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There exists a growing literature on using the Fokas method (unified transform method) to 
solve Laplace and Helmholtz problems on convex polygonal domains. We show here that 
the convexity requirement can be eliminated by the use of a ‘virtual side’ concept, thereby 
significantly increasing the flexibility and utility of the approach. We also show that the 
inclusion of singular functions in the basis to treat corner singularities can greatly increase 
the rate of convergence of the method. The method also compares well with other standard 
methods used to cope with corner singularities. An example is given where this inclusion 
leads to exponential convergence. As well as this, we give new results on several additional 
issues, including the choice of collocation points and calculation of solutions throughout 
domain interiors. An appendix illustrates the algebraic simplicity of the methodology by 
showing how the core part of the present approach can be implemented in only about a 
dozen lines of MATLAB code.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Background to the Fokas method

For many years, the most important open problem associated with non-linear integrable evolution equations was the 
solution of initial boundary as opposed to initial value problems. A novel approach for the analysis of this problem was 
introduced by Fokas in [1] and the linear limit of this approach gave rise to a completely new method for solving linear 
evolution PDEs [2]. Later, it was realised that this method yields new integral representations for the solution of boundary 
value problems (BVPs) for linear elliptic PDEs in polygonal domains, which in the case of simple domains, can be used to 
obtain the analytical solution of several problems which apparently cannot be solved by the standard methods [3,4]. The 
method gives rise to algebraic relations linking the (generalised) Fourier transform of the known boundary data and of the 
unknown boundary values, which has become known as the global relation. Although the global relation is only one of the 
ingredients of the Fokas method, still this relation has had important analytical and numerical implications: first, it has led 
to novel analytical formulations of a variety of important physical problems from water waves [5–7] to three-dimensional 
layer scattering [8]. Second, it has led to the development of new numerical techniques for the Laplace, modified Helmholtz, 
Helmholtz and biharmonic equations on convex domains. In this paper we shall extend the implementation of this method 
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to solve BVPs on non-convex polygons and introduce basis functions that capture the corner singularities of solutions of 
generic elliptic BVPs in order to increase the rate of convergence.

Given a bounded polygon � with sides � j listed in positive orientation (anticlockwise), our aim is to numerically solve 
the elliptic BVP

uxx + u yy ± k2u = f in �,

δ ju
N
j + A ju j = g j on � j, j = 1, ...,n,

(1.1)

where uN
j denotes the (outward) normal derivative along side � j and g j, f are given data. For any side � j we consider 

two cases: either a Dirichlet boundary condition j ∈ D with δ j = 0 and A j = 1, or a Robin boundary condition j ∈ R with 
δ j = 1 and A j is a (real) constant. We will deal exclusively with real data g j and real solutions u, but remark that the 
method can handle complex solutions. We take k ∈ R≥0 with k = 0 corresponding to the Laplace/Poisson equation, +k2

the Helmholtz equation and −k2 the modified Helmholtz equation. The generalised ‘Dirichlet-to-Neumann’ (D2N) problem 
consists in computing the complementary boundary values, which we denote by w j . If j ∈ D then this is simply w j = uN

j , 
otherwise we set w j = A juN

j − u j . The values g j and w j then determine completely the Dirichlet and Neumann boundary 
values from which the solution can be reconstructed.

For example, consider the case of the two-dimensional Laplace equation in the variable u(x, y) formulated in the interior 
of a closed polygon characterised by the corners z j = x j + iy j , z j ∈ C, j = 1, ..., n. Define û j(λ) as the following Fourier 
transform along the side (z j, z j+1):

û j(λ) =
z j+1∫
z j

e−iλz(uN
j ds + λu jdz

)
, j = 1, ...,n, λ ∈C, (1.2)

with s denoting the arc length parameterising this side. The global relation in this case is given by

n∑
j=1

û j(λ) = 0, λ ∈C, (1.3)

and links the Dirichlet and Neumann boundary values. More generally, the global relation is a key algebraic equation cou-
pling the finite Fourier transforms of the known boundary data g j and the unknown boundary values w j . In some cases the 
analysis of the global relation implies that the unknown transforms can be computed through the solution of a Riemann–
Hilbert problem [9] and for particular boundary conditions and simple domains this can be bypassed with the unknown 
transforms computed using only algebraic manipulations. A simple example is the equilateral triangle for which several 
results generalising the classical results of Lamé can be obtained [10,11].

As mentioned, there has been considerable interest in using the global relations of the Fokas method to evaluate nu-
merically the generalised D2N map [12–27]. The approach consists of two steps. First, one expands the unknown boundary 
values in some suitable basis. Second, one evaluates the global relations to set up a finite linear system of equations. As-
suming the existence of a unique solution to the generalised D2N map, this can be inverted for an approximation of the 
unknown boundary values given the known boundary data. This method is a spectral space collocation method since it in-
volves evaluating a set of equations at different values λ in the complex Fourier plane.1 It is found that over-determining 
the system yields smaller condition numbers and we shall take advantage of recent developments in this area [18,25]. This 
method has recently been put on a more rigorous footing by Ashton [21,28].

1.2. Present novelties

Despite its success, the Fokas method has so far been implemented only in convex polygons (for numerical reasons we 
give below) and has mainly been tested on smooth solutions, where it yields exponential convergence. These drawbacks 
are serious when accessing the ability of the Fokas method to solve generic BVPs. This paper addresses these issues and 
extends the Fokas method in two ways. First, we shall show that a simple decomposition of the domain allows one to 
deal with non-convex polygons in the numerical implementation of the method. In Section 3, we give a heuristic motivation 
for the convexity requirement for numerical implementations so far presented in the literature. Rigorous results for the 
Fokas method have only been proven in convex domains, but this is an artificial limitation given the decomposition [21]. 
A principle of Ehrenpreis [29, Chapter 7] has been described in [24,30,31]: “any solution to a constant coefficient PDE 
on a convex domain can be written as the superposition of exponential solutions.” This result may also have discouraged 
explorations with non-convex domains and we stress that the integral representations of the Fokas method do not require 

1 Often when solving PDEs, collocation refers to evaluating at the boundary (e.g. boundary integral methods) and in some cases the interior of the 
domain. This is not to be confused with collocation in this paper which occurs in spectral, rather than physical, space.
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convexity [3], though the integral representation is slightly different in the non-convex case. In particular, the degradation 
in accuracy when a domain ceases to be convex is not an inevitable consequence of the ‘global relation’ formulation, but 
instead of a mathematical ‘simplification’, leading to the essence of the proposed novel implementation of the Fokas method. 
Our implementation does not simplify the resulting matrix and yields a well conditioned numerical method.

Second, we shall present analysis of the inclusion of singular functions in the basis, corresponding to corner singularities. 
We demonstrate that the inclusion of singular functions dramatically increases the rate of convergence of the Fokas method 
for non-smooth solutions. In particular, it is found that the computed unknown boundary values converge at the same rate 
as their expansion in the chosen basis. This considerably extends the example in [19] that includes one singular function 
for one corner in the case of Laplace’s equation which is the only example so far in the literature on the Fokas method. For 
example, we demonstrate that if the solution can be written as an expansion around a singular point in the entire domain, 
then the Fokas method yields exponential convergence. Scenarios with multiple singular points are also considered, where 
high-order algebraic convergence is obtained.

