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COMPUTATIONS OF MEASURE-PRESERVING DYNAMICAL
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Abstract. Koopman operators globally linearize nonlinear dynamical systems and their spectral
information is a powerful tool for the analysis and decomposition of nonlinear dynamical systems.
However, Koopman operators are infinite dimensional, and computing their spectral information is
a considerable challenge. We introduce measure-preserving extended dynamic mode decomposition
(mpEDMD), the first Galerkin method whose eigendecomposition converges to the spectral quantities
of Koopman operators for general measure-preserving dynamical systems. mpEDMD is a data-driven
algorithm based on an orthogonal Procrustes problem that enforces measure-preserving truncations
of Koopman operators using a general dictionary of observables. It is flexible and easy to use with
any preexisting dynamic mode decomposition (DMD)-type method, and with different types of data.
We prove convergence of mpEDMD for projection-valued and scalar-valued spectral measures, spectra,
and Koopman mode decompositions. For the case of delay embedding (Krylov subspaces), our
results include the first convergence rates of the approximation of spectral measures as the size of
the dictionary increases. We demonstrate mpEDMD on a range of challenging examples, its increased
robustness to noise compared to other DMD-type methods, and its ability to capture the energy
conservation and cascade of a turbulent boundary layer flow with Reynolds number > 6\times 104 and
state-space dimension > 105.
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rithms, dynamical systems, Koopman operator, dynamic mode decomposition
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1. Introduction. We consider dynamical systems whose state \bfitx evolves over a
state space \Omega \subseteq \BbbR d in discrete time steps according to a function F : \Omega \rightarrow \Omega , i.e.,

\bfitx n+1 = F (\bfitx n), n\geq 0,(1.1)

for an initial condition \bfitx 0 \in \Omega . Throughout this paper, we assume that (1.1) is
measure-preserving (also called volume-preserving) with respect to a positive measure
\omega on \Omega . Measure preserving means that \omega (E) = \omega (\{ \bfitx : F (\bfitx )\in E\} ) for any measurable
set E \subset \Omega . This assumption covers many systems of interest such as Hamiltonian
flows [2], geodesic flows [31], Bernoulli schemes [83], physical systems in equilibrium
[43], and ergodic systems [90]. Moreover, many dynamical systems admit invariant
measures [56] or have measure-preserving posttransient behavior [66].

In many modern applications, the system's dynamics are too complicated to de-
scribe analytically, or we only have access to incomplete knowledge of its evolution.
Therefore, we do not assume explicit knowledge of the function F in (1.1). Instead, we
assume that we have access to discrete-time snapshots of this system, i.e., a dataset

\{ \bfitx (m),\bfity (m)\} Mm=1 such that \bfity (m) = F (\bfitx (m)), m= 1, . . . ,M.(1.2)
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1586 MATTHEW J. COLBROOK

Suitable data could be collected from one long trajectory, corresponding to \bfitx (m) =
Fm - 1(\bfitx 0) (i.e., m - 1 applications of F ), or from multiple shorter trajectories. The
data could come from experimental observations or numerical simulations, both of
which occur in this paper. We approximate quantities of (1.1) using the data (1.2).
With the arrival of big data and machine learning, this data-driven viewpoint is
currently undergoing a renaissance [48, 80, 13, 14, 16, 95, 37].

We introduce a new Galerkin discretization that maintains the measure-preserving
nature of (1.1) and allows us to prove convergence to the spectral quantities of (1.1).
Convergence of spectral quantities is crucial for recovering the correct dynamical
behavior. Preserving the measure is crucial for stability, and improved qualitative and
long-time behavior (see Figures 7 and 8). Moreover, the fact that our discretization
preserves a measure is a key factor in proving convergence.

1.1. Koopman operators. Koopman operators are a widely used and powerful
tool for the data-driven study of dynamical systems. First introduced by Koopman
and von Neumann in the 1930's [52, 53], Koopman operators allow a global lineariza-
tion of (1.1) using the space of scalar functions on \Omega [70]. Their increasing popularity,
known as ``Koopmanism"" [15], has led to thousands of articles over the last decade
[12]. Popular applications include epidemiology [76], finance [63], fluid dynamics
[79, 78, 67], neuroscience [10], molecular dynamics [50, 82], and robotics [6, 9].

Since (1.1) is measure preserving, its Koopman operator, \scrK , is defined by

[\scrK g](\bfitx ) = (g \circ F )(\bfitx ), \bfitx \in \Omega , g \in L2(\Omega , \omega ),(1.3)

and is an isometry on the space L2(\Omega , \omega ) with inner product \langle \cdot , \cdot \rangle and norm \| \cdot \| [77].
The functions g are also called ``observables"" because they indirectly measure the state
of the dynamical system. The Koopman operator transforms the nonlinear dynamics
in the state variable \bfitx into equivalent linear dynamics in the observables g. Hence,
the behavior of the dynamical system (1.1) is determined by the spectral information
of \scrK . Obtaining linear representations has the potential to revolutionize our ability
to predict and control nonlinear systems.

However, there is a price to pay for this linearization---\scrK acts on an infinite-
dimensional space. Therefore, its spectral information can be far more complicated
and more difficult to compute than that of a finite matrix [91, 20, 5, 24, 22]. Common
challenges include: computing spectral measures and continuous spectra [11, 61, 25];
spectral pollution [92], where discretizations cause spurious eigenvalues (and hence
spurious coherent structures) to appear [58, 26]; and, in the context of this paper, pre-
serving the isometric nature of \scrK . This last issue is often critical to ensuring that ap-
proximations retain the physical properties of the original system (e.g., energy conser-
vation). Structure-preserving algorithms have a rich history in geometric integration
[38] and have recently come to the fold in data-driven problems [42, 18, 49, 36, 41].

1.2. Existing work. Most existing approaches to approximate \scrK and its spec-
tral properties are based on dynamic mode decomposition (DMD) [79, 78, 88, 57] or
its variants [19, 45, 75, 27, 23]. DMD approximates \scrK via a best-fit linear model of
(1.1) that advances spatial measurements from one time step to the next. However,
DMD is based on linear observables, i.e., linear functions g in (1.3), which are not
rich enough for many nonlinear systems. To overcome this, [92] introduced extended
DMD (EDMD), a Galerkin approximation of \scrK acting on a dictionary of nonlinear
observables (see section 3). As the number of snapshots, M , increases, the eigenval-
ues computed by EDMD correspond to the so-called finite section method [8]. These
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mpEDMD FOR MEASURE-PRESERVING DYNAMICAL SYSTEMS 1587

eigenvalues can suffer from spectral pollution [92]---persistent spurious modes that
result from the approximation of infinite-dimensional dynamics in a chosen finite-
dimensional computational basis. Moreover, as the dictionary becomes richer, the
so-called spectral measures of EDMD, which generalize the notion of spectral projec-
tions, do not typically converge weakly to that of \scrK . Finally, although the Koopman
mode decomposition (KMD) provided by EDMD converges in an appropriate sense
(in contrast to DMD), it is not measure preserving, which can be a serious concern
(see subsection 6.3 for a real-world example).

Recently, Baddoo et al. [4] introduced physics-informed DMD (piDMD), which
enforces symmetry constraints on the DMD approximation. For conservative systems,
piDMD forces the DMD matrix to be orthogonal. However, no convergence results are
known for piDMD, and piDMD uses linear observables and implicitly assumes that
these are orthonormal in L2(\Omega , \omega ). This assumption typically does not hold and may
not even be possible after re-weighting. We shall see that this issue can be overcome
by working in a data-driven inner product space. The resulting Gram matrix of the
observables must be included in a measure-preserving discretization, otherwise the
wrong measure may be preserved.

There are several methods that are not based on the eigenvalues of a Galerkin
approximation, and that approximate spectral measures. Similar to the Ulam ap-
proximation of the Perron--Frobenius operator, [34, 35] proved convergence of periodic
approximations of \scrK via a partitioning of the state space, and developed a numerical
method for dealing with measure-preserving automorphisms on tori. In [55], the au-
thors computed measures for ergodic systems by first computing moments and then
making use of the Christoffel--Darboux kernel. Similar to DMD-type methods, this has
the advantage over periodic approximations of being implementable in high dimen-
sions. Residual DMD (ResDMD) [27, 23] provides a general computational framework
to deal with continuous spectra and spectral measures through smoothed approxima-
tions of spectral measures, leading to explicit and rigorous high-order convergence.
ResDMD deals jointly with discrete and continuous spectra, does not assume ergodic-
ity, and can be applied to data collected from either short or long trajectories. Finally,
the method in [29] constructs compact regularizations of the skew-adjoint generator
of continuous-time, measure-preserving, ergodic systems. Though based on different
techniques special to continuous-time systems, [29] is similar in spirit to the method
we propose---it preserves the measure and has convergence of spectral measures.

1.3. Contributions. We introduce a new approximation of \scrK that is mea-
sure preserving and that converges to the correct spectral information. Our method
uses an orthogonal Procrustes problem using general dictionaries and nonlinear mea-
surements, and we call our algorithm measure-preserving EDMD (mpEDMD). Table 1
compares DMD, EDMD, piDMD, and mpEDMD, and highlights some of the bene-
fits of mpEDMD. The fact that mpEDMD produces a normal truncation of \scrK is an im-
portant property used in the proofs of our convergence results. Our contributions
include

\bullet we introduce mpEDMD to deal with generic measure-preserving systems.1

mpEDMD is simple and easy to use with any preexisting DMD-type method,
it is measure preserving, and it can be used with a range of different data
structures and acquisition methods (e.g., single trajectories or multiple tra-
jectories);

1For example, we do not assume in this paper that the system is ergodic or invertible.
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1588 MATTHEW J. COLBROOK

Table 1
Comparisons of Galerkin discretizations discussed in this paper. X = [\bfitx (1) \cdot \cdot \cdot \bfitx (M)], Y =

[\bfity (1) \cdot \cdot \cdot \bfity (M)] \in \BbbC d\times M are matrices of the snapshots (linear dictionary) and it is common to
combine DMD with a truncated SVD (see section 3). G=\Psi \ast 

XW\Psi X and A=\Psi \ast 
XW\Psi Y , where \Psi X ,

\Psi Y are given in (3.3) and W =diag(w1, . . . ,wM ) is a diagonal matrix of quadrature weights.

