that with o = 3% + 1 as in the definition of Il 4, » we have via Lemma 3.3.7 that [[1,[| 4 < Ly(m).
Casel: T ¢ Q"lrv- Given k, j,m,n,d and r € N as above, choose M large such that
d
C(d)(log(M) +1)"

i ¢ L.(m)-Ly(n) <4/2, (3.3.5)

(2r)°

where C(d) is as (3.3.4) and ¢, controls the total variation as in (3.1.5). Again, note that such an M can
be chosen in finitely many arithmetic operations and comparisons with the given data and assuming that
logarithms and square roots can be computed to arbitrary precision (say by a power series representation
and bound on the remainder). Using the fact that A4, is a Banach algebra (in particular we can bound the

norms of product of functions by the product of their norms) and Theorem 3.3.6, it follows that

(27")d M

a; ’(/}m wn - 7¢mwnd
W LT [ Tt

<§/2,
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where s; = 2rt; — (r,7,...,7)T are the rescaled Halton points. Hence it is enough to show that each
product ay(s;)a@;(s1)%¥m(s1)1¥n(s;) can be computed to a given accuracy using finitely many arithmetic
operations and comparisons. Since each s; € Q¢ we can evaluate ay(s;)@;(s;). Note that we can compute
exp(—?/2) to arbitrary precision with finitely many arithmetic operations and comparisons (again say by
a power series representation and bound on the remainder) and that we can compute the coefficients of the
polynomials Q,, with ¢,,,(7) = Q, () exp(—x2/2), using the recursion formulae to any given precision,
it follows that we can compute ,, ()%, (s;) to a given accuracy using finitely many arithmetic operations
and comparisons. Using the bounds on the a; and @; and Cramér’s inequality, we can bound the error in
the product and hence the result follows.

Case 2: T' € Q} . On the compact cube |z;| < 7 the double series

ap(z)aj(z) = Z Z afasat e

tE(Z>0)? s€(Z>0)?

converges uniformly (recall that {az}te(z>0)d are the power series coefficients for ax) so we can exchange

the series and integration to write

/ k@ YmPnde = Z a’,fcaj?/ 25 ), (1), (z)dz. (3.3.6)
|zi|<r |ai | <r

t,5€(Z>0)*

But | [, <, @ () ()da | is bounded by

1/2 1/2
el T B B O T
zERC zER4 rERd

where we have used Holder’s inequality and the fact that the tensorised Hermite functions are orthonormal.
Let 7 = r/(r + 1), then using the fact that we know d, in (3.1.6), we can bound the tail of the series in

(3.3.6) by
2

Lt [l
> Z rlitlsl < g2 Z patette |
[t],]s|>M [t|>M
using the fact that |z| < (Jz1| + ... + |z4|)/d. We can explicitly sum this series (as the difference of

geometric series) to gain the bound

d2

(a

1— (1 _ 7_(M-&-l)/d)d 2
(1—7V d)d

Given r and d,. (and d) we can keep increasing M and evaluating the bound (strictly speaking an upper

bound accurate to 1/M say), to choose M large such that the tail is smaller than 6/2 for any given § > 0. It

follows that it is enough to estimate integrals of the form f‘z x5, (2)9, (x)dz. Using the recurrence

il <r
relations for Hermite functions and writing 1, (2) = Q. () exp(—x2/2), it is enough to split the multidi-
mensional integral up as products and sums of one-dimensional integrals of the form | _TT, 2% exp(—2?)dx,
for a € Z>. Again, we have assumed that we can compute the coefficients of the (),, to any given accuracy
using finitely many arithmetic operations and comparisons and using this we can bound the total error of
the expression by 6/2. The above integral vanishes unless a is even, so integration by parts (again assuming
we can evaluate exp(—2?) to any desired accuracy) reduces this to estimating [” exp(—a?)dxz. Consider
the Taylor series for exp(—x?). The tail can be bounded by

T2k ,,,2N )
Z ﬂ S ﬁexp(—r )
k>N
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Integrating this estimate over the interval [—r, 7], we can bound this by any given 7 > 0 by choosing N
large enough. We can then explicitly compute f_'T Yok <N 2% /k\dz. Keeping track of all the errors is
elementary and hence f‘m‘ <, Ok m Py dx can be approximated with finitely many arithmetic operations

and comparisons as required. O

In some cases, we can also directly compute matrix elements without the cut-off argument used in the
above proof. For instance, if each ay(z) (and hence ay(z)) is a polynomial then we can simply integrate
the power series to compute (ax (), a;(x)1,) and use the recurrence relations for Hermite functions.