There are of course many other methods which seek to solve the BVP in (1.1) such as finite element (FEM), finite 
difference (FDM), boundary element (BEM), spectral methods etc. Methods designed to cope with corner singularities are 
extensively reviewed in [32] with strategies such as mesh-refinement [33–35] and schemes which take into account the 
exact form of the singularities if they are known (an approach which we adopt here). Well known examples include the 
hp-version of the finite element method [36–38], boundary integral methods [39,40], multigrid finite element methods [41]
and collocation methods (such as Trefftz methods and radial basis methods) [42,43]. A review of these methods including 
comparisons with the Fokas method is beyond the scope of this paper, and we limit ourselves to an example in Section 4.3.1
which demonstrates the Fokas method compares well against the singular function boundary integral method, hp-FEM and a 
boundary element formulation treating the corner singularities. For a comparison between the Fokas method and a spectral 
implementation of the boundary integral method we refer the reader to [19,27]. Rather, our aim is to demonstrate how the 
limitations of convex domains and smooth solutions can be overcome in the implementation of the Fokas method and we 
leave to future study further comparisons. Some advantages of the Fokas method studied in this paper include:

(a) In a similar fashion to boundary integral methods, the Fokas method reduces the dimension of the problem by one and 
hence the computational cost is much lower than methods which discretise the entire domain (such as FEM and FDM). 
In addition, all the relevant integrals can be given in closed form and efficiently evaluated in standard environments 
such as MATLAB. This is in contrast to standard boundary integral formulations which involve the integration of singular 
functions.

(b) It is easy to implement. This is illustrated by two short MATLAB codes in the appendix and further example code at the 
first author’s website: http://www.damtp .cam .ac .uk /user /mjc249 /code .html. After we have increased the convergence 
rate through the use of singular functions, this makes it an attractive alternative to hp-FEM and other adaptive versions 
of FEM or BEM which can be difficult to implement. It is also simpler to implement than most collocations methods.

(c) It is fast, taking typically at most the order of a few seconds on a standard desktop computer (and this can be extended 
in an efficient manner to evaluate in the domain interior [27]). It shares the efficiency of many collocation methods in 
that a single (small) linear system is inverted for the solution, with no mesh or discretisation of the domain required.

(d) The convergence rate is determined by the convergence rate of the expansion of the unknown boundary values, w j , 
in the given basis. For smooth solutions we use a Legendre basis and recover exponential convergence. Once singular 
functions have been incorporated into the basis, high-order algebraic convergence (and even exponential in some cases) 
can be achieved for singular solutions.

(e) In contrast to many collocation methods which typically collocate along the boundary of the domain (or in some cases 
the domain’s interior), there is a larger degree of freedom in the collocation points (typically C \ {0}) for the Fokas 
method. This can be exploited for well-conditioned linear systems [25] and allows for over-determined systems without 
the clustering of collocation points.2

1.3. Paper structure

In Section 2 we discuss the problem in more detail and the type of solutions we consider. We also introduce the 
Fokas method and describe in detail its numerical implementation. Section 3 discusses the implementation in non-convex 
polygons, including an explanation for ill-conditioning and the idea of virtual sides. We then give numerical examples 
for the Laplace, modified Helmholtz and Helmholtz equations, finishing with a motivating example for the inclusion of 
singular functions. Section 4 discusses how to adapt the method to cope with corner singularities and includes numerical 
examples for the Laplace, modified Helmholtz and Helmholtz equations. Section 5 concludes the paper and discusses future 
work.

2 This point has been discussed extensively in [27] in a comparison with the boundary integral method.

http://www.damtp.cam.ac.uk/user/mjc249/code.html
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2. The Fokas method

2.1. Conventions and solution type

Before we recall the Fokas method, we will briefly discuss some conventions and the type of solution we are seeking. 
We list the corners of the polygon in anticlockwise order z1, ..., zn such that � j joins z j to z j+1 with the convention that 
zn+1 = z1 and each corner z j has an internal angle α j ∈ (0, 2π). Since our domain is not smooth, we cannot expect smooth 
solutions in general. It is well known that if a polygon (or domain with conical points in two dimensions) � has an angle 
απ between Neumann and Dirichlet edges corresponding to θ = 0 and θ = απ respectively, then for 1/(2α) /∈ Z the leading 
order singularity for the solution of Laplace’s behaves like

u ∼ r1/(2α) cos(θ/(2α)) (2.1)

near the corner. Taking α ↑ 1 we see that even for convex polygons, mixed boundary conditions do not necessarily imply 
that solutions in H1+ε(�) for smooth data (this can be made precise and proven with cut-off functions). We refer the reader 
to [44–47] for some general results on Lipschitz domains.

Let �D be the union of the edges on which we prescribe Dirichlet boundary conditions, along with the corner points 
between any two adjacent such sides. Similarly define �R for Robin boundary conditions. The following is well known (see 
for example [48]) and states the well-posedness of our problem if f and gi are sufficiently smooth:

Theorem 2.1. Suppose that f ∈ H1(�)∗ (the dual of H1(�)), gD ∈ H1/2(�D) and gR ∈ H−1/2(�R). Either there exists a unique 
u ∈ H1(�) that solves (1.1), or there exists a non-zero solution u to the corresponding homogeneous problem with gi = 0.

It is precisely for this unique H1(�) solution that we numerically compute the generalised D2N map. The points where 
we have a non-zero solution to the homogeneous problem correspond to when ∓k2 is an eigenvalue of the Laplacian on 
� with homogeneous boundary conditions of the given type. Our numerical experiments will assume that ∓k2 does not 
belong to this discrete set.

Remark 2.2. It is possible to study the method’s global relation (see below) for distributional data [49] and more generally 
one can study corner asymptotics for maximal domains [50] or distributional boundary data [51,52]. However, we shall stick 
to the case in Theorem 2.1 for simplicity.

2.2. Integral formulation

We now describe how the Fokas method is usually implemented. The starting point is Green’s second identity∫
∂�

(
v
∂u

∂n
− u

∂v

∂n

)
ds =

∫
�

f vdV , (2.2)

where v is any solution of the formal adjoint equation

vxx + v yy ± k2 v = 0 in �. (2.3)

Letting z = x + iy and z = x − iy, for the Poisson equation we take v = exp(−iλz) for λ ∈ C. Using the general identity 
(treating z and z as independent)

∂ F

∂n
ds = −i

∂ F

∂z
dz + i

∂ F

∂z
dz, (2.4)

this yields the equation
∫
∂�

exp(−iλz)
(∂u

∂n
+ λu

dz

ds

)
ds =

∫
�

exp(−iλz) f dV . (2.5)

Similarly for the modified Helmholtz equation, we take v = exp
(
(ik/2)(z/λ − λz)

)
for λ ∈C\{0} yielding

∫
∂�

exp
(
(ik/2)(z/λ − λz)

)(∂u

∂n
+ ku

2

(
λ

dz

ds
+ 1

λ

dz

ds

))
ds =

∫
�

exp
(
(ik/2)(z/λ − λz)

)
f dV . (2.6)

Finally, for the Helmholtz equation we take v = exp((−ik/2)(z/λ + λz)) for λ ∈C\{0} yielding



1000 M.J. Colbrook et al. / Journal of Computational Physics 374 (2018) 996–1016
∫
∂�

exp
(
(−ik/2)(z/λ + λz)

)(∂u

∂n
+ ku

2

(
λ

dz

ds
− 1

λ

dz

ds

))
ds =

∫
�

exp
(
(−ik/2)(z/λ + λz)

)
f dV . (2.7)

These equations are known in each case as the global relation, and in fact are an infinite number of equations depending 
on the complex parameter λ. This is the key property of the Fokas method and is crucial for the following numerical 
implementations. If u is real then we obtain a second global relation via Schwartz conjugation (i.e. via taking the complex 
conjugate and then replacing λ with λ). A complex formulation with exponential type solutions for v is used due to a deep 
connection with Fourier analysis that allows one to prove rigorous results [21,28,53], as well as representation formulae 
(which require integration in the complex plane). Exponential solutions v also allow explicit expressions for the integrals 
on the left-hand sides of (2.5)–(2.7) when we expand u and its normal derivatives in terms of Legendre polynomials and 
functions that capture corner singularities.

