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This paper considers the effects of smoothly varying chordwise porosity of a finite
perforated plate on turbulence–aerofoil interaction noise. The aeroacoustic model is made
possible through the use of a novel Mathieu function collocation method, rather than a
traditional Wiener–Hopf approach which would be unable to deal with chordwise-varying
quantities. The main focus is on two bio-inspired porosity distributions, modelled from
air flow resistance data obtained from the wings of barn owls (tyto alba) and common
buzzards (buteo buteo). Trailing-edge noise is much reduced for the owl-like distribution,
but, perhaps surprisingly, so too is leading-edge noise, despite both wings having similar
porosity values at the leading edge. A general monotonic variation is then considered
indicating that there may indeed be a significant acoustic impact of how the porosity is
distributed along the whole chord of the plate, not just its values at the scattering edges.
Through this investigation, it is found that a plate whose porosity continuously decreases
from the trailing edge to a zero-porosity leading edge can, in fact, generate lower levels of
trailing-edge noise than a plate whose porosity remains constant at the trailing-edge value.

Key words: noise control

1. Introduction

The use of porosity as an adaptation to traditional rigid impermeable aerofoils is a
commonplace area of interest for minimising aerofoil–turbulence interaction noise (Geyer,
Sarradj & Giesler 2012; Roger, Schram & De Santana 2013; Ayton 2016; Chaitanya
et al. 2020). Both leading-edge noise, generated by upstream turbulence impinging on the
aerofoil, and trailing-edge noise (also known as self-noise), generated by boundary layer

† Email addresses for correspondence: l.j.ayton@damtp.cam.ac.uk, m.colbrook@damtp.cam.ac.uk
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turbulence scattering off the trailing edge can be reduced by replacing an impermeable
aerofoil with a fully porous aerofoil (Geyer, Sarradj & Fritzsche 2010), or partially porous
aerofoil (Geyer & Sarradj 2019).

To date, these investigations, theoretical (Ayton 2016), numerical (Cavalieri, Wolf &
Jaworski 2016; Bae & Moon 2011) and experimental (Geyer et al. 2010; Geyer & Sarradj
2019), focus on using one uniform material to impose the porosity, with chordwise
variations achieved only through the use of partially porous aerofoils wherein there is an
unavoidable and instantaneous variation of the boundary from impermeable to permeable.
At this junction, additional noise is generated by edge scattering (Rienstra & Peake 2005;
Ayton 2016). However, the benefit of a partially porous aerofoil is in its aerodynamics
rather than its acoustics; fully porous aerofoils, whilst acoustically beneficial, have
significant aerodynamic penalties (Geyer et al. 2010); on the other hand, partially porous
aerofoils have lessened aerodynamic penalties but produce more noise than fully porous
aerofoils (Iosilevskii 2011; Geyer & Sarradj 2019). The steady aerodynamics of partially
porous aerofoils have previously been predicted theoretically by Iosilevskii (2011), which
has been extended to aerofoils with porosity gradients by Hajian & Jaworski (2017).

This paper, therefore, investigates the effect of porosity gradients on the noise generated
by aerofoil–turbulence interaction. We also implement the Riemann–Hilbert solution of
Hajian & Jaworski (2017) to determine the lift coefficient, and thus a measure of the
aerodynamic performance of the plates. In these models we allow an arbitrary variation in
porosity along a finite perforated flat plate, modelling a thin permeable aerofoil.

The acoustic response will be achieved through a Mathieu collocation method
(Colbrook & Priddin 2020). This method restricts us to solving for the acoustics in zero-lift
configurations (zero angle of attack in uniform mean flow). The combined aeroacoustic
and aerodynamic results will, therefore, indicate the qualitative trends of performance as
we vary the porosity along the plate although, since the acoustics are restricted to the
zero-lift configuration, they will not be quantitatively comparable.

Throughout this paper, we pay particular attention to monotonic porosity distributions
as inspired by two species of birds: barn owls (tyto alba), known for their silent flight
(Graham 1934; Lilley 1998), and common buzzards (buteo buteo). We recreate these
chordwise-varying porosity distributions in our flat-plate model as an initial study into the
effects of porosity distributions on both aerofoil–turbulence interaction noise and potential
lift, before considering more general monotonic distributions. Porosity is a known feature
that promotes the silent flight of owls. Therefore, we expect the owl-like distribution to
outperform the buzzard-like distribution acoustically, although we note there are many
other features we do not consider in our model, such as serrations and canopies (Jaworski
& Peake 2020), which aid the owl’s silent flight. We also note these two species have
different flight speeds; the owl flies at speeds 6–10 ms−1 (Neuhaus, Bretting & Schweizer
1973) and the buzzard at a mean speed of 11.6 ms−1 (Alerstam et al. 2007). Mean
flow is accounted for in our model, but we apply a low Mach number approximation
throughout which, particularly for trailing-edge noise, eliminates the difference in flight
speed.