If we know a bound on the degree of the polynomials, then clearly we can compute

(T = 2oy, (T — 2D,y and (T — 2I)* Yo, (T — 2I)* ) (3.3.7)

to within e using finitely many arithmetical operations and comparisons directly. Even if we do not know the
degree of the polynomials and are only promised that each ay () is a polynomial, then we can successively
approximate by more terms of the power series and eventually compute (3.3.7) to within ¢ using finitely
many arithmetical operations and comparisons. However, we do not know when the given accuracy has
been reached (recall that we only know a finite portion of the coefficients ¢y, co, ... at any one time for
T € Qhy)-

We can now prove the positive parts of Theorems 3.1.10 and 3.1.12.

Proof of inclusions in Theorems 3.1.10 and 3.1.12. Step 1: {Z}, Q41 {23, Qhn} € 4. The proof of
this simply strings together the above results. The linear span of {eq, o, ...} (the reordered Hermite func-
tions) is a core of 7" and T™* by Proposition 3.3.1. By Proposition 3.3.8, we can compute the inner products
((T'—zD)ej, (T —zI)e;) and (T — zI)*e;, (T — zI)*e;) up to arbitrary precision with finitely many arith-
metic operations and comparisons. Using Lemma 3.3.2, given z € C, we can compute some approximation
vy (2, T) in finitely many arithmetic operations and comparisons such that
. P 1

[un(2,T)? = min{o1 (T — 21)|p, @2v), o1 (T = 21)| b, a2 0)) | < 3

We now set
(2, T) = vp(2,T) + 1/n. (3.3.8)

Then ~,, satisfies the hypotheses of Proposition 3.2.5. The proof of Theorem 3.1.4 also makes clear that we
have error control since v, (2, T) > ||R(z,T)| "
Step 2: {23, 0L}, {23, Q4 } € T). Consider the sequence of functions -, defined by equation

(3.3.8). These converge uniformly to ||R(z,T)| "

on compact subsets of C and satisfy ~,(z,7) >
|R(z,T)||". We can now apply Proposition 3.2.6.

Step 3: {22, 0%}, {Z3,02,} € A4, Let T € Q2. Our strategy will be to compute the inner
products ((T' — zI)e;, (T — zI)e;) and ((T — zI)*e;, (T — zI)*e;) to an error which decays rapidly
enough as we let the cut-off parameter 7 tend to co. We follow the proof of Proposition 3.3.8 closely. Recall
that given n, m, we can choose 7 € N large such that
(Im )" pa(|n]) />

r2

)

/ 1> |a’k@| |wm¢n‘ dx < AkAjpl

with the crucial difference that now we do not assume we can compute Ay, A;,p1 or pa. It follows that

there exists some polynomial ps3, with coefficients not necessarily computable from the given information,
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such that

J— PS( mi|,|n
/l ‘ |ana;| [pmin| de < pa(ml.n)) T|2 | D,
zi|>r

for all |j|,|k|] < N. Now we use the sequence b, to bound the error in the integral over the compact
cube asymptotically. We assume without loss of generality that b, is increasing monotonically to oo with
r. Using Halton sequences and the same argument in the proof of Proposition 3.3.8, we can approximate
fl:r:i <r a0 YmPnde, with an error that, asymptotically up to some unknown constant, is bounded by

. (log(M)+ l)d

pi S R L) Ly (), (3.3.9)

where M is the number of Halton points. We can let M depend on r, n and m such that (3.3.9) is bounded
by a constant times 1/r2. It follows that we can bound the total error in approximating (g, a;t,,) for
any j, k by p3(|m/|, |n|)/r?, by making the coefficients of p3 larger if necessary. We argue similarly for the
adjoint and note that (T — zI)tp,, (T — 21)v,) and (T — zI)*ty,, (T — 21)*4,, are both approximated
to within

(4 oy Pl

for some unknown polynomial P. Hence we can apply Lemma 3.3.2 (the form where we do not know
the error in inner product estimates), changing the polynomial P to take into account the basis mapping
from Z%O to N to some polynomial (), to gain some approximation vy, (z,7") in finitely many arithmetic
operations and comparisons such that

n(1+2°)QMm) | 1

|’Un(Z,T)2 — min{al((T — ZI)|PH(I2(N)))7 O’1((T* — ZI)|Pn(l2(N)))}2| § r(n Z)2

We now choose r(z, n) larger if necessary such that r(z,n) > (1 4 |z|?) exp(n). We now set v, (z,T) =
Un(z,T)+1/n. Then ~,, satisfies the hypotheses of Proposition 3.2.5 and Proposition 3.2.6 since the error in
(3.3.10) decays faster than 1/n2. We can use these propositions to build the required arithmetical algorithm.