DMD EDMD piDMD mpEDMD

Aux. SVD matrices n/a n/a Y X\ast = V1SV \ast 
2 G - 1

2 A\ast G - 1
2 =U1\Sigma U\ast 

2

Koopman matrix (Y X\dagger )\top G\dagger A V2V \ast 
1 G - 1

2 U2U\ast 
1G

1
2

Nonlinear dictionary 8 3 8 3
Conv. spec. meas. 8 8 8 3
Conv. spectra 8 8 8 3
Conv. KMD 8 3 8 3
Measure preserving 8 8 8/3\ddagger 3
\ddagger Note: piDMD is measure-preserving only if XX\ast and W are multiples of the identity, I.

Table 2
Lookup table of the approximated spectral quantities using mpEDMD (Algorithm 4.1) and the rel-

evant convergence results of this paper. The vectors \{ vj\} Nj=1 denote the eigenvectors of \BbbK with
corresponding eigenvalues \{ \lambda j\} Nj=1, and \delta \lambda j

denotes a Dirac delta distribution centered at \lambda j .

Spectral quantity Approximation Convergence results

Spec. measure \scrE \scrE N,M=
\sum N

j=1 vjv
\ast 
jG\delta \lambda j

Theorems A.1 and 5.1

Spec. measures \mu g \mu 
(N,M)
\bfitg =

\sum N
j=1 | v\ast jG\bfitg | 2\delta \lambda j

Theorem 5.3, Corollaries 5.4 and 5.5

Approx. pt. spec. \sigma \mathrm{a}\mathrm{p}(\scrK ) \{ \lambda 1, . . . , \lambda N\} Theorem 5.6 and Equation (5.7)

Koop. mode decomp. Eq. (5.2) for g(\bfitx n). Lemma A.2 and Remark 5.2

\bullet we prove convergence of mpEDMD for various spectral quantities of
interest, summarized in Table 2. Our results include weak convergence2 of
projection-valued and scalar-valued spectral measures, convergence of spec-
tra (including spectral inclusion and ways to deal with spectral pollution),
and convergence of KMDs in L2(\Omega , \omega ). mpEDMD is the first truncation method
whose eigendecomposition converges to these spectral quantities for general
measure-preserving dynamical systems. Corollary 5.5 is the first result in the
literature on convergence rates of the approximation of spectral measures as
the size of the dictionary increases;

\bullet we demonstrate our convergence results and the use of mpEDMD on several ex-
amples, including numerically simulated data and experimental data. These
examples also demonstrate the increased robustness of mpEDMD to noise com-
pared with other DMD-type methods, and the ability to deal with difficult
problems such as capturing the energy conservation and statistics of a turbu-
lent boundary layer flow.

1.4. Paper structure. In section 2 we introduce various concepts and nota-
tion, and motivate the computation of spectral properties of \scrK . Section 3 recalls
the basics of EDMD. This section can be read independently and the interested
reader may find the Galerkin interpretation helpful. In section 4 we introduce mpEDMD
and state its convergence properties in section 5. Proofs can be found in Appen-
dix A. A range of numerical examples are presented in section 6 and we conclude

2This means convergence after integrating against a Lipschitz continuous test function on the
unit circle (where the measures are supported) [7, Chap. 1]. The computation of spectral measures
poses a serious numerical challenge [25] and can only ever be done in this weak sense [21]. For
example, the spectral type of \scrK is well known to be sensitive to arbitrarily small perturbations.
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mpEDMD FOR MEASURE-PRESERVING DYNAMICAL SYSTEMS 1589

in section 7. General purpose code for mpEDMD and the examples of this paper can
be found at https://github.com/MColbrook/Measure-preserving-Extended-Dynamic-
Mode-Decomposition.

2. Mathematical preliminaries. Here we provide the background material on
spectra and spectral measures needed to understand later sections.

2.1. Spectral measures and unitary extensions of \bfscrK . Spectral measures
provide a way of diagonalizing normal operators, i.e., those that commute with their
adjoint. However, a Koopman operator that is an isometry does not necessarily
commute with its adjoint because it may not be invertible. A famous simple example
is the Koopman operator of the tent map

F (\bfitx ) = 2min\{ \bfitx ,1 - \bfitx \} , \Omega = [0,1].

If \omega is the usual measure, the system is measure preserving. However, the correspond-
ing Koopman operator, \scrK , cannot be unitary since any function\scrK g is symmetric about
\bfitx = 1/2 and hence \scrK is not onto.

Despite this example, a Koopman operator \scrK :L2(\Omega , \omega )\rightarrow L2(\Omega , \omega ) of a measure-
preserving dynamical system has a unitary extension \scrK \prime defined on an extended
Hilbert space \scrH \prime with L2(\Omega , \omega )\subset \scrH \prime [73, Chapter I]. Such an extension is not unique,
but it still allows us to understand the spectral information of \scrK by considering \scrK \prime ,
which is a normal operator. We shall see that after projecting back onto L2(\Omega , \omega ), the
measure is independent of the extension. If F is invertible and measure preserving,
\scrK is unitary and we can simply take \scrK \prime =\scrK and \scrH \prime =L2(\Omega , \omega ).

The spectral theorem for a normal matrix B \in \BbbC n\times n, i.e., B\ast B = BB\ast , states
that there exists an orthonormal basis of eigenvectors v1, . . . , vn for \BbbC n such that

v=

\Biggl( 
n\sum 

k=1

vkv
\ast 
k

\Biggr) 
v, v \in \BbbC n and Bv=

\Biggl( 
n\sum 

k=1

\lambda kvkv
\ast 
k

\Biggr) 
v, v \in \BbbC n,(2.1)

where \lambda 1, . . . , \lambda n are eigenvalues of B, i.e., Bvk = \lambda kvk for 1 \leq k \leq n. In other
words, the projections vkv

\ast 
k simultaneously decompose the space \BbbC n and diagonalize

the operator B. This intuition carries over to the infinite-dimensional setting of this
paper, by replacing v \in \BbbC n by f \in \scrH \prime , and B by a normal operator \scrK \prime . However, if \scrK \prime 

has a nonempty continuous spectrum, then the eigenvectors of \scrK \prime do not form a basis
for \scrH \prime or diagonalize \scrK \prime . Instead, the spectral theorem for normal operators states
that the projections vkv

\ast 
k in (2.1) can be replaced by a projection-valued measure \scrE \prime 

supported on the spectrum of \scrK \prime [28, Thm. X.4.11]. In our setting, \scrK \prime is unitary and
hence its spectrum is contained inside the unit circle \BbbT . The measure \scrE \prime assigns an
orthogonal projector to each Borel measurable subset of \BbbT such that

f =

\biggl( \int 
\BbbT 
d\scrE \prime (\lambda )

\biggr) 
f and \scrK \prime f =

\biggl( \int 
\BbbT 
\lambda d\scrE \prime (\lambda )

\biggr) 
f, f \in \scrH \prime .

Analogously to (2.1), \scrE \prime decomposes \scrH \prime and diagonalizes the operator \scrK \prime . For exam-
ple, if U \subset \BbbT contains only discrete eigenvalues of \scrK \prime and no other types of spectra,
then \scrE \prime (U) is simply the spectral projector onto the invariant subspace spanned by
the corresponding eigenfunctions. More generally, \scrE \prime decomposes elements of \scrH \prime along
the discrete and continuous spectrum of \scrK \prime . An excellent and readable introduction
to the spectral theorem can be found in Halmos' article [39].

Proposition 2.1. Let \scrP denote the orthogonal projection from \scrH \prime to L2(\Omega , \omega )
and define \scrE =\scrP \scrE \prime \scrP \ast . Then \scrE is independent of the choice of unitary extension.
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1590 MATTHEW J. COLBROOK

Proof. For any g,h \in L2(\Omega , \omega ) and Borel measurable set U \subset \BbbT , \langle \scrE (U)g,h\rangle =
\langle \scrE \prime (U)g,h\rangle \scrH \prime . Hence, it is enough to show that the scalar-valued measures \mu g,h,
\mu g,h(U) := \langle \scrE \prime (U)g,h\rangle \scrH \prime , are independent of the choice of \scrK \prime . For n\in \BbbZ ,\int 

\BbbT 
\lambda n d\mu g,h(\lambda ) = \langle (\scrK \prime )ng,h\rangle \scrH \prime =

\Biggl\{ 
\langle \scrK ng,h\rangle if n\geq 0,

\langle g,\scrK  - nh\rangle otherwise.

Since \mu g,h is determined by these moments, the result follows.

Proposition 2.1 shows that the choice of unitary extension is immaterial. Hence-
forth, we dispense with the extension \scrK \prime , and call \scrE the spectral measure of \scrK . The
approximation of \scrE plays a critical role in many applications. For example, in model
reduction, the approximate spectral projections provide a low-order model [71, 66].
A related example is the KMD in Remark 5.2. Furthermore, the decomposition of \scrE 
into atomic and continuous parts often characterizes a dynamical system. For exam-
ple, suppose F is measure preserving and bijective, and \omega is a probability measure.
Then, the dynamical system is (1) ergodic if and only if \lambda = 1 is a simple eigenvalue
of \scrK , (2) weakly mixing if and only if \lambda = 1 is a simple eigenvalue of \scrK and there are
no other eigenvalues, and (3) mixing if \lambda = 1 is a simple eigenvalue of \scrK and \scrK has
an absolutely continuous spectrum on span\{ 1\} \bot [40]. Different spectral types also
have interpretations in various applications such as fluid mechanics [67], anomalous
transport [94], and the analysis of invariants/exponents of trajectories [48].

Given an observable g \in L2(\Omega , \omega ) of interest that is normalized to have \| g\| = 1, the
spectral measure of \scrK with respect to g is a probability measure defined as \mu g(U) :=
\langle \scrE (U)g, g\rangle , where U \subset \BbbT is a Borel measurable set. The proof of Proposition 2.1 shows
that the moments of the measure \mu g are the correlations \langle \scrK ng, g\rangle and \langle g,\scrK ng\rangle for n\in 
\BbbZ \geq 0. For example, if our system corresponds to the dynamics on an attractor, these
statistical properties allow comparison of complex dynamics [71]. More generally, the
spectral measure of \scrK with respect to almost every g \in L2(\Omega , \omega ) is a signature for the
forward-time dynamics of (1.1). This is because \mu g completely determines \scrK when g
is cyclic, i.e., when the closure of span\{ g,\scrK g,\scrK 2g, . . .\} is L2(\Omega , \omega ). If g is not cyclic,
then \mu g only determines the action of \scrK on the closure of span\{ g,\scrK g,\scrK 2g, . . .\} , which
can still be useful if one is interested in particular observables. The choice of g is up
to the practitioner and application.