In the particular case of the Helmholtz equation, there is the following similarity of this method with the null-field 
method [54]: they are both based on Green’s (second) identity with one of the two functions equal to the solution of 
the BVP, and the other function equal to a family of solutions to the adjoint equation (with no boundary conditions). 
However, even in this particular case there are significant differences: first, the null-field method is specific to the exterior 
Helmholtz scattering problem, whereas the Fokas method is applied to interior problems. Second, in the former method one 
chooses the adjoint solutions to be outgoing wave functions found by separation of variables in polar coordinates, whereas 
in the latter method one chooses the adjoint functions to be the exponential functions found by separation of variables in 
Cartesian coordinates. Third, and most importantly, in the null-field method one expands the unknown boundary values w j
in a ‘global basis’, i.e. the basis functions used for the expansion are supported on the whole of the boundary; common 
choices of the basis are either the outgoing wave functions themselves, or their normal derivatives (see Section 7.7.2 of [55]). 
In contrast, in the Fokas method one expands the unknown boundary values w j in a ‘local basis’, i.e. the basis functions are 
not supported on the whole of the boundary.3 Using a local basis gives much more flexibility, for example it allows one to 
incorporate singularities of the solution into the basis.

For the considered case of a polygon, we can parametrise the side � j joining z j to z j+1 by z = m j + th j, t ∈ [−1, 1], with 
m j = (z j + z j+1)/2 the midpoint and h j = (z j+1 − z j)/2 the relevant direction. It follows that ds = |h|dt and we can express 
the left-hand sides of (2.5) conveniently as

n∑
j=1

exp(−im jλ)

1∫
−1

exp(−iλh jt)
(

uN
j

∣∣h j
∣∣ + λh ju j

)
dt. (2.8)

Similar expressions can be written down for (2.6) and (2.7). The aim of the method is to approximately solve the linear 
system for the unknown functions w j using the known functions g j by evaluating at certain λ.

2.3. Approximate global relation and basis choice

An approximate global relation is obtained by expanding the unknown boundary values w j in some suitable basis. 
Various choices of basis can be found in [13,15,17–20,25]. Assuming that the boundary values lie in L2(� j), it appears that 
the best choice of basis is Legendre polynomials. A Fourier basis gives only quadratic convergence for the evaluation of the 
D2N map for smooth boundary values. Whereas, for sufficiently smooth unknown boundary data (no corner singularities), 
the use of Chebyshev or Legendre polynomial expansions gives exponential convergence. The key advantage of Legendre 
polynomials is that we can explicitly compute in closed form the relevant integral transforms.

First expand the unknown boundary values w j and the known boundary values g j in the Legendre polynomial basis on 
each side and truncate to N terms:

w j(t) ≈
N−1∑
l=0

a j
l Pl(t), g j(t) ≈

N−1∑
l=0

b j
l Pl(t), (2.9)

where Pm denotes the mth Legendre polynomial (normalised so that Pm(1) = 1). Assuming the boundary data lies in 
L2(∂�), this approximation holds in the L2 sense and the Fourier transform preserves this. We then let

P̂ l(λ) =
1∫

−1

exp(−iλt)Pm(t)dt, (2.10)

denote the Fourier transform of Pl . Note that this integral transform can be computed in closed form thanks to the relation

3 These are not to be confused with the ‘test functions’ which in this case are the separable wave solutions v which give (2.5)–(2.7).
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1∫
−1

exp(αt)Pl(t)dt = 2l+1αll!
(2l + 1)

0 F1
(
l + 3

2
,
α2

4

) =
√

2πα

α
Il+ 1

2
(α), (2.11)

where Iν denotes the modified Bessel function of the first kind of order ν . This expression is entire in α and we have 
chosen to use 

√
2πα/α instead of 

√
2π/α so that the relevant branch cuts along the negative real axis cancel. Most 

numerical packages have built in functions that can evaluate this closed from expression quickly and accurately such as 
MATLAB’s besseli.

2.4. Collocation points

For the Fokas method, collocation occurs in the complex spectral plane, i.e. we evaluate the global relation at different 
points λ. Various choices of λ have been proposed in the literature, including Halton nodes [19] or certain rays in the 
complex plane [25]. Given a side j, we wish to choose λ such that the terms corresponding to this side dominate the 
approximate global relation. It was shown in [17] (a similar argument holds for the Helmholtz equation) that for a convex
polygon this can be achieved by choosing

λh j = −�,
k

2
[−h j/λ + λh j] = −�,

k

2
[h j/λ + λh j] = −� (2.12)

for some positive real � for the Poisson, modified Helmholtz and Helmholtz equations respectively. After evaluating the 
system at this point, and multiplying the resulting system by exp(im jλ), exp(−ik/2[m j/λ −λm j]) or exp(ik/2[m j/λ +λm j])
in each case, we find that the exponential contributions from adjacent sides decay linearly for large � and the contributions 
from other sides further from side j to decay exponentially as l → ∞. This argument depends crucially on the convexity of 
the polygon. We also want our system to have similar condition numbers as we vary k, hence we choose to evaluate the 
global relation at the points

λ = −2�/k +
√

(2�/k)2 + 4
∣∣h j

∣∣2

2h j
, λ = −2�/k +

√
(2�/k)2 − 4

∣∣h j
∣∣2

2h j
, (2.13)

for the modified Helmholtz and Helmholtz equations respectively (see for example [26]). This is done for each side j =
1, ..., n and � on M evenly spaces points in the interval [R1, R2]. Given these points, we evaluate the second global relation 
(i.e. the Schwartz conjugate) at the complex conjugates of (2.12) and (2.13). We shall refer to (2.12) and (2.13) as ‘ray’ 
choices. As well as this choice, we shall sometimes choose Halton nodes in a circle of radius R about the origin, with 
the idea that this choice avoids clustering of collocation points. Halton nodes have the advantages of simplicity and being 
independent of the geometry of the domain but generally result in larger condition numbers and loss of accuracy in the 
method.

2.5. Numerical implementation in convex case

Choosing K λ-values, and discretising along each side with N Legendre coefficients, the discrete counterpart to (2.5)
and its Schwartz conjugate can for a quadrilateral be written for f = 0 as (R , S , D and N stand for ‘Regular’, ‘Schwartz 
conjugate’, ‘Dirichlet’ and ‘Neumann’ respectively):⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R D(1) RN(1) R D(2) RN(2) R D(3) RN(3) R D(4) RN(4)

S D(1) S N(1) S D(2) S N(2) S D(3) S N(3) S D(4) S N(4)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

uN
1

u2

uN
2

u3

uN
3

u4

uN
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

...

...

...