Step 4: {1, 0%}, {23, 0%} € A4 We argue as in step 3. To control the error in the approximation

of the integral over a compact hypercube, choose the cut-off M (r) such that

A\
r+1 = b2

It follows that there exists some (unknown) constant B such that we can bound the error in approximating

[t,]s]>M (r)

flxi <r ay@;Ymndx by B/r? where we have absorbed the arbitrarily small error that comes from approxi-
mating the integral of the truncated power series using finitely many arithmetic operations and comparisons.

The rest of the argument is the same as in step 3. O

3.3.2 Proofs of impossibility results

We first deal with Theorem 3.1.10. Recall the maps

We split up the arguments to deal with Q% and then Q%;.

65



3.3. Proofs: Partial Differential Operators CHAPTER 3. Computing Spectra with Error Control

Proof that {Z;, Q% } ¢ A§. Suppose first for a contradiction that a height one tower, I',,, exists for the
problem {Z1, Q% } such that daw (', (T), 21 (7)) < 27™. We will deal with the one-dimensional case and
higher dimensions are similar. Let p(x) be any smooth bump function with maximum value 1, minimum
value 0 and support [0, 1]. Let p,, denote the translation of p to have support [n,n + 1]. We will consider

the two (self-adjoint and bounded) operators
(Tou)(z) =0, (Tnu)(z) = pm(v)u(z),

which have spectra {0} and [0, 1] respectively. For these we can take the polynomial bound (the { A} and
{B&}) to be 1 and the total variation bound to be ¢, = 1+0TV g 1)(p). When we compute I'z(7p), we only
use finitely many evaluations of the coefficient function aq(z) = 0 (as well as the other given information).
We can then choose m large such that the support of p,, does not intersect the points of evaluation. By
assumptions (ii) and (iii) in Definition 2.1.1, T's(T;,,) = T'2(Tp). But this contradicts the triangle inequality
since daw ({0}, [0,1]) > 1

To argue for the pseudospectrum let € > 0 and note that 2¢ ¢ Sp_(Tp) but 2¢ € Sp_(eT;,). We now
alter the given ¢, to €(1 4+ 0TV 1](p)) and the polynomial bound to e. The argument is now exactly as

before. Namely, we choose n large such that
dAw(Fn(T()), [—6, 26}) >27"
then choose m large such that ', (Ty) = T, (¢T,)- O

Proof that {2, 0%} ¢ ¢ UTIY. Suppose first of all thata ¢ tower, I',,, exists for {Z;, Q% }. We will

deal with the one-dimensional case and higher dimensions are similar. Consider the operators

(Tou)(z) =0,  (Thu)(x) = f(z)u(z),

where we define f in terms of T';, as follows. We choose f so that f(z) = 1 except for finitely many values
of = where it takes the value 0 and hence T and T} have spectra {0} and {1} respectively and are both
self-adjoint. Note that once the zeros of f are fixed, this choice ensures that f has total variation bounded
by a constant on any hypercube and hence we may take b, = 1 for all » € N. There exists some n such that
I',,(Ty) contains z, € Bj/g(0) with a guaranteed error estimate of dist(z,,Sp(7p)) < 1/4. But I',,(Tp)
can only depend on finitely many evaluations of 0 (as well as b, = 1 and the trivial choice of g;(z) = x).
We choose f to be zero at precisely these evaluation points. By assumptions (ii) and (iii) in Definition 2.1.1,
I, (T1) = I',,(Tv), including the given error estimates, which is the required contradiction.