2.2. Approximate point spectra. The spectrum of \scrK is defined as

\sigma (\scrK ) :=
\bigl\{ 
\lambda \in \BbbC : (\scrK  - \lambda ) - 1 does not exist

\bigr\} 
.

The spectrum includes the set of eigenvalues, but can also include points that are
not eigenvalues. Since \scrK is an isometry, any eigenvalue of \scrK must lie in \BbbT . The
approximate point spectrum generalizes the notion of eigenvalues:

\sigma ap(\scrK ) :=
\Bigl\{ 
\lambda \in \BbbC : \exists \{ gn\} n\in \BbbN \subset L2(\Omega , \omega ) such that \| gn\| = 1, lim

n\rightarrow \infty 
\| (\scrK  - \lambda )gn\| = 0

\Bigr\} 
.

Any observable g with \| g\| = 1 and \lambda \in \BbbC such that \| (\scrK  - \lambda )g\| \leq \epsilon is known as an
(\epsilon -)approximate eigenfunction. Such observables are important for the dynamical sys-
tem (1.1) since \scrK ng= \lambda ng+\scrO (n\epsilon ). In other words, \lambda describes the coherent oscillation
and decay/growth of the observable g with time. The approximate eigenfunctions and
\sigma ap(\scrK ) encode information about the underlying dynamical system (1.1) [70]. For ex-
ample, the level sets of certain eigenfunctions determine the invariant manifolds [68]
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mpEDMD FOR MEASURE-PRESERVING DYNAMICAL SYSTEMS 1591

(e.g., Figure 4) and isostables [65], and the global stability of equilibria and ergodic
partitions can be characterized by approximate eigenfunctions and \sigma ap(\scrK ) [64, 15].

We can approximate \sigma ap(\scrK ) using the eigenvalues computed by Algorithm 4.1
and verify the computations using residuals (see subsection 5.4). If \scrK is unitary, then
\sigma ap(\scrK ) = \sigma (\scrK )\subset \BbbT . Otherwise, \sigma ap(\scrK ) =\BbbT and \sigma (\scrK ) is the closed unit disc in \BbbC .

3. EDMD. Given a dictionary of functions \{ \psi 1, . . . ,\psi N\} \subset L2(\Omega , \omega ), EDMD [92]
constructs a matrix \BbbK EDMD \in \BbbC N\times N from the snapshot data (1.2) that approximate
the action of \scrK on the finite-dimensional subspace VN = span\{ \psi 1, . . . ,\psi N\} . The choice
of the dictionary is up to the user, with some common handcrafted choices given in
[92, Table 1]. When the state-space dimension d is large, it is beneficial to use a data-
driven choice of dictionary [57, 93], which can be verified a posteriori to capture the
relevant dynamics via residual techniques [27]. We define the vector-valued function
or ``quasimatrix"" \Psi via

\Psi (\bfitx ) =
\bigl[ 
\psi 1(\bfitx ) \cdot \cdot \cdot \psi N (\bfitx )

\bigr] 
\in \BbbC 1\times N .

Any function g \in VN can then be written as g(\bfitx ) =
\sum N

j=1\psi j(\bfitx )gj =\Psi (\bfitx )\bfitg for some

vector of constant coefficients \bfitg \in \BbbC N . It follows from (1.3) that

[\scrK g](\bfitx ) =\Psi (\bfitx )(\BbbK EDMD \bfitg ) +R(\bfitg ,\bfitx ), R(\bfitg ,\bfitx ) :=\Psi (F (\bfitx ))\bfitg  - \Psi (\bfitx )(\BbbK EDMD \bfitg ).

Typically, the subspace VN generated by the dictionary is not an invariant subspace
of \scrK . Hence there is no choice of \BbbK EDMD that makes the error R(\bfitg ,\bfitx ) zero for all
choices of g \in VN and \bfitx \in \Omega . Instead, it is natural to select \BbbK EDMD as a solution of

argmin
B\in \BbbC N\times N

\biggl\{ \int 
\Omega 

max
\| \bfitg \| 2=1

| R(\bfitg ,\bfitx )| 2 d\omega (\bfitx ) =
\int 
\Omega 

\| \Psi (F (\bfitx )) - \Psi (\bfitx )B\| 22 d\omega (\bfitx )
\biggr\} 
.(3.1)

Here, \| \cdot \| 2 denotes the standard Euclidean norm of a vector. Given a finite amount of
snapshot data, we cannot directly evaluate the integral in (3.1). Instead, we approx-
imate it via a quadrature rule by treating the data points \{ \bfitx (m)\} Mm=1 as quadrature
nodes with weights \{ wm\} Mm=1. Note that in the original definition of EDMD, \omega is a
probability measure and the quadrature weights are wm = 1/M . General weights are
an important consideration when we sample according to a measure different from \omega 
or if we are free to chose \{ \bfitx (m)\} Mm=1 according to a high-order quadrature rule. The
discretized version of (3.1) is

\BbbK EDMD \in argmin
B\in \BbbC N\times N

M\sum 
m=1

wm

\bigm\| \bigm\| \bigm\| \Psi (\bfity (m)) - \Psi (\bfitx (m))B
\bigm\| \bigm\| \bigm\| 2
2
.(3.2)

For notational convenience, we define the following two matrices,

\Psi X =

\left(   \Psi (\bfitx (1))
...

\Psi (\bfitx (M))

\right)   \in \BbbC M\times N , \Psi Y =

\left(   \Psi (\bfity (1))
...

\Psi (\bfity (M))

\right)   \in \BbbC M\times N ,(3.3)

and let W = diag(w1, . . . ,wM ) be the diagonal weight matrix of the quadrature rule.
We define the Gram matrix G = \Psi \ast 

XW\Psi X and the matrix A = \Psi \ast 
XW\Psi Y . Letting

``\dagger "" denote the pseudoinverse, a solution to (3.2) is

\BbbK EDMD =G\dagger A= (\Psi \ast 
XW\Psi X)\dagger (\Psi \ast 

XW\Psi Y ) = (
\surd 
W\Psi X)\dagger 

\surd 
W\Psi Y .
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1592 MATTHEW J. COLBROOK

In some applications, the matrixGmay be ill-conditioned and it is common to consider
truncated singular value decompositions or other forms of regularization [57]. For
simplicity, we assume throughout the paper that G is invertible. The convergence
analysis of our algorithm under regularization is left for future work.

If the quadrature approximation converges, then

lim
M\rightarrow \infty 

Gjk = \langle \psi k,\psi j\rangle and lim
M\rightarrow \infty 

Ajk = \langle \scrK \psi k,\psi j\rangle .(3.4)

Let \scrP VN
denote the orthogonal projection onto VN . As M \rightarrow \infty , the convergence

in (3.4) means that \BbbK EDMD approaches a matrix representation of \scrP VN
\scrK \scrP \ast 

VN
. Thus,

EDMD is a Galerkin method in the large data limit M \rightarrow \infty . As a special case, if
\psi j(\bfitx ) = e\ast j\bfitx for j = 1, . . . , d=N and wm = 1/M , then \BbbK EDMD = (

\surd 
W\Psi X)\dagger 

\surd 
W\Psi Y .

In this case, \BbbK EDMD is the transpose of the usual DMD matrix,

\BbbK DMD =\Psi \top 
Y \Psi 

\top \dagger 
X =\Psi \top 

Y

\surd 
W (\Psi \top 

X

\surd 
W )\dagger = ((

\surd 
W\Psi X)\dagger 

\surd 
W\Psi Y )

\top =\BbbK \top 
EDMD.

Thus, DMD can be interpreted as producing a Galerkin approximation of the Koop-
man operator using the set of linear monomials as basis functions. When d is large,
it is common to form a low-rank approximation of

\surd 
W\Psi X via a truncated SVD [57].

There are typically three scenarios for which the convergence in (3.4) holds:
(i) Random sampling: In the initial definition of EDMD, \omega is a probability

measure and \{ \bfitx (m)\} Mm=1 are drawn independently according to \omega with the
quadrature weights wm = 1/M . The strong law of large numbers shows
that (3.4) holds with probability one [51, section 3.4], provided that \omega is not
supported on a zero level set that is a linear combination of the dictionary
[54, section 4]. Convergence is typically at a Monte Carlo rate of \scrO (M - 1/2)
[17].

(ii) High-order quadrature: If the dictionary and F are sufficiently regular and we
are free to choose the \{ \bfitx (m)\} Mm=1, then it is beneficial to select \{ \bfitx (m)\} Mm=1 as
an M -point quadrature rule with weights \{ wm\} Mm=1. This can lead to much
faster convergence rates in (3.4) [27], but can be difficult if d is large.

(iii) Ergodic sampling: For a single fixed initial condition \bfitx 0 and \bfitx (m) = Fm - 1(\bfitx 0)
(i.e., data collected along one trajectory), if the dynamical system is ergodic,
then one can use Birkhoff's ergodic theorem to show (3.4) [54]. One chooses
wm = 1/M but the convergence rate is problem dependent [46].

If one is entirely free to select the initial conditions of the trajectory data, and d
is not too large, then we recommend picking them based on a high-order quadrature
rule. Random and ergodic sampling have the advantage of being practical even when
d is large. Ergodic sampling is particularly useful when we have access to only one
trajectory of the dynamical system. Ergodic sampling does not require knowledge of
\omega (e.g., if one wishes to study the dynamics near attractors).

4. mpEDMD. We now seek a matrix \BbbK \in \BbbC N\times N that approximates the action
of \scrK on the finite-dimensional subspace VN and, in addition, corresponds to a unitary
operator on VN . Given the Gram matrix G = \Psi \ast 

XW\Psi X , we can approximate the
inner product \langle \cdot , \cdot \rangle via the inner product induced by G:

\bfith \ast G\bfitg =

N\sum 
j,k=1

hjgkGj,k \approx 
N\sum 

j,k=1

hjgk\langle \psi k,\psi j\rangle = \langle \Psi \bfitg ,\Psi \bfith \rangle .(4.1)

If (3.4) holds, then this approximation converges to the inner product on L2(\Omega , \omega ) as
M \rightarrow \infty . Hence we have \| \Psi \bfitg \| 2 \approx \bfitg \ast G\bfitg and \| \Psi \BbbK \bfitg \| 2 \approx \bfitg \ast \BbbK \ast G\BbbK \bfitg . Since \scrK is an
isometry, we must have that \| \Psi \BbbK \bfitg \| 2 = \| \Psi \bfitg \| 2. It is therefore natural to enforce
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mpEDMD FOR MEASURE-PRESERVING DYNAMICAL SYSTEMS 1593

\bfitg \ast G\bfitg = \bfitg \ast \BbbK \ast G\BbbK \bfitg \forall \bfitg \in \BbbC N .