The layout of this paper is as follows. In § 2, we discuss the set-up of the acoustic
mathematical model and the Mathieu collocation method for solving the acoustic problem.
In § 3, we review the aerodynamic model from Hajian & Jaworski (2017), which we shall
use to calculate lift coefficients. In § 4, we discuss the measurements taken from birds’
wings and how we relate these to the mathematical model of porosity on a flat plate.
In § 5, we present results and discuss general monotonic porosity variations. Finally, our
conclusions are given in § 6.
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Reducing aerofoil–turbulence interaction noise 906 A1-3

2. Mathematical model for the acoustics

We consider an incident field impinging on a flat plate situated at −1 ≤ x ≤ 1 and
y = 0, where lengths have been non-dimensionalised by semi-chord. The plate is in
uniform horizontal flow, with velocities non-dimensionalised by the far-upstream mean
flow velocity. The incident field will have velocity potential denoted by φI and the scattered
field by φ. The incident pressure field is given by pI = −ρf (Dφ/Dt), where ρf is the
mean fluid density and Dφ/Dt denotes the material derivative. Pressure shall henceforth
be non-dimensionalised by ρf c2

0 with c0 denoting the speed of sound, so that throughout
we deal with dimensionless fields φI and φ.

We assume that φ has the usual time dependence e−iωt (which will be omitted
throughout), and hence for low Mach number flow, φ satisfies the Helmholtz equation(

∂2

∂x2
+ ∂2

∂y2
+ k2

0

)
φ = 0, (2.1)

where k0 = ω/c0 is the acoustic wavenumber for angular frequency ω.
We apply an impedance boundary condition given by

∂φ

∂y
+ ∂φI

∂y
= μ(x) (φu − φl) = μ(x)[φ](x), (2.2)

to model the effects of the porous plate, where μ = αHKR/(πr2) is the porosity parameter
(Howe, Scott & Sipcic 1996; Jaworski & Peake 2013). Here KR is the Rayleigh conductivity
(Rayleigh 1945), which for evenly spaced circular apertures of radius r, is given by KR =
2r. The fractional open area is αH (Howe 1998). Such a model is valid for α2

H � 1, and
k0r � 1. We use the notation φu and φl to denote the values of the field just above and just
below the plate respectively, and the jump in φ across the plate is denoted by [φ]. Finally,
the scattered field is required to satisfy the Sommerfeld radiation condition for outgoing
waves at infinity.

Note that, unlike previous theoretical models (Jaworski & Peake 2013; Ayton 2016),
we allow the porosity parameter μ(x) to vary along the plate. This could be achieved
in a number of practical ways; we could link its variation to a variation in αH , keeping
r and KR constant along the plate. Thus the number of apertures in the plate per unit
area varies along the chord, but the size of the apertures remains constant. An identical
porosity distribution, i.e. an identical variable μ(x), could alternatively be achieved
through variation of the aperture radius, or a combination of both varying radius and open
area. Any such variation presents itself in our model as a fundamental variation in acoustic
impedance, governed by the single parameter μ(x). A specification of how one practically
implements the variation of impedance is not required. Nevertheless, throughout this
paper, for simplicity, we shall describe the porosity (impedance) distribution as arising
due to variation of aperture spacing, αH , rather than a full variation of αHKR/r2. This,
therefore, provides immediate instruction as to how one would practically manufacture a
plate corresponding to our model for testing. It may be helpful to the reader to consider our
variation of porosity through a change in hole spacing as similar to the variation of acoustic
impedance in traditional liners through a change of resonator depth (Jones et al. 2017). We
note, however, this choice may lead to unphysical values of αH > 1 and in such a case, to
design a corresponding practical experiment, variations of r and KR would be necessary
to achieve the same μ(x) values. We stress, it is only the overall porosity (impedance)
variation of μ(x) that truly matters in this model, and, as a whole parameter, this always
permits a physically relevant perforated surface. Our set-up is illustrated in figure 1.
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z x

y

x = −1

x = +1

FIGURE 1. Schematic of the variable-porosity plate with edges at x = −1 and x = 1. The
plate extends infinitely in the spanwise (z) direction.

2.1. Mathieu function expansion
Here, we now solve the problem using the Mathieu function collocation method of
Colbrook & Priddin (2020) which provides an expansion of φ in Mathieu functions using
separation of variables in elliptic coordinates. A full discussion of this method can be
found in Colbrook & Priddin (2020), and user-friendly code for the method can be found
at https://github.com/MColbrook/MathieuFunctionCollocation.

When using elliptic coordinates, x = cosh(ν) cos(τ ), y = sinh(ν) sin(τ ), the appropriate
domain becomes ν ≥ 0 and τ ∈ [0,π]. The Helmholtz equation with homogeneous
Dirichlet boundary condition (the continuity condition) along {(x, y) : y = 0, |x | > 1}
and the Sommerfeld condition at infinity become

∂2φ

∂τ 2
+ ∂2φ

∂ν2
+ cosh(2ν)− cos(2τ)

2
k2

0φ = 0,

φ|τ=0 = φ|τ=π ≡ 0,

lim
ν→∞

ν1/2

(
∂

∂ν
− ik0

)
φ(ν, τ ) = 0.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.3)

This set of equations does not currently impose the porosity (impedance) condition along
the plate and so provides a general solution for any boundary condition on the plate.
We shall discuss the application of our particular boundary condition shortly in § 2.2.
To simplify the formulae, we let κ = k2

0/4. Separation of variables for solutions of the
form V(ν)W(τ ) leads to the regular Sturm–Liouville eigenvalue problem

W ′′(τ )+ (λ− 2κ cos(2τ))W(τ ) = 0,

W(0) = W(π) = 0.