For {Z5,0%} ¢ ¢, given € > 0 we replace f by 3ef in the above argument and keep all other
inputs the same. Hence Tj and T have e-pseudospectra [—¢, €] and [2¢, 4¢] respectively. We note that
again there exists some n such that I', (Tp) contains z, € B/3(0) with a guaranteed error estimate of
dist(zn, Sp.(10)) < €/4. But I',,(T}) can only depend on finitely many evaluations of 0 (as well as b, = 1
and the trivial choice of g;(z) = x). We choose f to be zero at precisely these evaluation points. By
assumptions (ii) and (iii) in Definition 2.1.1, T',,(T}) = T',,(Tp), including the given error estimates, which
is the required contradiction.

To argue that neither problem lies in II{, we can use the same arguments in the proof that {Z;, Qi } ¢
A?. The only change now is that the algorithm, I",,, used to derive the contradiction provides Hf informa-

tion rather than A§. For the spectrum, we consider the operators

(Tyu) (@) =0 and  (Tu)(@) = p(@)ula),
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and choose n large such that I, (Tp) produces the guarantee Sp(7p) N By /4(0)¢ = ). For m sufficiently
large, we argue as before to get I',,(T,,) = I',,(Tp), including the guarantee, the required contradiction.

Again a similar argument works for the pseudospectrum by rescaling 75, to 2€15,. O

We now deal with the impossibility results in Theorem 3.1.12 where

Sp(T) e Maw  j=1
Sp(T) € Maw j = 2.

=3 =4 . Ol 2
E5E) QN Qan =

Proof that {Ej, Qhn} ¢ AY. Suppose for a contradiction that a height one tower, T',,, exists for {=3, Q% }

such that daw (I'n(T),Z3(A)) < 27", Now consider the two (self-adjoint and bounded) operators
(Tyu)(z) =0 and (Thu)(z) = 2" exp(—z*)u(z)/sk,

where k is even and will be chosen later. We choose sy, such that the range of the function z* exp(—x2) /sy
is [0, 1] and hence T has spectrum [0, 1]. We can take the polynomial bounding function to be the constant
1 for both operators and must show that we can use the same d,. for both operators in (3.1.6), independent

of k. Simple calculus yields that s, = (k/(2¢))*/2. It follows that such a d,. must satisfy

k/2 2m-+k
2 1
(;) % <d,, Vke2N,m e Zso. (3.3.11)

Hence it suffices to show that the function on the left hand side of (3.3.11) is bounded (as a function of m, k

for all » € N). Using Stirling’s approximation (explicitly the bounds on m!), this will follow if we can show

7’2m+k _ r k r 2m
iz <\ i) \Um

is bounded for all € N (now with m > 1). But this is obvious.

that the right-hand side of

We can now choose k (which depends on the algorithm T',,) to gain a contradiction. Since Sp(73) = {0}
and 1 € Sp(T3) for all even k, there exists n such that dist(1,T,(71)) > 1/4 but dist(1,T,,(T3)) < 1/4.
However, I';,(T') can only depend on finitely many of the coefficients {c;}, say c1, ..., (p ), of T (as
well as the other given information). By assumption (iii) in Definition 2.1.1, we can choose &k such that
the coefficient corresponding to z*, call it ¢;, , has [}, > N(Ty,n) and get T, (Ty) = T, (T3), the required
contradiction.

To show {23, QL) ¢ A§ uses exactly the same argument as above. In order to gain the neces-
sary separation 3¢ ¢ Sp.(T1) but 3¢ € Sp(T2), we rescale Ty to 3eT». Then there exists n such that
dist(3e, T, (T1)) > €/2 but dist (3¢, ', (T2)) < €/2. The rest of the contradiction follows. O

Proof that {2}, Q% }, {E],Q,} ¢ £F UTIT. Since ©, C Q3 it is enough to show the results for €2,,.

Suppose for a contradiction that there exists a X algorithm, T,,, for {=}, ,}. Consider
(Thu)(z) = zu(z) and (Thu)(z) = (z — z*)u(z),

where k is even and chosen later. (7} +4I)C§°(R) are dense in L?(R) with 7} initially defined on C§°(R)
symmetric. It follows that the closure of T)j|¢e (k) is self-adjoint and hence that T; € . Note that
Sp(T1) = R but Sp(73) C (—o0,1]. Now choose n such that ', (T1) contains a point z, € Bi/4(2)
with a guaranteed error estimate of dist(z,,Sp(71)) < 1/4. However, I',,(T') can only depend on the
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first N (T, n) coefficients, cy, ..., Cx(rny> Of T (as well as the trivial choice g;(2) = « and the numbers
b, = n!). By assumption (iii) in Definition 2.1.1, we can choose k such that the coefficient corresponding
to z*, call it ¢, , has 7, > N(Tl, n) and get T',,(T1) = T',(T), the required contradiction. Similarly by
rescaling as above, we get {Z3,Q,} ¢ X¢.