This condition holds if and only if \BbbK \ast G\BbbK =G. Hence, we replace (3.1) by

argmin
B\in \BbbC N\times N

B\ast GB=G

\Biggl\{ \int 
\Omega 

max
\| G

1
2 \bfitg \| 2=1

| R(\bfitg ,\bfitx )| 2 d\omega (\bfitx )=
\int 
\Omega 

\bigm\| \bigm\| \bigm\| \Psi (F (\bfitx ))G - 1
2  - \Psi (\bfitx )BG - 1

2

\bigm\| \bigm\| \bigm\| 2
2
d\omega (\bfitx )

\Biggr\} 
.

(4.2)

We therefore enforce that our Galerkin approximation is an isometry with respect
to the learned inner product induced by G. This is a key difference to piDMD [4]
which forces the DMD approximation matrix to be orthogonal with respect to the
Euclidean inner product in which the observables are written down, i.e., B\ast B = I
(note also that the ``coordinate"" inner product used by piDMD is not canonical or
basis independent).

After applying the quadrature rule, the discretized version of (4.2) is

argmin
B\in \BbbC N\times N

B\ast GB=G

M\sum 
m=1

wm

\bigm\| \bigm\| \bigm\| \Psi (\bfity (m))G - 1
2  - \Psi (\bfitx (m))BG - 1

2

\bigm\| \bigm\| \bigm\| 2
2
.(4.3)

Letting B =G - 1/2CG1/2 for some matrix C, the problem in (4.3) is equivalent to

argmin
C\in \BbbC N\times N

C\ast C=I

\bigm\| \bigm\| \bigm\| W 1
2\Psi XG

 - 1
2C  - W

1
2\Psi YG

 - 1
2

\bigm\| \bigm\| \bigm\| 2
F
,(4.4)

where \| \cdot \| F denotes the Frobenius norm. The problem (4.4) is known as the orthogonal
Procrustes problem [81, 3]. The predominant method for computing a solution is via
the SVD. First, we compute an SVD of

G - 1
2\Psi \ast 

YW\Psi XG
 - 1

2 =G - 1
2A\ast G - 1

2 =U1\Sigma U
\ast 
2 .

A solution of (4.4) is then C =U2U
\ast 
1 and we take \BbbK =G - 1/2U2U

\ast 
1G

1/2.
Since \BbbK is similar to a unitary matrix, its eigenvalues lie along the unit circle.

For stability purposes, the best way to compute the eigendecomposition of \BbbK is to
do so for the unitary matrix U2U

\ast 
1 . To numerically ensure an orthonormal basis of

eigenvectors, we use the MATLAB schur command in the examples of section 6. The
computation of \BbbK and its eigendecomposition are summarized in Algorithm 4.1. Note
that once the matrices G and A are given, the cost of Algorithm 4.1 is \scrO (N3) and
hence comparable to other methods such as EDMD or piDMD.

The following proposition lists some useful properties of Algorithm 4.1. In part
(iii), we use the notion of pseudospectra [86] of an operator or matrix \scrA :

\sigma \epsilon (\scrA ) = \{ \lambda \in \BbbC : \| (\scrA  - \lambda ) - 1\| \geq 1/\epsilon \} =\cup \| \scrB \| \leq \epsilon \sigma (\scrA +\scrB ), \epsilon > 0.

In this paper, the Koopman operator is an isometry and hence \sigma \epsilon (\scrK ) = \{ \lambda \in \BbbC :
dist(\lambda ,\sigma (\scrK ))\leq \epsilon \} so that the spectrum is stable to perturbations.

Proposition 4.1. The output of Algorithm 4.1 has the following properties.
(i) If (3.4) holds, then any limit point of the matrices \BbbK as M \rightarrow \infty corresponds

to an operator that is the unitary part of a polar decomposition of \scrP VN
\scrK \scrP \ast 

VN
.

(ii) If (3.4) holds and g =\Psi \bfitg is such that \scrK g \in VN , then limM\rightarrow \infty \BbbK \bfitg exists and
limM\rightarrow \infty \Psi \BbbK \bfitg =\scrK g.

(iii) For any \epsilon \geq 0, \sigma \epsilon (\BbbK )\subset \sigma \epsilon \kappa (G1/2)(U2U
\ast 
1 )\subset \{ z : | | z|  - 1| \leq \epsilon \kappa (G1/2)\} .

(iv) \kappa (V )\leq \kappa (G1/2).
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1594 MATTHEW J. COLBROOK

Algorithm 4.1: mpEDMD for approximating spectral properties of \scrK .

Input: Snapshot data \{ \bfitx (m),\bfity (m) = F (\bfitx (m))\} Mm=1, quadrature weights \{ wm\} Mm=1,
and a dictionary of functions \{ \psi j\} Nj=1.
1: Compute G=\Psi \ast 

XW\Psi X and A=\Psi \ast 
XW\Psi Y , where \Psi X , \Psi Y are given in (3.3).

2: Compute an SVD of G - 1/2A\ast G - 1/2 =U1\Sigma U
\ast 
2 .

3: Compute the eigendecomposition U2U
\ast 
1 = \^V \Lambda \^V \ast .

4: Compute \BbbK =G - 1/2U2U
\ast 
1G

1/2 and V =G - 1/2 \^V .
Output: Koopman matrix \BbbK with eigenvectors V and eigenvalues \Lambda .

Proof. Suppose that B \in \BbbC N\times N is a limit point of the matrix \BbbK as M \rightarrow \infty .
By taking subsequences if necessary (all matrices are bounded), we may assume that
B = \^G - 1

2 \^U2
\^U\ast 
1
\^G

1
2 , \^Uj = limM\rightarrow \infty Uj , \^G = limM\rightarrow \infty G, and \^\Sigma = limM\rightarrow \infty \Sigma . In

the large data limit, the problem (4.3) is independent of the choice of basis for VN ,
and property (i) is also basis independent. Hence, we may assume without loss of
generality that \^G is the identity matrix corresponding to an orthonormal basis. It
follows that \BbbK EDMD = \^U2

\^\Sigma \^U\ast 
1 . Part (i) now follows.

For part (ii), since \scrK g \in VN , we have \| g\| = \| \scrK g\| = limM\rightarrow \infty \| U2\Sigma U
\ast 
1G

1
2 \bfitg \| 2 =

limM\rightarrow \infty \| \Sigma U\ast 
1G

1
2 \bfitg \| 2, where the last equality holds because U2 is unitary. Simi-

larly, \| g\| = limM\rightarrow \infty \| G 1
2 \bfitg \| 2 = limM\rightarrow \infty \| U\ast 

1G
1
2 \bfitg \| 2. Hence limM\rightarrow \infty \| U\ast 

1G
1
2 \bfitg \| 2 =

limM\rightarrow \infty \| \Sigma U\ast 
1G

1
2 \bfitg \| 2. \Sigma is a diagonal matrix and all of its entries are in [0,1]. We

claim that limM\rightarrow \infty [U\ast 
1G

1
2 - \Sigma U\ast 

1G
1
2 ]\bfitg = 0. If not, then by taking a subsequence if nec-

essary, we may assume that limM\rightarrow \infty \Sigma and limM\rightarrow \infty Uj exist with limM\rightarrow \infty [U\ast 
1G

1
2  - 

\Sigma U\ast 
1G

1
2 ]\bfitg \not = 0. But this contradicts limM\rightarrow \infty \| U\ast 

1G
1
2 \bfitg \| 2 = limM\rightarrow \infty \| \Sigma U\ast 

1G
1
2 \bfitg \| 2.

Since limM\rightarrow \infty G - 1
2U2\Sigma U

\ast 
1G

1
2 \bfitg = limM\rightarrow \infty \BbbK EDMD\bfitg exists, limM\rightarrow \infty \BbbK \bfitg exists and

limM\rightarrow \infty \Psi \BbbK \bfitg = limM\rightarrow \infty \Psi \BbbK EDMD\bfitg = g.
For part (iii), for any z /\in \sigma (\BbbK ) we have \| (\BbbK  - z) - 1\| = \| G - 1

2 (U2U
\ast 
1  - z) - 1G

1
2 \| \leq 

\kappa (G
1
2 )\| (U2U

\ast 
1  - z) - 1\| . Hence, \sigma \epsilon (\BbbK ) \subset \sigma \epsilon \kappa (G1/2)(U2U

\ast 
1 ). U2U

\ast 
1 is unitary, and hence

\sigma 
\epsilon \kappa (G

1
2 )
(U2U

\ast 
1 ) \subset \{ z : | | z|  - 1| \leq \epsilon \kappa (G

1
2 )\} . Finally, V = G - 1

2 \^V for unitary \^V so

(iv) holds.

Part (i) of Proposition 4.1 provides a geometric interpretation of Algorithm 4.1,
that we use to prove convergence of spectral measures in section 5. Part (ii) shows
that Algorithm 4.1 respects the invariance properties of \scrK . This is particularly use-
ful for delay embedding (see Corollary 5.5). Parts (iii) and (iv) provide conditioning
bounds on the eigendecomposition of \BbbK . This is useful since we can only ever ap-
proximate the eigendecomposition using finite M . In contrast, conditioning bounds
for \BbbK EDMD cannot hold in general. In fact, \BbbK EDMD need not even be diagonaliz-
able (see subsection 5.2). Further stability properties of mpEDMD are investigated in
subsection 6.2.

Note that mpEDMD can be used with generic choices of dictionary which generate
the matrices G and A. Data-driven choices of dictionary include diffusion kernels
[32] and trained neural networks [59, 72]. For example, the kernel trick has been
used for implementing EDMD when the state-space dimension is large [93]. It is
straightforward to adapt Algorithm 4.1 along the same lines.