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.14)

Here [ui] and 
[
uN

i

]
are column vectors, each containing N Legendre coefficients (corresponding to degrees m =

0, 1, . . . , N −1) of the functions ui(t) and uN
i (t), i = 1, 2, 3, 4. In the case of collocation points (2.12) and (2.13), the Schwartz 

conjugate of the global relation is not evaluated at the same points and this corresponds to replacing S D(i) and S N(i) by the 



1002 M.J. Colbrook et al. / Journal of Computational Physics 374 (2018) 996–1016
Fig. 1. (a) Original quadrilateral in the first test problem, (b) Deformed quadrilateral, with the corner z4 moving towards the corner z2 = 1 (which will be 
used in the non-convex case in Section 3). The colour scale shows the magnitude of a plane wave which, before the non-convex deformation, is dominant 
on side 3. Oscillations in the plane wave occur along the lines of constant colour shade. No such plane wave exists for points on the boundary near z4

when we deform as in (b). (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

element-wise complex conjugates of R D(i) and R S(i) respectively. For simplicity, we will use the notation S D(i) and S N(i)

in this case also. Note that each expansion function for the unknowns corresponds to a column of the matrix, whereas the 
test functions v used in Green’s identity correspond to two rows (after taking the Schwartz conjugate).

We have graphically displayed the matrix blocks as tall and narrow, to reflect that there typically are many more λ-values 
than m-values. The combined matrix (of size 2K × 8N) contains in the blocks R D(i) , RN(i) , S D(i) and S N(i) the values for 
the four integrals in (2.5) and its Schwartz conjugate. For example, listing the collocation points as {λ1, ..., λK } and treating 
the case of Laplace’s equation, we have from (2.8) that

{R D( j)}a,b = exp(−im jλa)λah j

1∫
−1

exp(−iλah jt)Pb−1(t)dt

= exp(−im jλa)λah j P̂ (λah j) a = 1, ..., K , b = 1, ..., N.

(2.15)

Numerical construction of this full matrix is remarkably simple, and requires less than a dozen lines of MATLAB; see the 
function AB in Appendix A. Given the start and the end point of a side, plus a vector with all the K different λ-values and 
the value for N , this function AB returns the corresponding four matrix blocks R D , RN , S D and S N . This is repeated for 
each side. Due to variations in the λ-values, the norms can become very different for different rows in (2.14). While scaling 
of rows does not affect solutions of linear systems with equally many equations as unknowns, it does affect least squares 
solutions of overdetermined systems. Hence, before proceeding, we normalise to make each row in the coefficient matrix, 
A, to have unit l1 norm 

∑2nN
j=1

∣∣Ai, j
∣∣ = 1. We then invert in the least squares sense using MATLAB’s backslash command 

(which in this case uses a QR solver).
For example, consider the case of u(x, y) = e1+x cos(2 + y) = Re(e1+2i+z) on the domain shown in Fig. 1 (a). Exact 

values in this case for all entries in the u-vector can be obtained by calling the 4-line MATLAB function BV, also given in 
Appendix A. For standard choices of the parameters, such as N = 14 and K = 180 Halton nodes in a circle of radius R = 40, 
multiplying out the matrix-vector product in (2.14) gives a residual less than 2 · 10−14. To solve the D2N problem with, say, 
u1(t), u2(t), uN

3 (t), u4(t) given, we first compute the corresponding Legendre coefficient vectors u1, u2, uN
3 , u4 with the 

function BV. Inserted into (2.14) and moved to the right hand side, half of the blocks in the matrix (2.14) will be gone, 
and we are left with a linear system for the remaining vectors uN

1 , uN
2 , u3, uN

4 (overdetermined if 2K > 4N). With the 
parameter choices above, these computed solution vectors have a max norm error of about 2.2 · 10−12. The total time for 
this simple example, averaged over 1000 runs, was ≈ 0.05 s on a standard desktop computer. Exactly the same procedure 
is used for the mixed Dirichlet–Robin boundary conditions in (1.1) where the integral transforms of the known boundary 
data are moved to the right hand side.

Remark 2.3. The method presented here can easily be extended to more general constant coefficient elliptic PDEs. One can 
either write the PDE in divergence form itself, or after a change of variables, the equation can be transformed into (1.1)
except now with Robin boundary conditions replaced by general oblique derivative conditions. This is explored in [11,15,20,
26].
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Fig. 2. Max error in the Legendre coefficients along all four sides of the quadrilateral, as the corner z4 is moved towards z2. In this case we choose K = 180
λ-values and set N = 14. For the choice corresponding to Halton nodes we set R = 50 and for the choice in (2.12) (‘rays’ in the complex plane) we set 
R2 = 30 and R1 = R2/M following [25]. Parameter dependence is discussed in Section 3.2 but these are near optimal.

3. Non-convex polygons

Fig. 1 (b) shows how the quadrilateral in part (a) changes if we gradually move the corner point z4 from its original po-
sition towards z2. When x4 = Re(z4) passes 1/3, the domain ceases to be convex. It is clear from Fig. 2 (dashed curves) that 
a significant degradation occurs when the domain ceases to be convex. We have shown the maximum error in computed 
Legendre coefficients for the test problem discussed in Section 2.5 (Laplace).4 We found similar behaviour for the modified 
Helmholtz and Helmholtz equations.

A heuristic explanation for this ill-conditioning is as follows: the plane wave ‘test functions’ e−iλz in (2.5) (and their 
counterparts for modified Helmholtz/Helmholtz) grow/decay exponentially in certain directions of λ. When using a suffi-
ciently large selection of complex λ-values, located in all directions from the origin, each side of a convex polygon will 
for many of these λ-values encounter larger test functions than do the remaining sides, i.e. values along this side will 
dominate the contributions from the remaining sides. In contrast, for a non-convex polygon, boundaries (and corners) in 
indented regions will always be dominated by effects from other boundary parts, no matter the λ-value. This is exactly 
the same argument that motivates the ‘ray’ choice of collocation points, (2.12), for convex polygons and is shown visually 
in Fig. 1.

3.1. Proposing a numerically well-conditioned approach – virtual sides

Fig. 1 (b) suggests that the quadrilateral can naturally be split into two triangles by the insertion of a ‘side 5’ between 
the corners z4 and z2. Integration of (2.5) around the outer edge of the quadrilateral (sides 1, 2, 3 and 4) could have been 
done as follows: add the results from following sides 1, 2, and 5 to those from following sides 5 (in reversed direction), 3, 
and 4. The contributions from side 5 and the values for uN

5 and u5 would then cancel. Mathematically, the result becomes 
identical to just following sides 1, 2, 3 and 4 if we evaluate at the same λ-values.

However, formulas that are mathematically equivalent need not be numerically equivalent. For example, the order in 
which the equations of a linear system are written down has no influence on the system’s solution. Nevertheless, numerical 
algorithms make extensive use of interchanges (i.e. pivoting) in order to secure numerical stability. This is the situation 
we encounter here. When integrating along the sides 1, 2, 3 and 4, the numerical conditioning degrades for non-convex 
domains. In contrast, following the sides of two triangles and then numerically eliminating the results along the shared 
edge combines two well-conditioned tasks.

The above heuristic argument, together with the following two observations, has provided the impetus for the present 
study: (i) Boundary integral methods do not encounter any corresponding issues when a domain ceases to be convex, so the 
issue is not due to the BVP itself nor questions of well-posedness, and (ii) Gaussian elimination with appropriate pivoting is 

4 Note also that for the choice of collocation points (2.12), the error blows up when the polygon becomes degenerate and h5 → 0. This is not a problem 
in practice since one bounds the values of λ or replaces 1/h j by h̄ j .
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well known not to worsen the conditioning of a linear system; thus, letting it handle the merging of well-conditioned tasks 
ought to be safe. There exists a vast array of methods in the literature that decompose the domain into subdomains and 
we refer the reader to the introduction [56]. However, no such decomposition has been studied in the context of the Fokas 
transform.