To show {Z%,9,} ¢ II§ we argue the same way, but now set (T1u)(z) = 0 and (Tou)(z) = z*u(z).
As before, T € Q,, but now Sp(77) = {0} and 1 € Sp(T»). Choose n such that I';,(77) produces the
guarantee Sp(71) N By/4(0)¢ = (. Again, choose k such that ¢, has r, > N(Ty,n) and get T,,(T}) =

I',,(T%), the required contradiction. Rescaling and using the same argument shows {=3, Q,,} ¢ 1. O

3.4 Computing Approximate States

The algorithms proposed above can also be used to gain states corresponding to elements in the spectrum
in addition to the spectrum itself. For simplicity we will consider bounded operators on /?(N). For such an
operator, not all of the spectrum is composed of eigenvalues. If the operator is normal then given z € Sp(A)

there exists a sequence of unit vectors x,, € I2(N) such that
(A = zI)Ppz,|| — 0asn — oco.

Such a sequence is known as an approximate eigenvector sequence or an approximate eigenstate sequence.
In the non-normal case, one only has the existence of x,, such that at least one of ||[(A — zI)P,x,/|| and
[(A* — ZI) P, x,,|| converge to zero. The question is whether given a z in the output I, (A4) of the algorithm

in §3.2 that converges to Sp(A) and the function ~,(z, A) in Theorem 3.2.7, we can find a x,, satisfying
min{|[(A — 2Dz, |(A* = ZDzall} < (2, A).
The convergence proof of the algorithm shows that {x,, } will be an approximate eigenvector sequence.

Theorem 3.4.1 (Approximate States). Suppose A is a bounded operator with dispersion bounded by f.
Given any z € T',,(A) with computed function v,,(z, A) of Theorem 3.2.7, we can compute a corresponding
vector x,, satisfying

min{|[(A — 2I) Poanl|, [[(A" = ZI) Pazn ||} < vn(z, A)
in finitely many arithmetic and square root operations.

Proof. We will deal with the normal case and note that dealing with the general case is simply a matter of

applying the following argument to (A*,Z) as well as (A4, z). Recall that
Yn(2, A) = Fn(z, A) + ¢ + 1/n,

where 4, is a computable approximation of 7,,(z, A) = 01(P¢n)(A — 2I)|p, 12(n))) to precision 1/n.

Let € = (4, (2, A) 4+ 1/n)? and consider the matrix
B = P,(A* — ZI)Py(n)(A — 2)P, — eI

then B is a Hermitian matrix but not positive definite. It follows that B can be put into the form PBPT =
LDL*, where L is lower triangular with 1’s along its diagonal, D is block diagonal with block sizes 1 or 2

and P is a permutation matrix. This can be computed in finitely many arithmetic operations. Without loss
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of generality we assume that P = I. Let x be an eigenvector of B with non-positive eigenvalue then set

y = L*z. Such an x exists by assumption. Note that
(y,Dy) = (L*x, DL*z) = (x, Bz) < 0.

It follows that there exists a unit vector y,, with (y,,, Dy,) < 0. Such a vector is easy to spot by either
considering 1 blocks or 2 blocks (where we need to extract square roots) in the block diagonal matrix D.
L* is invertible and upper triangular so we can efficiently solve for Z,, = (L*)~'y,, and then normalise to
get z,,. Note that
1
| Py (A = ZI)annHQ = (T, Br,) +e= W<ynvDyn> +e<e
Tn

It follows that
[(A = 2D) Payl| < cn + ||Ppny (A — 20) Pt || < An(2, A) + ¢ + 1/n = 7(2, 4). O

The upshot of this is that the algorithm not only computes I',,(A) converging to the spectrum of A, but
it also computes approximating eigenvector sequences for the spectrum (and can do so for each point in
the output of ', (A)). Since not all of the spectrum is necessarily composed of eigenvalues in the infinite-
dimensional case, this is the best any algorithm can hope to achieve in generality. This method is fast and

can be efficiently implemented, as was done for Figure 3.3 below.