5. Convergence theory. We now show convergence of Algorithm 4.1 to the
spectral information of \scrK . Throughout, \{ vj\} Nj=1 denotes the eigenvectors of \BbbK with
corresponding eigenvalues \{ \lambda j\} Nj=1, where \BbbK is the matrix output of Algorithm 4.1.
For ease of reading, the proofs of the results in this section are collected in Appendix A.
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5.1. Approximation of projection-valued spectral measures. To approx-
imate the spectral measure \scrE , we consider the spectral measure, \scrE N,M , of the matrix
\BbbK on the Hilbert space \BbbC N with the inner product in (4.1) induced by G:

d\scrE N,M (\lambda ) :=

N\sum 
j=1

vjv
\ast 
jG\delta (\lambda  - \lambda j)d\lambda .

We consider a sequence of vectors spaces \{ VN\} \infty N=1 and the large data limit M \rightarrow 
\infty . The following theorem shows weak convergence3 of \Psi \scrE N,M if \scrK is unitary. For
example, if F is invertible and measure-preserving, \scrK is unitary. A key part of the
proof is that \BbbK represents a normal truncation of \scrK .

Theorem 5.1. Suppose that limN\rightarrow \infty dist(h,VN ) = 0 for all h \in L2(\Omega , \omega ), (3.4)
holds, \scrK is unitary, and that \phi : \BbbT \rightarrow \BbbR is Lipschitz continuous. Then for any
g \in L2(\Omega , \omega ) and \bfitg N \in \BbbC N with limN\rightarrow \infty \| g - \Psi \bfitg N\| = 0,

lim
N\rightarrow \infty 

limsup
M\rightarrow \infty 

\bigm\| \bigm\| \bigm\| \bigm\| \int 
\BbbT 
\phi (\lambda )d\scrE (\lambda )g - \Psi 

\int 
\BbbT 
\phi (\lambda )d\scrE N,M (\lambda )\bfitg N

\bigm\| \bigm\| \bigm\| \bigm\| = 0.(5.1)

The proof of Theorem 5.1 shows that the rate of convergence in (5.1) as N \rightarrow \infty 
depends on the regularity of \phi (how fast its Laurent series converges) as well as how
well the powers of \scrK are captured by the powers of \BbbK .

Remark 5.2 (computing suitable \bfitg N and the Koopman mode decomposition).
Given g \in L2(\Omega , \omega ), we can compute a suitable \bfitg N in Theorem 5.1 via

\bfitg N =G - 1\Psi \ast 
XW

\bigl( 
g(\bfitx (1)) \cdot \cdot \cdot g(\bfitx (M))

\bigr) \top \in \BbbC N .

If the quadrature rule converges, \Psi \bfitg N converges to \scrP VN
g in the large data limit and

limN\rightarrow \infty \| g - \scrP VN
g\| = 0 under the first condition of the theorem. We obtain

[\scrP VN
g](\bfitx )\approx \Psi (\bfitx )V

\Bigl[ 
V  - 1(

\surd 
W\Psi X)\dagger 

\surd 
W
\bigl( 
g(\bfitx (1)) \cdot \cdot \cdot g(\bfitx (M))

\bigr) \top \Bigr] 
.

Hence, we have the approximate factorization

g(\bfitx n)\approx \Psi (\bfitx 0)\BbbK nV
\Bigl[ 
V  - 1(

\surd 
W\Psi X)\dagger 

\surd 
W
\bigl( 
g(\bfitx (1)) \cdot \cdot \cdot g(\bfitx (M))

\bigr) \top \Bigr] 
= [\Psi (\bfitx 0)V ]\Lambda n

\Bigl[ 
V  - 1(

\surd 
W\Psi X)\dagger 

\surd 
W
\bigl( 
g(\bfitx (1)) \cdot \cdot \cdot g(\bfitx (M))

\bigr) \top \Bigr] 
.

(5.2)

The factor \Psi V is a quasimatrix of approximate Koopman eigenfunctions. The col-
umns of the final factor in square brackets are known as Koopman modes [66]. The
first part of Lemma A.2 shows the convergence of this approximation.

5.2. Warning example. We cannot drop the condition that \scrK is unitary from
Theorem 5.1. In general, since \scrK is an isometry, it is unitarily equivalent to a direct
sum of unilateral shifts and a unitary operator [73, Chapter I]. The general case can
be understood by supposing that \scrK is unitarily equivalent to a single unilateral shift.
Let VN = span\{ e1, . . . , eN\} , where the \{ ej\} is a basis so that \scrK ej = ej+1 for j \in \BbbN .
We have

lim
M\rightarrow \infty 

\BbbK EDMD =

\left(      
0

1
. . .

. . .
. . .

1 0

\right)      , lim
M\rightarrow \infty 

\BbbK =

\left(      
0 1

1
. . .

. . .
. . .

1 0

\right)      .

3This is not to be confused with weak operator convergence of the operator-valued measures.
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1596 MATTHEW J. COLBROOK

Note that for this example, \BbbK EDMD is not even diagonalizable. Let \phi (\lambda ) = 1/\lambda , then\int 
\BbbT 
\phi (\lambda )d\scrE (\lambda )e1 =\scrK \ast e1 = 0, lim

M\rightarrow \infty 
\Psi 

\int 
\BbbT 
\phi (\lambda )d\scrE N,M (\lambda )e1 = eN ,

where we also use e1 to denote the first canonical basis vector of \BbbC N . Clearly eN does
not converge in the norm to e1. However, eN does converge weakly to 0 in L2(\Omega , \omega ).
Motivated by this, we remove the need for \scrK to be unitary when considering scalar-
valued spectral measures in the next subsection.

5.3. Approximation of scalar-valued spectral measures. Let g \in L2(\Omega , \omega )
with \| g\| = 1. We approximate the spectral measure \mu g by \mu 

(N,M)
\bfitg , where

\mu (N,M)
\bfitg (U) := \bfitg \ast G\scrE N,M (U)\bfitg =

\sum 
\lambda j\in U

| v\ast jG\bfitg | 2(5.3)

and \bfitg is normalized so that \bfitg \ast G\bfitg = 1. Since \{ G1/2vj\} Nj=1 is an orthonormal basis for
\BbbC N , \mu 

(N,M)
\bfitg is a probability measure. To measure the distance between probability

measures, we use the 1-Wasserstein distance, W1. For two Borel probability measures
\mu and \nu on \BbbT , the W1 distance is defined as

W1(\mu ,\nu ) := sup

\biggl\{ \int 
\BbbT 
\phi (\lambda )d(\mu  - \nu )(\lambda ) : \phi :\BbbT \rightarrow \BbbR Lip. cts., Lip. constant \leq 1

\biggr\} 
.

Convergence in this metric is equivalent to the usual weak convergence of measures.
The following theorem explicitly bounds W1(\mu g, \mu 

(N,M)
\bfitg ), before taking any limits.

Theorem 5.3. For any L\in \BbbN , g \in L2(\Omega , \omega ), and \bfitg \in \BbbC N with \bfitg \ast G\bfitg = 1,

W1 (\mu g, \mu 
(N,M)
\bfitg )\leq C

\left(  log(L)

L
+
\sum 

1\leq l\leq L

| \langle \scrK | l| g, g\rangle  - \bfitg \ast G\BbbK | l| \bfitg | 
l

\right)  
for a universal constant C that can be made explicit.

Theorem 5.3 and the first part of Lemma A.2, show the following corollary.

Corollary 5.4. Suppose that limN\rightarrow \infty dist(h,VN ) = 0 for all h \in L2(\Omega , \omega ), and
(3.4) holds. Then for any g \in L2(\Omega , \omega ) and \bfitg N \in \BbbC N with limN\rightarrow \infty \| g - \Psi \bfitg N\| = 0,

lim
N\rightarrow \infty 

limsup
M\rightarrow \infty 

W1 (\mu g, \mu 
(N,M)
\bfitg ) = 0.(5.4)

A popular choice of dictionary is a Krylov subspace, i.e., span\{ g,\scrK g, . . . ,\scrK L - 1g\} .
This corresponds to time-delay embedding, which is a popular method for DMD-type
algorithms [1, 47, 74]. More generally, we can consider the case \{ g,\scrK g, . . . ,\scrK Lg\} \subset 
VN . Part (ii) of Proposition 4.1 shows that if g,\scrK g, . . . ,\scrK lg \in VN and g = \Psi \bfitg ,
then limM\rightarrow \infty | \langle \scrK | l| g, g\rangle  - \bfitg \ast G\BbbK | l| \bfitg | = 0. Combining this with Theorem 5.3 shows the
following corollary, which provides an explicit rate of convergence.

Corollary 5.5. If \{ g,\scrK g, . . . ,\scrK Lg\} \subset VN , g=\Psi \bfitg , and (3.4) holds, then

limsup
M\rightarrow \infty 

W1 (\mu g, \mu 
(N,M)
\bfitg )\leq Clog(L)/L(5.5)

for a universal constant C that can be made explicit.
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5.4. Approximation of spectra. We end this section with the convergence to
\sigma ap(\scrK ). The following theorem shows that the eigenvalues computed by Algorithm 4.1
approximate the whole of \sigma ap(\scrK ) as N \rightarrow \infty and the subspace VN becomes richer.

Theorem 5.6. If limN\rightarrow \infty dist(h,VN ) = 0 \forall h\in L2(\Omega , \omega ) and (3.4) holds, then

lim
N\rightarrow \infty 

limsup
M\rightarrow \infty 

sup
\lambda \in \sigma \mathrm{a}\mathrm{p}(\scrK )

dist(\lambda ,\{ \lambda 1, . . . , \lambda N\} ) = 0.(5.6)

Despite this result, \sigma (\BbbK ) = \{ \lambda 1, . . . , \lambda N\} can suffer from spectral pollution. That
is, eigenvalues of \BbbK may approximate points that are not in \sigma (\scrK ). We can avoid spec-
tral pollution by computing residuals and discarding eigenpairs with a large residual.
Suppose that (3.4) holds, v \in \BbbC N , and \lambda \in \BbbC . Since \scrK \ast \scrK is the identity,

\| (\scrK  - \lambda )\Psi v\| =
\sqrt{} 

\langle (\scrK  - \lambda )\Psi v, (\scrK  - \lambda )\Psi v\rangle = lim
M\rightarrow \infty 

\sqrt{} 
v\ast [(1 + | \lambda | 2)G - \lambda A - \lambda A\ast ]v.(5.7)

Since \scrK is an isometry, this residual provides a good error estimate. In particular, if
v is normalized so that limM\rightarrow \infty \| G1/2v\| 2 = 1, then \| (\scrK  - \lambda )\Psi v\| \geq dist(\lambda ,\sigma (\scrK )).