3.2. Numerical implementation of the virtual sides approach

The counterpart to (2.14) will for the two-triangle approach described above takes the form:

⎡
⎢⎢⎢⎢⎣

RN(1) 0 0 RN(4) R D(5) RN(5)

S N(1) 0 0 S N(4) S D(5) S N(5)

0 RN(2) R D(3) 0 −R D(5) −RN(5)

0 S N(2) S D(3) 0 −S D(5) −S N(5)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uN
1

uN
2

u3

uN
4

u5

uN
5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

= −

⎡
⎢⎢⎢⎢⎣

R D(1) 0 0 R D(4)

S D(1) 0 0 S D(4)

0 R D(2) RN(3) 0

0 S D(2) S N(3) 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

u1

u2

uN
3

u4

⎤
⎥⎥⎥⎥⎦

(3.1)

The rightmost blocks in the first matrix in (3.1) (corresponding to side 5 being followed twice, in opposite directions) are 
identical except with swapped signs. This means we are matching the Cauchy data of the solution in the two subdomains 
across the virtual side. As just noted, this property makes it tempting to just add the bottom half of all the equations to the 
top half, eliminating these matrix blocks altogether and, with that, also eliminate the unknowns u5 , uN

5 before applying a 
linear system solver. However, doing this, we get back to the system (2.14), and nothing has been gained. Instead, solving 
(3.1) as it stands above allows the linear solver to use entirely stable elimination strategies, giving the solid curves in Fig. 2. 
We no longer see any adverse effect when the quadrilateral loses convexity. The high order coefficients in the vectors 
u5 and uN

5 may not end up accurately determined, since side 5 may be very short. However, this does not damage the 
coefficients along the other sides. Again the method is very quick with typical times ≈ 0.06 s, only slightly slower for the 
larger system.

The accuracy that is reached generally increases with N (the number of Legendre coefficients used along the sides). 
Fig. 3 shows the effect, in the present test case, of varying the collocation parameters over wide ranges (5 ≤ R ≤ 100 and 
20 ≤ K ≤ 300) for the choice of Halton nodes. In all four cases (original convex quadrilateral vs. worst case when moving 
the node z4, and using original vs. new numerical implementation) large areas emerge with near-constant optimal results, 
telling that no careful optimisation is needed for these parameters. However they are chosen, the standard implementation 
is seen to lose about four orders of magnitude in accuracy when the domain loses its convexity. In contrast, the new 
implementation loses little (if any at all). Fig. 4 shows a similar plot for the ‘ray’ choice of collocation points with exactly 
the same behaviour. We see that the solution is roughly an order of magnitude more accurate than choosing Halton nodes 
and the errors are less sensitive to parameter choices.5

3.3. Test case: L-shaped domain

We now use the idea of virtual sides to solve the Laplace, Helmholtz and modified Helmholtz equations in the domain 
showed in Fig. 5. As well as computing the unknown boundary values, we shall compute the solution obtained in the 
interior by the methods in [27]. In each case we prescribe the boundary data u + uN (Robin boundary conditions) along 
sides �1 and �4, Neumann data along sides �2 and �5 and Dirichlet data along sides �3 and �6. Analogously to (3.1), this 
gives rise to the linear system

5 We did not vary R1 from R1 = R2/M since we found this parameter to not be as important.
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Fig. 3. The maximum norm error of computed Legendre coefficients, as functions of the parameters K and R in four cases. Top row of subplots: Standard 
approach with a single quadrilateral: (a) Error for the original quadrilateral shown in Fig. 1 (a), and (b) worst case for any of the deformations shown in 
Fig. 1 (b) given R and K values. Bottom row of subplots: Corresponding results when also including the internal ‘side 5’. All plots are on logarithmic (base 
10) scale. We have only considered non-convex polygons up to x4 = 0.7 to avoid polygons close to being degenerate.

⎡
⎢⎢⎢⎢⎢⎣

RN(1)−R D(1)

2 R D(2) RN(3) 0 0 0 R D(7) RN(7)

S N(1)−S D(1)

2 S D(2) S N(3) 0 0 0 S D(7) S N(7)

0 0 0 RN(4)−R D(4)

2 R D(5) RN(6) −R D(7) −RN(7)

0 0 0 S N(4)−S D(4)

2 S D(5) S N(6) −S D(7) −S N(7)

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uN
1 − u1

u2

uN
3

uN
1 − u4

u5

uN
6

u7

uN
7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

= −

⎡
⎢⎢⎢⎢⎢⎣

RN(1)+R D(1)

2 RN(2) R D(3) 0 0 0

S N(1)+S D(1)

2 S N(2) S D(3) 0 0 0

0 0 0 RN(4)+R D(4)

2 RN(5) R D(6)

0 0 0 S N(4)+S D(4)

2 S N(5) S D(6)

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uN
1 + u1

uN
2

u3

uN
4 + u1

uN
5

u6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Fig. 4. Same as Fig. 3 but now for the ‘ray’ choice of collocation points.

Fig. 5. The geometry of the L-shaped domain and the idea of introducing a virtual side. The domain is split into two convex subdomains �1 and �2.

The form of the approximate solution in the interior of a polygon (given the approximated Dirichlet and Neumann 
boundary values) was found in [27]. It was shown that it is possible to compute the integrals very efficiently and accurately 
using a Chebyshev interpolation together with a fast conversion from Chebyshev to Legendre coefficients.

We consider the solutions

u(x, y) = Re
(

exp(z) − z2), u(x, y) = exp(
k√ (x + y)), u(x, y) = Re

(
exp(i

k√ (x + y))
)
, (3.2)
2 2
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Fig. 6. The analytic solutions for the three test cases considered for the L-shaped domain in Fig. 5.

Fig. 7. The absolute errors in the interior for all three test cases at N = 20.

Fig. 8. Left: Condition numbers of the three test cases. Middle: Maximum absolute error over a grid of 1161 points in the interior as a function of N . The 
errors decrease exponentially. Right: L2(∂�) error of the computed boundary values as a function of N . Again, the errors decrease exponentially owing to 
the smoothness of the solution.

for the Laplace, modified Helmholtz and Helmholtz equations respectively. We choose k = 2 and k = 4 for the modified 
Helmholtz and Helmholtz equations respectively. Fig. 6 shows the analytic solutions and Fig. 7 shows the absolute errors for 
the computed solution in the interior for parameters R2 = 10N , R1 = 1/10 and M = 4N for the ‘ray’ choice of collocation 
points in (2.12)–(2.13) at N = 20 over a grid of 1161 points. The computation time for computing the coefficients was 
< 0.1 s and the solution at the interior points can be computed in a matter of seconds (see [27] for more time results). All 
errors are bounded by 10−13 and the parameters chosen have not been optimised. Fig. 8 shows the maximum error in the 
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Fig. 9. Max error of the computed Legendre coefficients and the L2(∂�) error of the computed boundary values for the problem in Section 3.4.

interior over these points, the L2(∂�) error of the computed boundary values6 and the condition numbers as a function of 
N for all three test cases. The errors decay exponentially with small condition numbers even for the relatively large choice 
of N = 20. In contrast, applying the Fokas method to these problems without the virtual side typically yields errors of at 
least order 10−6 for N = 20.