3.5 Numerical Implementation

Before demonstrating the algorithms of this chapter, we discuss their numerical implementation. We begin
with simple pseudocode for the algorithms, which will be a useful reference in later chapters. We then

discuss how to implement the algorithms efficiently.

3.5.1 Routines for core algorithms

The algorithm for the spectrum can be described by the routine CompSpec, shown as pseudocode below.
Recall that this depends on the routines Grid and CompInvg described by (3.2.2) and (3.2.3) respectively.

-1
|

This relies on the approximation to || R(z, A)||” " in Theorem 3.2.7 given by the routine Dist Spec.

Function DistSpec (An, f(n),z)
Input :n €N, f(n) € N, matrix 4, z € C

Output: y € R, an approximation to the function z — || R(z, A)|| "

B=(A—-zI)1: f(n),1:n), C=(A—-=z20)*(1:f(n),1:n)
S=B*B, T=C*C
v=1101=0

while v = 1 do
l=1+1

p = IsPosDef(S — 7%) q = IsPosDef(T — %)

v = min(p, q)
end

S~

y =
end
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Throughout we have used the fact that Dist Spec (with a small modification - see Theorem 3.2.7
and the subsequent discussion) requires only finitely many arithmetic operations and comparisons. This is
discussed further in §3.2 and details on fast implementation can be found in §3.5.2. In practice, we also

replace the while loop by a much more efficient interval bisection method.

Function CompSpec (4,n,{gm },f(n),cn)
Input :n €N, f(n) € N, ¢, € Ry (bound on dispersion), g., : Ry = R4, A€ Q,

Output: T' C C, an approximation to Sp(A), E € R, the error estimate

G =Grid(n)

for z € G do
F(z) =DistSpec (An,f(n),z)

if F(2) < (|z|* + 1)~ then

for w; € BCompInvg(n,F(z),gﬂzH ) (Z) NG = {wl, ey wk} do
| Fj =DistSpec (An,f(n)w;)

end
M, = {w; : F; = ming{F;}}
else
‘ Mz - (Z)
end
end
I'= UzGGMz

E = max.cr{CompInvg (n,DistSpec (An,f(n),2) +cn, grj21) }

end

The algorithm for computing the pseudospectrum is shown in PseudoSpec.

Function PseudoSpec (A,n, f(n),cy,€)
Input :neN, f(n)eN,c, eRy, AcO,e>0
Output: I' C C, an approximation to Sp,(A)

G =Grid(n)

for z € G do
| F(z) =DistSpec (An,f(n),z) + ¢y

end
'=W{ze€eG|F(z) <¢€}

end

3.5.2 Efficient computation

Here we shall describe how to implement the algorithm for the spectrum efficiently. The main computa-
tional bottleneck is the computation of 7, (z, A) (or Dist Spec) over a grid of points in Theorem 3.2.7, and
we recall the algorithm outlined in its proof. The search routine for the smallest singular value can be effi-
ciently implemented using an interval bisection method. To test for positive definiteness, we used an incom-
plete Cholesky decomposition. If our matrix A is sparse, we can take advantage of the fact that the matrices

B, (2) and C,,(z) have the same sparsity structure as we vary our test point z. We can calculate a permuta-
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Figure 3.1: Speed-up of method when we take advantage of the structure preservation under changes in z
and use AMD ordering. The AMD ordering only needs to be calculated once for each n and can subse-
quently be used on all test points. Both these plots are for the Laplacian H on the Penrose tile discussed
in §3.6.1.

tion of the indices corresponding to an Approximate Minimum Degree (AMD) ordering. This is a standard
procedure to reduce the number of operations needed for Cholesky Decomposition or Gaussian Elimina-
tion. This can be computed with the MATLAB commands [~, ~, Ql]=chol (B,,-speye (n)) and
[~,~,02]=chol (C,—speye (n) ). We can then replace B,, and C,, by B, (01,01) and C},(Q2,02)
(using MATLAB’s notation for matrix index ordering) in subsequent calculations. As shown in Figure 3.1
this offers considerable speed-up, especially in two-dimensional models, where the initial matrix A is not
banded. For the case considered in §3.6.1, the time taken was of order ~ O(n*1) and ~ O(n??®) for large
n with and without the AMD ordering respectively (shown as reference lines).