6. Numerical examples. We consider three numerical examples, two with data
from numerical simulations, and one with experimentally collected data. Each exam-
ple demonstrates different aspects and advantages of mpEDMD.

6.1. Lorenz system and convergence of spectral measures. The Lorenz
system [60] is the following system of three coupled ordinary differential equations:

\.X = 10(Y  - X) , \.Y =X (28 - Z) - Y, \.Z =XY  - 8Z/3.

We consider the dynamics of \bfitx = (X,Y,Z) on the Lorenz attractor. The system
is chaotic and strongly mixing [62] (and hence ergodic). Hence the only eigenvalue
(including multiplicities) of \scrK is the trivial eigenvalue \lambda = 1 corresponding to a con-
stant eigenfunction. We consider the corresponding discrete-time dynamical system
by sampling with a time step \Delta t = 0.1. We use the ode45 command in MATLAB to
collect data along a single trajectory with M snapshots, from an initial point on the
attractor. The quadrature rule in section 3 corresponds to ergodic sampling.4

We first consider the scalar-valued spectral measures \mu 
(N,M)
\bfitg j

, where gj(\bfitx ) = cj [\bfitx ]j
is the jth coordinate normalized to have norm 1 with respect to the ergodic measure \omega .
For each j, we use \{ gj ,\scrK gj , . . . ,\scrK N - 1gj\} as the dictionary. This choice corresponds to
time-delay embedding. Figure 1 (left) shows the convergence as M \rightarrow \infty (large data
limit) for a fixed N = 50. The convergence is at a Monte Carlo rate of \scrO (M - 1/2).
Figure 1 (middle) shows the convergence as N \rightarrow \infty , where M = 106 is selected
large enough to have negligible effect on the shown errors. The W1 distance to \mu gj is
computed by comparing it to an approximation with larger N selected large enough
to have negligible effect on the shown errors. The plot demonstrates the rate \scrO (N - 1)
from Corollary 5.5. For either convergence in M or N , we do not observe monotonic
decrease of errors, which is to be expected. Figure 1 (right) plots the cumulative
distribution functions (cdfs) of \mu 

(N,M)
\bfitg j

for N = 103 and M = 106. For this example,
the cdf of \mu gj is continuous away from \lambda = 1 and hence the cdf of \mu 

(N,M)
\bfitg 3

converges
pointwise on \BbbT \setminus \{ 1\} . The cdf for \mu 

(N,M)
\bfitg 3

suggests an atom at \lambda = 1 with a small
absolutely continuous spectrum in the vicinity of \lambda = 1. In contrast, \mu 

(N,M)
\bfitg 1

and
\mu 
(N,M)
\bfitg 2

are more uniform.

4Though we cannot accurately numerically integrate for long time periods since the system is
chaotic, this does not affect the convergence of the quadrature rule. This effect is known as shadowing.
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Fig. 1. Left: Convergence of \mu 
(50,M)
\bfitg j

as M \rightarrow \infty . Middle: Convergence to the scalar-valued

measure as N \rightarrow \infty . Right: Cdf of \mu 
(103,106)
\bfitg j

plotted against the phase, \theta , of the spectral parameter

\lambda = ei\theta . In all cases, the W1 distance is computed using the L1 distance between the cdfs.
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Fig. 2. Convergence of integrals as M \rightarrow \infty (left) and N \rightarrow \infty (right).

Next, we approximate the projection-valued spectral measures and demonstrate
Theorem 5.1. We use the same dictionaries as before, take \phi (\lambda ) = (1 - \lambda )2 log(1 - \lambda ),
and compute

\int 
\BbbT \phi (\lambda )d\scrE N,M (\lambda )\bfitg j . Figure 2 (left) shows the convergence as M \rightarrow \infty 

for a fixed N = 50. Again, we see the Monte Carlo rate of convergence \scrO (M - 1/2).
Figure 2 (right) shows the convergence as N \rightarrow \infty . Theorem 5.1 does not provide a
rate of convergence. However, we may use the proof of Theorem A.1. The function \phi 
was chosen so that its second derivative has a logarithmic blowup at \lambda = 1. Figure 1
suggests a convergence rate of approximately \scrO (N - 2). In general, the rate depends
on how fast the truncated Laurent series of \phi converges and how fast powers of \BbbK 
converge strongly to powers of \scrK . Figure 3 shows the outputs as functions on the
Lorenz attractor using N = 50 basis functions and M = 106.

6.2. Nonlinear pendulum, approximate eigenfunctions, and robustness
to noise. We now consider the dynamical system of the nonlinear pendulum. Let
the state variables \bfitx = (x1, x2) be governed by the following equations of motion,

\.x1 = x2, \.x2 = - sin(x1) with \Omega = [ - \pi ,\pi ]per \times \BbbR ,

where \omega is the standard Lebesgue measure on \Omega . We consider the corresponding
discrete-time dynamical system by sampling with a time step \Delta t = 0.5. The system
is nonchaotic and Hamiltonian, with challenging Koopman operator theory [61].

We use the dictionary \{ g,\scrK g, . . . ,\scrK 99g\} with g(x1, x2) = exp(ix1)x2 exp( - x22/2).
We collect data points on an equispaced tensor product grid corresponding to the
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Ψ
∫
T φ(λ) dE50,106(λ)ggg1

X Y

Z

Ψ
∫
T φ(λ) dE50,106(λ)ggg2

X Y

Z

Ψ
∫
T φ(λ) dE50,106(λ)ggg3

X Y

Z

Fig. 3. Real part of \Psi 
\int 
\BbbT \phi (\lambda )d\scrE 50,106 (\lambda )\bfitg j plotted at 2\times 104 points on the attractor.

mpEDMD, λ ≈ eiπ/4

x1

x2

EDMD, λ ≈ eiπ/4

x1

mpEDMD, λ ≈ ei3π/4

x1

EDMD, λ ≈ ei3π/4

x1

Fig. 4. Eigenfunctions log10(| v| ), where v = \Psi \bfitv is normalized and \bfitv is the eigenvector of \BbbK 
(mpEDMD) or \BbbK \mathrm{E}\mathrm{D}\mathrm{M}\mathrm{D} (EDMD). In each case we plot the eigenfunction with eigenvalue nearest to the
shown value of \lambda . Taking \lambda \rightarrow \lambda yields the corresponding eigenfunctions reflected in x2 = 0.

periodic trapezoidal quadrature rule with M1 points in the x1 direction and a trun-
cated trapezoidal quadrature rule with M2 = M1 points in the x2 direction. For
our problem, these quadrature rules have exponential [87] and \scrO (exp( - CM2/3

2 )) [85]
convergence, respectively. To simulate the collection of trajectory data, we compute
trajectories starting at each initial condition using the ode45 command in MATLAB.

Figure 4 shows approximate eigenfunctions on a log-scale, computed using M1 =
200. The Koopman operator \scrK has no normalizable eigenfunctions, but has general-
ized eigenfunctions supported along unions of contour lines of the action variable [69].
The eigenfunctions produced by mpEDMD are much more localized along these contour
lines and better approximate the generalized eigenfunctions than EDMD, whose ap-
proximate eigenfunctions are blurred. Figure 5 (left) shows the eigenvalues of \BbbK and
\BbbK EDMD. The eigenvalues of \BbbK EDMD lie strictly inside the unit disc, corresponding to
spectral pollution. Note that this spectral pollution has nothing to do with any stabil-
ity issues, but instead is due to the discretization of the infinite-dimensional operator
\scrK by a finite matrix. In contrast, mpEDMD does not suffer from spectral pollution.

Noise is a substantial problem for most DMD methods, and a common remedy is
to consider a total least squares (TLS) problem [30]. The solution to the orthogonal
Procrustes problem (4.4) is also the solution to the corresponding constrained TLS
problem [3]. Hence, mpEDMD is optimally robust when noise is present in both data
matrices in (4.4) [89]. We test the robustness to noise by adding \tau Gaussian random
noise to the measurement matrices \Psi X and \Psi Y in (3.3). Figure 5 (right) shows the
effect of noise on the eigenvalues of \BbbK and \BbbK EDMD for \tau = 0.1 (10\% noise). The
deterioration of the spectrum of \BbbK EDMD is clear. To further investigate robustness,
we compute the (relative) residual of eigenpairs using (5.7) with noise-free matrices
G,A computed using large M1. Figure 6 plots the mean residual over all N = 200
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(λ
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��) spectral
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Re(λ)
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(λ

)

Fig. 5. Eigenvalues of \BbbK \mathrm{E}\mathrm{D}\mathrm{M}\mathrm{D} (EDMD) and \BbbK (mpEDMD). Left: Noise-free case. Right: 10\%
Gaussian random noise added to \Psi X and \Psi Y .
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Fig. 6. Mean residual over all N eigenpairs and 10 independent realizations per noise level \tau .
Residuals are computed using (5.7) with matrices G and A computed using a larger M1 and \tau = 0.

eigenpairs and 10 independent noise realizations against the noise level \tau . We see
that mpEDMD is much more robust to noise than EDMD. Moreover, for a given noise
level \tau , the accuracy of mpEDMD increases as M1 increases. A full statistical analysis
of this phenomenon is beyond the scope of this paper, but we note that this type of
behavior, known as strongly consistent estimation, is typical of TLS [89, Chapter 8].
This phenomenon does not happen with EDMD in Figure 6.

6.3. Conservation of energy and statistics for turbulent boundary layer
flow. We now consider the boundary layer generated by a thin jet of height 12.7 mm
injecting air onto a smooth flat wall. Experiments are performed at the wind tunnel of
Virginia Tech [84]. A two-component time-resolved particle image velocimetry system
is used to capture 1000 snapshots of the two-dimensional velocity field of the wall-jet
flow over a spatial grid and a time period of 1 s. The streamwise origin of the field-of-
view is 1282.7mm downstream of the wall-jet nozzle. We use a jet velocity of Ujet = 50
m/s, corresponding to a jet Reynolds number of 6.4\times 104. The length and height of
the field-of-view is approximately 75mm \times 40mm, and the spatial resolution of the
measurements is \Delta x = \Delta y \approx 0.24 mm. This corresponds to dimension d = 102300
in (1.1). We use a full SVD of the data matrix to form a dictionary, as outlined
in section 3. The flow consists of two main regions. Within the region bounded by
the wall and the peak in the velocity profile at y \approx 15.5 mm, the flow exhibits the
properties of a zero pressure gradient turbulent boundary layer. Above this fluid
portion, the flow is dominated by a two-dimensional shear layer consisting of large,
energetic flow structures. This example is a considerable challenge for regular DMD
approaches due to multiple turbulent scales expected within the boundary layer.
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TKE, y ≈ 5mm

Time (s)

TKE, y ≈ 35mm

Time (s)

Time-avg. TKE

Height y (mm)

Fig. 7. Left and middle: Turbulent kinetic energy (TKE) as a function of time, averaged over
the homogeneous horizontal direction. The dashed line shows the expected growth rate of EDMD
from the eigenvalues of \BbbK \mathrm{E}\mathrm{D}\mathrm{M}\mathrm{D}. Right: TKE as a function of vertical height, averaged over time,
and the homogeneous horizontal direction. The relative error of mpEDMD is bounded by 0.001.