3.4. Motivating example with corner singularities

As a final motivating example, we shall consider solving Laplace’s equation over the same L-shaped domain but now 
subject to the boundary conditions u1 = 1, uN

2 = 0, u3 = 0, u4 = 0, uN
5 = 0 and u6 = 1. We chose R2 = 2N , R1 = 1/10 and 

M = 8N for the ‘ray’ choice of collocation points. Fig. 9 shows the max norm error of the computed Legendre coefficients and 
the L2(∂�) error of the computed boundary values. These were computed by comparing to the accurate solution obtained 
in Section 4.3.1. The chosen boundary conditions induce singularities centred at z4. Without the internal edge there is no 
convergence with large sporadic errors. The picture is better with the internal edge but convergence is extremely slow. The 
L2 error decreases approximately as N−1/3 consistent with the Legendre expansion of the leading singular function along 
�3 and �4 as discussed in Section 4. As we shall see, the problem is in the choice of basis functions and this example 
motivates the inclusion of singular functions in Section 4. We shall revisit this example in Section 4.3.1 and demonstrate 
that a proper inclusion of singular functions in the Fokas method can yield exponential convergence.

4. Adapting the basis to cope with corner singularities

Previous implementations of the Fokas method have noted algebraic convergence when the boundary data induces corner 
singularities but exponential convergence for real analytic solutions. This can be explained from the convergence rates of 
expansions in Legendre polynomials. Suppose we have a function F ∈ L2((−1, 1)) that we want to expand in the Legendre 
basis. It can be shown [57], that if F can be extended to an analytic function on a neighbourhood of the interval, then 
convergence is exponentially fast in the L2 or L∞ norm. However, this cannot occur if corner singularities are present in 
our solution.

An explicit recipe for the construction of singular functions for elliptic systems can be found in [58]. It is well known 
that the corner singular functions have the asymptotic form

∑
p∈Z≥0

Q (p)∑
q=0

rλ+p logq rφp,q(θ), (4.1)

with φp,q(θ) analytic, where (r, θ) are the local polar coordinates around the corner. Here the exponents λ depend on 
the angle α j as well as the boundary conditions around z j and can be derived as eigenvalues of operator pencils [58,59]. 
The following theorem found in [60] shows why we can only expect algebraic convergence in the presence of such corner 
singularities.

Theorem 4.1 (Babuška–Guo [60]). Let F (x) = (x +1)γ logν(1 +x) on (−1, 1) where γ > −1/2 and ν ∈ Z≥0 . Denoting the orthogonal 
projection onto the first N Legendre polynomials by P N , we have for N ≥ max{1, γ } that

6 This gives upper bounds on the errors in computed Legendre coefficients.
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‖F − P N F‖2 = N−(2γ +1)Eν(γ , N)
(

1 +O
( 1

N

))
, (4.2)

with

Eν(γ , N) =
ν∑

k=0

Cν−k(γ ) logk(1 + N). (4.3)

Furthermore, if γ is not an integer then C0 �= 0, if γ is an integer and ν > 0 then C0 = 0 but C1 �= 0. Clearly, if γ is an integer and 
ν = 0 then there is no approximation error and Eν(γ , N) = 0.

However, all is not lost. It turns out that we can separate out the singular parts in the following manner:

Theorem 4.2 (Kellog [61]). Suppose we have a H1(�) solution of (1.1) and that f ∈ Hs(�), g j ∈ Hs+3/2(� j) if j ∈ D and g j ∈
Hs+1/2(� j) if j ∈ R for some s ≥ 0. Then there exists a set of exceptional indices J such that if s /∈J then we can write

u =
K∑

k=1

ck vk + w, (4.4)

where:

1. w ∈ Hs+2(�) and for some C > 0 independent of f , g j

‖w‖Hs+2(�) ≤ C(‖ f ‖Hs(�) +
∑
j∈D

∥∥g j
∥∥

Hs+3/2(� j)
+

∑
j∈R

∥∥g j
∥∥

Hs+1/2(� j)
);

2. The functions vk are the singular functions and are independent of f , g j , depend only on the geometry and type of boundary 
conditions imposed and may be taken to vanish outside a neighbourhood of one of the vertices. They do not lie in Hs+2(�);

3. The coefficients ck are bounded linear functionals on

{ f , g j} ∈ Hs(�) ×
∏
j∈D

Hs+3/2(� j) ×
∏
j∈R

Hs+1/2(� j);

4. The exceptional set J does not depend on the data but only on the geometry and type of boundary conditions imposed. It consists 
of a countable sequence of numbers whose only limit point is +∞.

For smooth enough data we can try to subtract off the singular functions from the boundary data using Theorem 4.2
and improve the convergence rate of the basis expansion. We can use the following version of the trace theorem [62] to see 
that the regular part behaves well on the boundary:

Theorem 4.3. Let � be a bounded open subset of R2 , whose boundary is a curvilinear polygon of class Ck,1 (i.e. each edge is of class 
Ck,1). Then, denoting the trace operator to side � j by γ j , the mapping

u → {γ ju, γ j
∂u

∂n
}, 1/2 + 1 < s

defined for u ∈D(�), has a unique continuous extension as an operator from

Hs(�) onto Hs−1/2(� j) × Hs−3/2(� j), 2 ≤ s ≤ k + 1.

It was shown in [63] that for any s ≥ 0, there exists a constant C such that

‖F − P N F‖2 ≤ C N−s ‖F‖Hs , ∀F ∈ Hs((−1,1)). (4.5)

Similar bounds for the uniform norm can be found in [57]. It follows that the boundary data of the regular part of the 
solution can be well approximated in the basis of Legendre polynomials for large s.

As mentioned in the introduction, the idea of using these singular functions in numerical solutions of PDEs is not new. 
Indeed, the singular functions are known to adversely affect the rate of convergence in many methods such as finite element, 
boundary element, finite difference etc. Refining discretisations/meshes is a standard way to overcome these issues [33–35]. 
However, it is often more effective to directly include the singular functions in the numerical method [64–69], which is the 
strategy we adopt here.
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4.1. Specific form of the singularities

For convenience, we recall here the well known form of the singular functions for the Poisson, Helmholtz and modified 
Helmholtz equations with mixed Dirichlet–Neumann boundary conditions. We suppose that we are given boundary condi-
tions on �1 and �2 with internal angle απ and choose polar coordinates around the corner such that θ = 0 corresponds 
to �2. By symmetry, there are three cases to consider and we restrict the exponents so that the solution lies in H1(�), 
consistent with Theorems 2.1 and 4.2:

Case 1: We prescribe Dirichlet boundary conditions on sides �1 and �2: In this case we let λ = l/α for l ∈ N. If λ /∈ Z

then the singular functions are of the form

• rλ sin(λθ) for Laplace;
• Iλ(kr) sin(λθ) for modified Helmholtz;
• Jλ(kr) sin(λθ) for Helmholtz;

where Jλ denotes the Bessel function of order λ. If λ ∈ Z then the singular functions are of the form rλ
(

log(r) sin(λθ) +
θ cos(λθ)

)
for the Laplace equation. For the modified Helmholtz and Helmholtz equations the singular function vl are of the 

form

Iλ(kr)
(

log(r) sin(λθ) + θ cos(λθ)
)
, Jλ(kr)

(
log(r) sin(λθ) + θ cos(λθ)

)
, (4.6)

respectively, up to linear combinations of smooth functions and {v j} for j > l. In other words we can use the functions in 
(4.6) in the expansion (4.4).

Case 2: We prescribe Dirichlet boundary conditions on side �1 but Neumann boundary conditions on �2: In this case 
we let λ = (l − 1/2)/α for l ∈ N. If λ /∈ Z then the singular functions are of the form

• rλ cos(λθ) for Laplace;
• Iλ(kr) cos(λθ) for modified Helmholtz;
• Jλ(kr) cos(λθ) for Helmholtz;

If λ ∈ Z then we replace the cos(λθ) by 
(

log(r) cos(λθ) − θ sin(λθ)
)
.