Of course, for large sparse rectangular truncations P,, (A — zI) P,,, there exist efficient iterative methods
to approximate the smallest singular value. We found the partial Cholesky approach (with interval bisection
and AMD ordering) slightly faster for the Penrose tile example in this chapter, but note that the user can
easily use different subroutines for the computation of the smallest singular value. For the case of computing
pseudospectra (e.g. Figure 3.5), using the partial Cholesky positive definite test is much more efficient since
we can test levels of the resolvent norm on a logarithmic scale and we found it to be more stable for non-
normal A. It is also much easier to implement the incomplete Cholesky approach when using interval
arithmetic, allowing completely rigorous error bounds.

In many applications, such as finite-dimensional lattice models in condensed matter physics, we can
bound f via f(n) —n ~ Cn® for a € [0,1). For example, « = 1/2 for the Penrose lattice model

considered in §3.6.1. The number of operations, pre-AMD ordering can then be bounded.

Proposition 3.5.1. Let A € Q and suppose that for large n, f(n) —n ~ Cn®, where f is the dispersion
Sunction, C a constant and « € [0, 1). Suppose that f is non-decreasing and also describes the off-diagonal
sparsity structure of A in the sense that Ay, Axn = 0if k > f(n). If we use my(n) test points and an
accuracy of 1/ms(n) for approximating ,, in Theorem 3.2.7, then the proposed algorithm for the spectrum

can be computed in
O(ma (m)n(™+D9+ log(ms (1))

operations.
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Proof. We first show that testing positive definiteness of B := B,, — €I can be achieved in O(n(®+1a+1)
operations. It is then clear, using a binary search routine, that the computation of ~, (z, A) over the grid can
be achieved in O(m; (n)n(*+te+11og(my(n))) operations. The rest of the algorithm can be executed in
O(m1(n)n) operations, yielding the result.

To test positive definiteness we checked whether a Cholesky decomposition of the matrix B was pos-
sible. One can see that B also has a dispersion function f (n) —n ~ Cn® and hence without loss of
generality we can assume f = f . Furthermore, B is sparse with f describing its sparsity structure. We
refer the reader to [TBI97] Chapter 23 where Cholesky factorisation is explained. Following the notation

there, one computes (assuming B positive definite)
B=R]..R; Ry..Ry

with R = R,,...Ry upper triangular. Using the fact that f is non-decreasing with f(n) > n it is straight-
forward to prove that all R;’s used to compute R have the same sparsity/dispersion function f. A simple

operation count gives complexity of order

n  f(k) n  f(k) n n
Z Z (f( _ ,7 S Z joz k)oz+1 koz+1 S Z k(a+1)o¢ < (a+1)a+1
k=1j=k+1 k=1j=k+1 k:l k=1
and we get the result. O

Remark 3.5.2. If we are studying a finite range Hamiltonian on the lattice 1>(Z) then one can choose
a = (d —1)/d and in the general case of such Hamiltonians this is easily seen to be optimal. If mi =
Ln,my = n then in two dimensions for a constant L this reduces to n*7 log(n) which is the slope in

Figure 3.1.

Examples of f used in the numerics

We end with some examples for the graph case [*(V(G)). Suppose our enumeration {eg, €z, ...} of the
vertices obeys the following pattern. All of e;’s neighbours (including itself) are S1 = {e1, ez, ..., &q, } for
some finite ¢;. The set of neighbours of these vertices is So = {eq, ..., ¢4, } for some finite g2, where we

continue the enumeration of S and this process continues inductively enumerating S,,,.

Example 3.5.3. Suppose that the bounded operator A can be written as
A= a(v,w)v) (w] (3.5.1)
VW
for some k € N (we write v ~j w for two vertices v, w € V if there is a path of at most £ edges connecting
v and w, that is, A only involves k-th nearest neighbour interactions). Suppose also that the vertex degree of
G is bounded by M. It holds thate,, € S,, and {w € V : v ~j, w} C Sp1x. Inductively |S,,| < (M +1)™

and hence we may take the upper bound
S(n) = (M + 1)+,

Example 3.5.4. Consider a nearest neighbour operator (k = 1 in (3.5.1)) on (?(Z<). It holds that |S,,,| ~
O(m%) whilst | S, 11 — Spm| ~ O(md=1). It is easy to see that we can choose a suitable S such that

d—1

Sn)—n~0O(n <),

that is, S grows at most linearly.
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Figure 3.2: Left: Large scale experiment with n = 10° for the algorithm of this chapter and finite section
with open boundary conditions and periodic approximants (see descriptions in main text), applied to the
operator Hy in (3.6.1). The top row shows a magnified section of the approximation provided by the new
algorithm and the high resolution obtained. The approximation computed with the finite section methods
produces spurious points in band gaps with large errors ~ 0.2. Right: The maximum errors as well as time
of outputs for the algorithm of this chapter (blue) and finite section methods (red for open BCs, green for
periodic).