We investigate the conservation of energy and statistics of the flow when using
the KMD in Remark 5.2, in particular (5.2), to make future state predictions. We
consider the velocity profiles predicted by mpEDMD, EDMD, and piDMD over a time
period of 5 s (five times the window of observations) from an initialization \bfitx 0 selected
at random from the trajectory data. The results are averaged over 100 such random
initializations.

Figure 7 (left, middle) shows the TKE of the predictions, averaged in the (ho-
mogenous) horizontal direction and normalized by U2

jet. We show the TKE at vertical
heights in the boundary layer (left panel) and in the shear layer (middle panel). The
instability of the KMD for EDMD is clear. Whilst piDMD is stable, it does not
preserve the correct values of TKE. This is because piDMD is preserving the stan-
dard Euclidean inner product, as opposed to the inner product in (4.1) induced by
the matrix G. In contrast, mpEDMD preserves the correct inner product and conserves
the correct TKE. Figure 7 (right) highlights this by showing the TKE prediction of
mpEDMD and piDMD as a function of the vertical height, and averaged over the whole
time period of 5 s. The maximum relative error of mpEDMD is less than 0.001. These
results underline the importance, even for dictionaries of linear functions, of the non-
trivial matrix G in Algorithm 4.1.

Figure 8 (top row) shows characteristic predictions of the horizontal component
of the velocity field at prediction time 4 s. mpEDMD captures the larger-scale structures
above the boundary layer, whereas piDMD does not, and EDMD overpredicts the
velocity magnitude. Note that the system is chaotic so we can only expect to predict
the qualitative behavior. To investigate the statistics of the predictions, Figure 8
(bottom row) shows the wavenumber spectrum, computed by applying the Fourier
transform to spatial autocorrelations of the predictions in the horizontal direction
[33, Chapter 8]. The wavenumber spectrum provides a measure of energy content
of various turbulent structures as a function of their size, and provides an efficient
measure of how well a flow-reconstruction method performs for various spatial scales.
The wavenumber spectrum of mpEDMD shows excellent agreement with the wavenumber
spectrum of the flow. In contrast, EDMD and piDMD do not capture the correct
turbulent statistics. While we can only ever capture the statistics to the resolution of
the collected data, this example provides very promising results for the use of mpEDMD
in real-world applications and methods such as model order reduction.

7. Conclusion. We formulated a structure-preserving data-driven approxima-
tion of Koopman operators for measure-preserving dynamical systems, mpEDMD, sum-
marized in Algorithm 4.1. We proved the convergence of mpEDMD to various
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1602 MATTHEW J. COLBROOK

Fig. 8. Top row: Horizontal velocity profiles predicted at 4s. Bottom row: Wavenumber spectra,
which measure the energy content of various turbulent structures at different scales, thus providing
an efficient measure of a flow reconstruction method's performance over various spatial scales.

infinite-dimensional spectral quantities of interest, summarized in Table 2. In par-
ticular, mpEDMD is the first truncation method whose eigendecomposition converges
to these spectral quantities for general measure-preserving dynamical systems. We
also proved the first results on convergence rates of the approximation in the size of
the dictionary. As well as the convergence theory, our numerical examples show the
increased robustness of mpEDMD to noise compared with other DMD-type methods,
and the ability to capture energy conservation and statistics of a real-world turbulent
boundary layer flow. These results open the door to future extensions to more gen-
eral structure-preserving methods for Koopman operators and data-driven dynamical
systems.

Appendix A. Proofs of results in section 5. To prove Theorem 5.1, we
begin with the following bound.

Theorem A.1. Suppose that \phi : \BbbT \rightarrow \BbbR is Lipschitz continuous with Lipschitz
constant bounded by 1. Then for any L\in \BbbN , g \in L2(\Omega , \omega ), and \bfitg \in \BbbC N ,\bigm\| \bigm\| \bigm\| \bigm\| \int 

\BbbT 
\phi (\lambda )[d\scrE (\lambda )g - \Psi d\scrE N,M (\lambda )\bfitg ]

\bigm\| \bigm\| \bigm\| \bigm\| \leq C

\Biggl( 
log(L)

L

\Bigl[ 
\| g\| +\| \Psi G - 1

2\| \| G 1
2 \bfitg \| 2

\Bigr] 
+\| g - \Psi \bfitg \| \| \phi \| \infty 

+
\sum 

1\leq l\leq L

\bigl[ 
\| \scrK lg - \Psi \BbbK l\bfitg \| + \| (\scrK \ast )lg - \Psi \BbbK  - l\bfitg \| 

\bigr] 
l

\Biggr) 
,

where C is a universal constant.

Proof. Consider the Laurent series of \phi , \phi (\lambda ) =
\sum \infty 

l= - \infty cl\lambda 
l, and let

SL\phi (\lambda ) =
\sum 
| l| \leq L

cl\lambda 
l, where cl =

1

2\pi i

\int 
\BbbT 
\lambda  - (l+1)\phi (\lambda )d\lambda .

For | l| \geq 1, since \phi is Lipschitz continuous with Lipschitz constant bounded by 1,
| cl| \lesssim 1/| l| . Arguing as in the proof of Proposition 2.1,\int 

\BbbT 
\lambda l d\scrE (\lambda )g=

\Biggl\{ 
\scrK lg if l\geq 0,

(\scrK \ast ) - lg otherwise.
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Arguing directly, we see that \Psi 
\int 
\BbbT \lambda 

l d\scrE N,M (\lambda )\bfitg =\Psi \BbbK l\bfitg . It follows that\bigm\| \bigm\| \bigm\| \bigm\| \int 
\BbbT 
SL\phi (\lambda )d\scrE (\lambda )g - \Psi 

\int 
\BbbT 
SL\phi (\lambda )d\scrE N,M (\lambda )\bfitg 

\bigm\| \bigm\| \bigm\| \bigm\| 
\lesssim \| g - \Psi \bfitg \| \| \phi \| \infty +

\sum 
1\leq l\leq L

1

l

\bigl[ 
\| \scrK lg - \Psi \BbbK l\bfitg \| + \| (\scrK \ast )lg - \Psi \BbbK  - l\bfitg \| 

\bigr] 
.

(A.1)

Let \^\phi = \phi  - \phi (0), then since the Lipschitz constant of \phi is bounded by 1, \| \^\phi \| \infty \leq \pi .
Since \| \phi  - SL\phi \| \infty = \| \^\phi  - SL

\^\phi \| \infty \lesssim log(L)/L [44, Chapter I.3], it follows that\bigm\| \bigm\| \bigm\| \bigm\| \int 
\BbbT 
(\phi  - SL\phi )(\lambda )d\scrE (\lambda )g

\bigm\| \bigm\| \bigm\| \bigm\| \lesssim log(L)

L
\| g\| .(A.2)

For functions f defined on \BbbT ,

\Psi 

\int 
\BbbT 
f(\lambda )d\scrE N,M (\lambda )\bfitg =\Psi 

N\sum 
j=1

f(\lambda j)vjv
\ast 
jG\bfitg =\Psi G - 1/2f(U2U

\ast 
1 )G

1/2\bfitg ,

where we have used the fact that the eigenvectors of U2U
\ast 
1 are G1/2vj . It follows that

\Psi 

\int 
\BbbT 
(\phi  - SL\phi )(\lambda )d\scrE N,M (\lambda )\bfitg =\Psi G - 1/2(\phi  - SL\phi )(U2U

\ast 
1 )G

1/2\bfitg .

Since U2U
\ast 
1 is unitary, \| (\phi  - SL\phi )(U2U

\ast 
1 )\| \leq \| \phi  - SL\phi \| \infty . It follows that\bigm\| \bigm\| \bigm\| \bigm\| \Psi \int 

\BbbT 
(\phi  - SL\phi )(\lambda )d\scrE N,M (\lambda )\bfitg 

\bigm\| \bigm\| \bigm\| \bigm\| \lesssim log(L)

L
\| \Psi G - 1/2\| \| G1/2\bfitg \| 2.(A.3)

Theorem A.1 follows by combining (A.1), (A.2), and (A.3).

The following lemma shows that the first summation term in Theorem A.1 con-
verges to zero as N \rightarrow \infty if the sequence of vector spaces is dense, and that the second
summation term also converges to zero if, in addition, \scrK is unitary. This result shows
strong operator convergence of \BbbK l.

Lemma A.2. Suppose that limN\rightarrow \infty dist(h,VN ) = 0 for all h\in L2(\Omega , \omega ) and (3.4)
holds. Then for any g \in L2(\Omega , \omega ) and \bfitg N \in \BbbC N with limN\rightarrow \infty \| g - \Psi \bfitg N\| = 0,

lim
N\rightarrow \infty 

limsup
M\rightarrow \infty 

\| \scrK lg - \Psi \BbbK l\bfitg N\| = 0 \forall l \in \BbbN .(A.4)

If, in addition, \scrK is unitary, then

lim
N\rightarrow \infty 

limsup
M\rightarrow \infty 

\| (\scrK \ast )lg - \Psi \BbbK  - l\bfitg N\| = 0 \forall l \in \BbbN .(A.5)

Proof. Recall that \scrP N is the orthogonal projection onto VN so that \scrP N\scrP \ast 
N is the

identity on VN . For notational convenience, let \scrQ N = \scrP \ast 
N\scrP N . The assumption that

limN\rightarrow \infty dist(h,VN ) = 0 for all h \in L2(\Omega , \omega ) implies that \scrQ N converges strongly to
the identity on L2(\Omega , \omega ), denoted by I. It follows that \scrQ N\scrK \scrQ N converges strongly
to \scrK and that (\scrQ N\scrK \ast \scrQ N\scrK \scrQ N )1/2 converges strongly to (\scrK \ast \scrK )1/2 = I.