Case 3: We prescribe Neumann boundary conditions on sides �1 and �2: In this case we let λ = l/α for l ∈ N. If λ /∈ Z

then the singular functions are of the form

• rλ cos(λθ) for Laplace;
• Iλ(kr) cos(λθ) for modified Helmholtz;
• Jλ(kr) cos(λθ) for Helmholtz;

Again, if λ ∈ Z then we replace the cos(λθ) by 
(

log(r) cos(λθ) − θ sin(λθ)
)
.

Remark 4.4. In our numerical examples, we found it sufficient to compute just the first few most singular terms of the 
asymptotic series and let the Legendre basis approximate the rest.

4.2. Numerical implementation

Our strategy will be to simply supplement our truncated Legendre basis (2.9) along each side with the relevant singular 
functions which can be computed from the geometry of � and types of boundary conditions. In order to supplement the 
basis along the sides adjacent to the corner, we are led (possibly after a change of variables and evaluating the first part of 
the asymptotic series) to the evaluation of a sum of integrals of the form

I(α,m;ρ) =
1∫

−1

exp(ρt)(1 + t)α log(1 + t)mdt = ∂m

∂αm

1∫
−1

exp(ρt)(1 + t)αdt. (4.7)

We are only considering the case of corner singularities that lie in L2(�), so we can restrict ourselves to α > −1 which 
ensures the above integral exists. This integral is analytic as a function of ρ and the branch-cut of (1 + t)α is taken to be 
R≤−1 such that the function is real and positive on the positive real axis. A change of variables leads to the integral
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∂m

∂αm
2α+1 exp(−ρ)

1∫
0

exp(2ρs)sαds = ∂m

∂αm
exp(−ρ)

γ (α + 1,−2ρ)

(−ρ)α+1 , (4.8)

where γ (a, z) denotes the incomplete gamma function

γ (a, z) =
z∫

0

ta−1 exp(−t)dt (4.9)

for |arg(z)| < π and Re(a) > 0, where the path of integration does not cross the negative real axis. Note that the multi-
valued nature of γ entirely cancels out that of the power of −ρ . It is also possible to express I(α, m; ρ) as a finite linear 
combination of generalised hypergeometric functions:

I(α,m;ρ) = 2α+1 exp(−ρ)

m∑
j=0

(
m

j

)
log(2)m− j j!(−1) j

(α + 1) j+1 j+1 F j+1(α + 1, ...,α + 1;α + 2, ...,α + 2;2ρ). (4.10)

This can be seen by expanding the exponential in the integral and integrating term by term. For effective numerical evalua-
tion when m = 0, there exist convenient continued fraction expansions (see [70] equation (8.9.1) and also [71] for effective 
numerical evaluation). We found that it was sufficient to use MATLAB’s igamma command for m = 0 and hypergeom for 
m > 0.

The key difference now is that we have singular functions corresponding to corners connecting adjacent sides. For ex-
ample, suppose we are solving for the Dirichlet values along sides � j−1 and � j and add a singular function to our basis 
corresponding to τ j−1(t) and τ j(t) along � j−1 and � j respectively (recall the parametrisation t ∈ [−1, 1]). This adds the 
column⎡

⎣ R D( j)
sing

S D( j)
sing

⎤
⎦

to our matrix, where in analogy to (2.15), we have the summed contribution

{R D( j)
sing}a = exp(−im j−1λa)λah j−1

1∫
−1

exp(−iλah j−1t)τ j−1(t)dt

+ exp(−im jλa)λah j

1∫
−1

exp(−iλah jt)τ j(t)dt,

(4.11)

and S D( j)
sing its Schwartz conjugate. The extra computed coefficient then corresponds to the singular function. Analogous 

formulae hold for other types of boundary conditions.

4.3. Numerical examples

4.3.1. Laplace
Here we revisit the example considered in Section 3.4. By symmetry the problem can be considered in the trapezoid 

shown in Fig. 1 (a) with the given boundary conditions uN
1 = uN

3 = 0, u2 = 1 and u4 = 0. This is then reflected across �3

to obtain the full solution in the L-shaped domain. As mentioned, this problem features one singular point at the corner 
z4 with internal angle 3π/4. Choosing polar coordinates around z4 such that θ = 0 corresponds to �4 and defining the 
functions

hμ(r, θ) = r2/3(2μ−1) sin
(2

3
(2μ − 1)θ

)
, μ ∈N, (4.12)

it turns out that the solution can be written as

u(r, θ) =
∞∑

μ=1

αμhμ.

The coefficients αμ are known as (generalised) stress intensity factors which have importance in applications such as elas-
ticity problems with cracks. In many methods such as FEM, these can be computed from the numerical solution [72,73]. 
We will use the functions hμ as a basis in the entire domain using the integral expressions in Section 4.2 along �3 and �4. 
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Fig. 10. Left: Exponential convergence of the stress intensity factors using the Fokas method and singular functions as a basis. The error over 100 random 
points in the interior is also shown. Right: Random points at which the error is measured.

Table 1
Comparisons of computed αμ with other methods in the literature.

μ Fokas method SFBIM [75,76] hp-FEM [75,76] BI [77]

1 1.12798040105939 ±0.5 × 10−15 1.12798040105939 1.12798010 1.1280
2 0.169933866502253 ±0.5 × 10−16 0.16993386650225 0.16993387 0.1699
3 −0.023040973993480 ±0.5 × 10−16 −0.02304097399348 −0.0230419 −0.0230
4 0.00347119665822 ±0.5 × 10−15 0.0034711966582 0.0034755 0.0035
5 0.00091515709909 ±0.5 × 10−15 0.0009151570991 0.0009126 0.0009

Along the sides �1 and �2, the hμ contribute smooth parts of the boundary values w j . To compute the integral transforms 
along these sides, we first compute a high order Chebyshev interpolation, convert to Legendre expansions and then use 
the expression (2.11) in terms of Bessel functions. Fig. 10 shows the exponential convergence of the first 5 coefficients αμ

where the error was computed by comparing to converged values computed for larger N . Similar exponential convergence 
occurs for the other expansion coefficients and we have shown the l∞ error of the whole computed vector of coefficients. 
We found it was useful to use a mixture of the ‘ray’ choice of collocation points (M = 2N , R1 = 1/10 and R2 = 2N) together 
with a few Halton nodes (4N of these in a circle of radius 10). The maximum absolute error of the computed solution 
over 100 randomly selected points in the interior is also shown in Fig. 10 and agrees well with the l∞ error of the whole 
computed vector of coefficients.

This problem is special in that a global basis can be written down via separation of variables around a singular point. 
Another method proposed in the literature for such problems is the so called singular function boundary integral method 
(SFBIM) [74]. This method uses the same expansion but enforces the boundary conditions weakly via Lagrange multipliers. 
Comparisons of the Fokas method (N = 35 basis functions), SFBIM (values from [75,76] using N = 60 basis functions and 41
Lagrange multipliers), hp-FEM (values from [75,76] using the commercial FEM package STRESSCHECK with 691 degrees of 
freedom, refined mesh near singularity and up to degree eight polynomial elements) and a boundary element formulation 
treating the corner singularities (values from [77] using 256 linear elements per side with first five singular functions) are 
shown in Table 1. The Fokas method is able to obtain the most accurate values of the coefficients (and this extends to more 
coefficients when comparing Fig. 10 to the results of [76]). It also requires fewer basis functions than SFBIM and is much 
simpler to implement than the other methods. Next we shall see that the Fokas method can also cope with solutions with 
multiple singular points.