3.6 Numerical Examples and Applications

We now demonstrate the broad applicability of the algorithm(s) of this chapter by a few test examples.
Examples of discrete operators are given first, including quasicrystals, the NSA Anderson model and open

systems in optics. We end with a selection of examples of PDOs.

3.6.1 Quasicrystals

Quasicrystals,> and more generally aperiodic systems, have generated considerable interest due to their
often exotic physical/spectral properties [SBGC84, Stal2]. We present the first rigorous spectral computa-
tional study with error bounds on a Penrose tile, the standard 2D model of a quasicrystal [VNA13, TTK15,
DVET*05]. No previous algorithm converges to the spectrum, nor provides error bounds on the output.

The free Hamiltonian H (Laplacian) is given by

(Hov)i = Z (VY — i), (3.6.1)

i~j
with the notation 7 ~ j meaning sites ¢ and j are connected by an edge and hence summation is over nearest
neighbour sites (vertices). Previous numerical methods study the eigenvalues of the Hamiltonian restricted
to a finite portion of the tiling with a choice of boundary conditions at the edges (finite section method).
However, this causes additional eigenvalues (spectral pollution or ‘edge states’) to appear, which are not in
the spectrum of H| acting on the infinite tiling. We will compare our method to finite section with open
boundary conditions (truncating the tile and the corresponding matrix without applying additional boundary

conditions), and the method of approximating an aperiodic tiling by periodic approximants [TFUT91].

3Discovered in 1982 by D. Shechtman who was awarded the Nobel prize in 2011 for his discovery.
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Ground State State Nearest —5 log(Abs Val)

Figure 3.3: The ground ‘state’ for the Penrose Laplacian (from the cover of Physical Review Letters Volume
122, Issue 25 [CRH19]) and an approximate state corresponding to energy nearest —5 (demonstrating that
we can deal with parts of the spectrum that are not at the edge of the spectrum). The algorithm allows us
to choose which states to compute without direct diagonalisation. It should be emphasised that we are not

necessarily approximating eigenvectors since the spectrum may not consist solely of eigenvalues.

Figure 3.2 (left) shows the output of the algorithm of this chapter for n = 105 and the two finite section
methods, with n the number of vertices used in the computation. It is important to note that the new
algorithm uses the same number of vertices of the tile as the finite section method for a given n. The error
estimate, computed for both the new algorithm as well as the finite section methods using the method in
the proof of Theorem 3.2.7, is also shown. This error estimate converges uniformly to the true error on
compact subsets of R. Finite section methods produce spurious points in the gaps of the spectrum, and the
frequency of spectral pollution is lower for the periodic approximants. The hat shape of the error function
in the figure also suggests that our error estimate has converged in the gaps of the spectrum.

The time taken for our algorithm (run using 200 cores) and for the finite section methods (which are
not parallelisable in general) to reach the final output (shown in Figure 3.2) suggests a speed-up of about
20 times. Moreover, the time for the finite section method appears to grow ~ O(n??), O(n3?) for open
and periodic boundary conditions respectively, whereas the time for our algorithm grows ~ O(n?1). This
predicts even larger differences in computation time for larger n, and meant we were able to compute
the spectrum for very large n only using the new algorithm. The direct diagonalisation approach is hard
to parallelise* and so will have difficulty competing with the speed of our method for large n. It is also
possible to use the methods of this chapter to locally compute approximate states corresponding to a given
energy level without the need to diagonalise the whole system, as shown in Figure 3.3 and proven in §3.4.

Finally, we consider a magnetic Hamiltonian [TDGG15, HK87, VMO04, Hof76]

(Hy)i = — Z i)
(5,5)
A constant perpendicular magnetic field B = Bz with potential A = (0, zB, 0) is applied, leading to the
Peierls phase factor between sites ¢ and j: aj; = (2}%; fr: A - dl, where &y = hc/e is the flux quantum.
Figure 3.4 shows the output for the finite section method and the algorithm of this chapter for n = 5000 up
to the first self-similar mode By. The absence of spectral pollution when using our algori