To prove (A.4), we may assume without loss of generality, by taking subsequences
if necessary, that the large data limit limM\rightarrow \infty \BbbK exists for each fixed N . Let \scrK N

denote the operator on VN represented by limM\rightarrow \infty \BbbK . Proposition 4.1(i) shows that

\scrP \ast 
N\scrK N\scrP N (\scrQ N\scrK \ast \scrQ N\scrK \scrQ N )1/2 =\scrQ N\scrK \scrQ N .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/1

6/
23

 to
 1

34
.1

57
.2

54
.7

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



1604 MATTHEW J. COLBROOK

Let h\in L2(\Omega , \omega ) and \epsilon > 0. ChooseN0 \in \BbbN so that ifN \geq N0, then \| \scrQ N\scrK \scrQ Nh - \scrK h\| \leq 
\epsilon and \| (\scrQ N\scrK \ast \scrQ N\scrK \scrQ N )1/2h - h\| \leq \epsilon . It follows that if N \geq N0, then

\| \scrP \ast 
N\scrK N\scrP Nh - \scrK h\| \leq \| \scrQ N\scrK \scrQ Nh - \scrK h\| +\| \scrP \ast 

N\scrK N\scrP N [(\scrQ N\scrK \ast \scrQ N\scrK \scrQ N )1/2h - h]\| \leq 2\epsilon ,

where we have used the fact that \| \scrP \ast 
N\scrK N\scrP N\| \leq 1. Since h\in L2(\Omega , \omega ) and \epsilon > 0 were

arbitrary, it follows that \scrP \ast 
N\scrK N\scrP N converges strongly to \scrK as N \rightarrow \infty and hence

[\scrP \ast 
N\scrK N\scrP N ]l converges strongly to \scrK l for any l \in \BbbN . Let gN =\Psi \bfitg N , then

lim
M\rightarrow \infty 

\Psi \BbbK l\bfitg N =\scrP \ast 
N\scrK l

N\scrP NgN = [\scrP \ast 
N\scrK N\scrP N ]lgN \forall l \in \BbbN .

Since gN converges to g, [\scrP \ast 
N\scrK N\scrP N ]l converges strongly to \scrK l, and all relevant oper-

ators are uniformly bounded, the limit in (A.4) holds.
Now suppose that \scrK is unitary so that \scrK \scrK \ast is the identity. Again, we may assume

without loss of generality that limM\rightarrow \infty \BbbK exists for each fixed N . Let \scrK N denote the
operator on VN represented by limM\rightarrow \infty \BbbK . Since \scrP \ast 

N\scrK N\scrP N converges strongly to \scrK 
as N \rightarrow \infty for all h\in L2(\Omega , \omega ), we must have

limsup
N\rightarrow \infty 

\| [\scrP \ast 
N\scrK N\scrP N ]\ast \scrP \ast 

N\scrK N\scrP N\scrK \ast h - [\scrP \ast 
N\scrK N\scrP N ]\ast h\| \leq lim

N\rightarrow \infty 
\| \scrP \ast 

N\scrK N\scrP N\scrK \ast h - h\| = 0.

Since \scrK \ast 
N\scrK N = \scrP N\scrP \ast 

N are the identity on VN , [\scrP \ast 
N\scrK N\scrP N ]\ast \scrP \ast 

N\scrK N\scrP N\scrK \ast h=\scrQ N\scrK \ast h
converges to \scrK \ast h. It follows that \scrP \ast 

N\scrK \ast 
N\scrP N converges strongly to \scrK \ast as N \rightarrow \infty .

Since limM\rightarrow \infty \Psi \BbbK  - l\bfitg N =\scrP \ast 
N (\scrK \ast 

N )l\scrP NgN , we argue as before to show (A.5).

Using Lemma A.2, we now prove Theorem 5.1.

Proof of Theorem 5.1. By rescaling, we may assume without loss of generality
that the Lipschitz constant of \phi is bounded by 1. We use the bound in Theorem A.1,
replacing \bfitg by \bfitg N . We have limM\rightarrow \infty \| \Psi G - 1/2\| = 1 and limM\rightarrow \infty \| G1/2\bfitg N\| 2 =
\| \Psi \bfitg N\| . Since limN\rightarrow \infty \| g - \Psi \bfitg N\| = 0, it follows that for any L\in \BbbN ,

limsup
N\rightarrow \infty 

limsup
M\rightarrow \infty 

\bigm\| \bigm\| \bigm\| \bigm\| \int 
\BbbT 
\phi (\lambda )d\scrE (\lambda )g - \Psi 

\int 
\BbbT 
\phi (\lambda )d\scrE N,M (\lambda )\bfitg N

\bigm\| \bigm\| \bigm\| \bigm\| 
\lesssim 

log(L)

L
\| g\| + limsup

N\rightarrow \infty 
limsup
M\rightarrow \infty 

\sum 
1\leq l\leq L

1

l

\bigl[ 
\| \scrK lg - \Psi \BbbK l\bfitg N\| + \| (\scrK \ast )lg - \Psi \BbbK  - l\bfitg N\| 

\bigr] 
.

Since L\in \BbbN is arbitrary, to prove the theorem it is enough to show that

limsup
N\rightarrow \infty 

limsup
M\rightarrow \infty 

\| \scrK lg - \Psi \BbbK l\bfitg N\| + \| (\scrK \ast )lg - \Psi \BbbK  - l\bfitg N\| = 0 \forall l \in \BbbN .

This follows from Lemma A.2.

Proof of Theorem 5.3. The proof is almost identical to that of Theorem A.1. Let
\phi : \BbbT \rightarrow \BbbR be Lipschitz continuous with Lipschitz constant bounded by 1. Since \mu g

and \mu 
(N,M)
\bfitg are probability measures, we may assume that \phi (0) = 0. Moreover,\int 

\BbbT 
\lambda l d\mu g(\lambda ) =

\Biggl\{ 
\langle \scrK lg, g\rangle if l\geq 0,

\langle (\scrK  - l)\ast g, g\rangle = \langle g,\scrK  - lg\rangle otherwise

and \bfitg \ast G
\int 
\BbbT \lambda 

l d\mu 
(N,M)
\bfitg (\lambda )\bfitg = \bfitg \ast G\BbbK l\bfitg = \bfitg \ast G1/2[U2U

\ast 
1 ]

lG1/2\bfitg . In particular, if l < 0,

then \bfitg \ast G
\int 
\BbbT \lambda 

l d\mu 
(N,M)
\bfitg (\lambda )\bfitg = \bfitg \ast G\BbbK | l| \bfitg . It follows that\bigm| \bigm| \bigm| \bigm| \int 

\BbbT 
\lambda l d(\mu g  - \mu (N,M)

\bfitg )(\lambda )

\bigm| \bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \langle \scrK | l| g, g\rangle  - \bfitg \ast G\BbbK | l| \bfitg 
\bigm| \bigm| \bigm| \forall l \in \BbbZ .
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Arguing as in the proof of Theorem A.1, it follows that\bigm| \bigm| \bigm| \bigm| \int 
\BbbT 
SL\phi (\lambda )d(\mu g  - \mu (N,M)

\bfitg )(\lambda )

\bigm| \bigm| \bigm| \bigm| \lesssim \sum 
1\leq l\leq L

1

l

\bigm| \bigm| \bigm| \langle \scrK | l| g, g\rangle  - \bfitg \ast G\BbbK | l| \bfitg 
\bigm| \bigm| \bigm| .(A.6)

Since \mu g and \mu 
(N,M)
\bfitg are probability measures and \| \phi  - SL\phi \| \infty \lesssim log(L)/L,\bigm| \bigm| \bigm| \bigm| \int 

\BbbT 
(\phi  - SL\phi )(\lambda )d(\mu g  - \mu (N,M)

\bfitg )(\lambda )

\bigm| \bigm| \bigm| \bigm| \lesssim log(L)

L
.(A.7)

The result follows by combining (A.6) and (A.7) and taking suprema over such \phi .

Proof of Theorem 5.6. To prove (5.6), we may assume without loss of generality,
by taking subsequences if necessary, that the large data limit limM\rightarrow \infty \BbbK exists for
each fixed N . Let \scrK N denote the operator on VN represented by limM\rightarrow \infty \BbbK .

Let \delta > 0 and let \{ z1, . . . , zk\} \subset \sigma ap(\scrK ) be such that dist(\lambda ,\{ z1, . . . , zk\} )\leq \delta for any
\lambda \in \sigma ap(\scrK ). Such a \delta -net exists since \sigma ap(\scrK ) is compact. For j = 1, . . . , k there exists
gj \in L2(\Omega , \omega ) of norm 1 such that \| (\scrK  - zj)gj\| \leq \delta . Since limN\rightarrow \infty dist(h,VN ) = 0
for any h \in L2(\Omega , \omega ), we may choose gj,N = \Psi \bfitg j,N \in VN , each of norm 1, such that
limN\rightarrow \infty \| gj  - gj,N\| = 0 for j = 1, . . . , k. Using the first part of Lemma A.2,

limsup
N\rightarrow \infty 

\| (\scrK N  - zj)gj,N\| = limsup
N\rightarrow \infty 

lim
M\rightarrow \infty 

\| \Psi (\BbbK  - zj)\bfitg j,N\| = \| (\scrK  - zj)gj\| \leq \delta .

Since \scrK N is unitary, limsupN\rightarrow \infty dist(zj , \sigma (\scrK N ))\leq \delta and hence

limsup
N\rightarrow \infty 

limsup
M\rightarrow \infty 

dist(zj , \sigma (\BbbK )) = limsup
N\rightarrow \infty 

dist(zj , \sigma (\scrK N ))\leq \delta .

Since sup\lambda \in \sigma \mathrm{a}\mathrm{p}(\scrK ) dist(\lambda ,\sigma (\BbbK ))\leq supj=1,...,k dist(zj , \sigma (\BbbK )) + \delta , we have

limsup
N\rightarrow \infty 

limsup
M\rightarrow \infty 

sup
\lambda \in \sigma \mathrm{a}\mathrm{p}(\scrK )

dist(\lambda ,\sigma (\BbbK ))\leq 2\delta .

Since \delta > 0 was arbitrary, the theorem follows.

Acknowledgments. I would like to thank Steve Brunton, Andrew Stuart and
Alex Townsend for helpful feedback on this work, and M\'at\'e Sz\H oke for providing the
experimental PIV data for the last example.
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