4.3.2. Modified Helmholtz and Helmholtz
In this example we will study the modified Helmholtz equation and Helmholtz equation for k = 1/2 on the same trape-

zoid shown in Fig. 1 (a). The boundary conditions chosen are uN
1 = 0, u2 = 1, uN

3 = 0 and u4(t) = t . These induce singular 
functions at multiple corners of the form studied in Section 4.1. To compare with the convergence rates predicted in Theo-
rem 4.1, we can group the singularities at each corner so that successively including each group increases the convergence 
rate (up to logarithmic factors) of the Legendre expansion of the remaining ‘smooth’ part. For this example, the expected 
rates (up to logarithmic factors) are 1/3, 1, 3, 5 and so on. Fig. 11 and 12 show the results for the modified Helmholtz and
Helmholtz equations respectively. We used the ‘ray’ choice of collocation points with M = 5N , R1 = 1/10 and R2 = 5N . We 
did not have a reference solution to compare against so compared to a ‘converged’ solution computed with larger N .
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Fig. 11. Results for the modified Helmholtz equation. Left: L2(∂�) error in the estimate of the boundary values (non-singular function part) as we include 
successive groups of singular functions in our basis. The reference slopes are −1/3, −1, −3 and −5 as predicted by Theorem 4.1. Right: The absolute error 
in the computed singular function coefficients as we increase N (when including groups 1, 2 and 3).

Fig. 12. Same as Fig. 11 but for the Helmholtz equation.

The agreement between the rate of convergence of the Legendre expansions from Theorem 4.1 and the computed rates 
shows strong numerical evidence that the Fokas method converges at the same rate as the expansion basis. We have also 
shown the convergence of the coefficients of the five singular functions when we include groups 1 to 3. However, as the 
included singular functions become smoother and better approximated by their Legendre expansion, the condition number 
of the system increases. For example with N = 60 it increases from ≈ 104 when no singular functions are included to ≈ 1010

when the first five singular functions are included. We found this to be a problem for smoother singular functions than those 
shown in Figs. 11 and 12 – we did not see a noticeable improvement in the rate of convergence. Similar qualitative results 
were found when considering this problem for the Helmholtz equation and also for various choices of k.

5. Conclusion

The requirement for domain convexity does not seem to have been seriously questioned so far in the Fokas method liter-
ature on elliptic PDEs. We have here provided evidence through heuristic arguments as well as test problems that accuracy 
losses in non-convex cases are not inevitable consequences of the Fokas method concept, but are entirely avoidable. The 
problem arises when a key elimination step for the linear system is carried out analytically, without regard to conditioning 
issues, instead of numerically, in which case standard pivoting strategies within linear solvers will successfully deal with the 
issue.

As well as this, we have extended the earlier example in the literature and have shown that the inclusion of corner 
singularities can greatly enhance the solution’s accuracy if it is not smooth. This is important when using the Fokas method 
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for real-life problems. Our results show that the method typically converges at the same rate of the Legendre expansion 
of the most singular function not included in the basis. An example with corner singularities was given where the Fokas 
method produced exponential convergence and compared well against other methods in the literature. One remaining chal-
lenge in this area is to find ways to reduce the condition number of the system as more singular functions are included 
in the basis. This, and consideration of other basis choices (which may lower the condition number), is currently under 
investigation.

No proofs of convergence of the method have been given, and proving the method converges is likely to be subtle. This is 
essentially due to the fact that the analysis depends on the values of an analytic function on a compact subset of C and it is 
easy to construct functions fm on [−1, 1] with L2 norm 1 that have f̂m → 0 locally uniformly in C. A proof of convergence 
is work in progress. Current work is also investigating the exterior problem [78,79] and more general curvilinear polygons 
with curved edges. For the exterior problem, by evaluating an additional equation obtained as a limit in the interior of 
the polygon, it should be possible to determine the expansion coefficients of the unknown boundary values. Then, the 
appropriately modified global relations yield the scattering amplitudes [80].

Finally, we believe that this paper sets the stage for further comparisons between the Fokas method and other more 
standard methods. Further comparisons are beyond the scope of this paper but we note that for such comparisons it is 
crucial to consider non-convex domains and non-smooth solutions to assess the Fokas method. The methods provided in 
this paper are a first step in this direction.
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Appendix A. Example of easy-to-use code

The following is a listing of a MATLAB function AB that calculates the blocks of the linear system matrix corresponding 
to a side extending from a start point zs to an end point ze :

function [RD,RN,SD,SN] = AB(zs,ze,lambda,N)

% Calculate the matrix blocks that correspond to a line segment that
% goes from point zs to point ze

% Input parameters
% zs,ze Start and end points of line segment (complex)
% lambda Column vector (complex), all K different lambda-values
% N Number of Legendre coefficients, i.e. degrees 0, 1, ... , N-1
% Output parameters
% RD Array (K,N); part ’Regular Dirichlet’ of system matrix
% RN Array (K,N); part ’Regular Neumann’ of system matrix
% SD Array (K,N); part ’Schwartz Dirichlet’ of system matrix
% SN Array (K,N); part ’Schwartz Neumann’ of system matrix

% Exact integral of exp(alpha*t)*P_m(t), {t,-1,1}
LI = @(m,alpha) sqrt(2*pi*alpha)./alpha.*besseli(m+0.5,alpha);

K = length(lambda);
RD = zeros(K,N); RN = zeros(K,N);SD = zeros(K,N);SN = zeros(K,N);

for m = 0:N-1 % Loop over the degrees of Legendre polynomials
RI = 0.5*exp(-0.5i*lambda* (zs+ze)) .* LI(m,-0.5i*lambda* (ze-zs));
RS = 0.5*exp( 0.5i*lambda*(conj(zs+ze))) .* LI(m, 0.5i*lambda*conj(ze-zs));
RD(:,m+1) = lambda * (ze-zs) .*RI;
RN(:,m+1) = abs(ze-zs) .*RI;
SD(:,m+1) = lambda *conj(ze-zs) .*RS;
SN(:,m+1) = abs(ze-zs) .*RS;

end

For test problems with an analytic solution of the form u(z) = ea+bz (or its real part), the following routine provides 
values for u and uN along a line segment from zs to ze:
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function [LD,LN] = BV(zs,ze,a,b,N)

% Create Legendre coefficients for the Dirichlet and Neumann data for the
% test function f(z) = exp(a+b*z) along the line segment from zs to ze.

% Input parameters
% zs,ze Start and end points of line segment (complex)
% a,b Parameters defining the test function f(z) = exp(a+b*z)
% N Number of Legendre coefficients; use degrees up through N-1
% Output parameters
% LD,LN Column vectors with the first N Legendre coefficients for the
% test function’s Dirichlet and Neumann data, respectively

% Exact integral of exp(alpha*t)*P_m(t), {t,-1,1}
LI = @(m,alpha) sqrt(2*pi*alpha)./alpha.*besseli(m+0.5,alpha);

m = (0:N-1)’; % Column vector with the Legendre degrees to be used
LD = (m+0.5)*exp(a+b*zs+0.5*(ze-zs)*b).*LI(m,0.5*(ze-zs)*b);
LN = -1i*(ze-zs)*b*LD/abs(zs-ze);

For more complicated boundary data, the Legendre expansion coefficients can be computed accurately using quadrature.
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