}
(2.4)

The solutions of this are sine-elliptic functions, denoted by sen with eigenvalue λn , which
we expand in a sine series as

sen(κ; τ) = sen(τ ) =
∞∑

l=1

B(n)l sin(lτ). (2.5)
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Reducing aerofoil–turbulence interaction noise 906 A1-5

This series converges absolutely and uniformly on all compact sets of the complex plane
(Olver et al. 2010). The eigenfunctions are orthogonal, and we choose the normalisation∫ π

0
sem(τ )sen(τ ) dτ = π

2
δmn. (2.6)

We find the coefficients Bn
l via a simple Galerkin method. The corresponding V(ν) with

the appropriate radiation condition at infinity are given by the Mathieu–Hankel functions

Hsen(κ; ν) = Hsen(ν) = Jsen(ν)+ iYsen(ν).

These Mathieu–Hankel functions can be expanded in a series using Bessel functions
(McLachlan 1964; Olver et al. 2010)

Hsen(ν) =
∞∑

l=1

(−1)l+nB(n)l

Cn

[
Jl−1(e−ν√κ)H(1)

l+pn
(eν

√
κ)− Jl+pn (e

−ν√κ)H(1)
l−1(e

ν
√
κ)

]
,

(2.7)
where pn = (1 + (−1)n)/2. Here, Jn denotes the Bessel function of the first kind of order
n and H(1)

n denotes the Hankel function of the first kind of order n. The series in (2.7)
converges absolutely and uniformly on all compact sets of the complex plane (Olver et al.
2010). We choose the normalisation constants Cn so that Hse′

n(0) = 1.
The full general solution can then be written as

φ(ν, τ ) =
∞∑

n=1

ansen(τ )Hsen(ν), (2.8)

where an are unknown coefficients. These coefficients are determined by applying the
appropriate boundary condition along the plate, which we do so in § 2.2.

Given the Bessel function expansion of Hsen(ν) in (2.7), we can directly compute
the far-field directivity D(θ) from (2.8) using asymptotics of Bessel functions. In the
appropriate limit, τ becomes the polar angle θ , whereas ν becomes cosh−1(r) (where
(r, θ) denote the usual polar coordinates). This leads to

D(θ) =
√

2
πk0

∞∑
n=1

anB(n)1

Cn
exp

(
(2pn − 3)π

4
i
)

sen(θ). (2.9)

An advantage of our approach is that we implicitly compute a sine series for the far-field
directivity D(θ) through the sine-elliptic functions sen(θ) given by (2.5).

Finally, we define the total far-field noise, measured in dB, as

P = 10 log10

(∫ π

0
|D(θ)|2 dθ

)
, (2.10)

which may be computed numerically from the series expansion for D(θ).

2.2. Employing the boundary conditions
Here, we now determine the unknown coefficients an in the expansion (2.8), as required
for our particular boundary condition (2.2). We do so by adopting a spectral collocation
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906 A1-6 L. J. Ayton and others

method to calculate their approximate value. Throughout, we denote the approximate
coefficients by ãn .

We take our general solution (2.8) and substitute into (2.2), written in original (x, y)
coordinates. We truncate the expansion at N terms to obtain the approximate condition

N∑
n=1

ãnsen

(
cos−1 (x)

) [
1 − 2 Hsen(0)μ(x)

√
1 − x2

]
= −

√
1 − x2 · ∂φI

∂y
(x). (2.11)

We now evaluate this at chosen collocation points,

x = cos
(

2j − 1
2N

π

)
, j = 1, . . . ,N, (2.12)

which correspond to Chebyshev points in Cartesian coordinates and equally spaced points
in elliptic coordinates (Trefethen 2000; Boyd 2001). This gives rise to an N × N linear
system for the unknown coefficients {ãn}N

n=1, which we precondition by rescaling to ensure
that each row of the resulting matrix has a constant l1 vector norm.

2.3. Avoiding numerical cancellations
The terms in the series (2.7) can easily be evaluated for small l. However, for large l,
the terms in the series suffer from underflow and overflow associated with cancellations
between the Bessel and Hankel functions. For large l and fixed x ∈ R>0 we use the
asymptotics

Jl(x) =
m∑

j=0

(−1) j

j!( j + l)!

( x

2

)2j+l
+ O

(
1

(m + l + 1)!

)
,

H(1)
l (x) = −i

π

(
2
x

)l m∑
j=0

(l − j − 1)!
j!

( x

2

)2j
+ O ((l − (m + 2))!) ,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.13)

valid as l → ∞. For fixed a, b ∈ Z, this gives the asymptotic form

Jl+a(e−ν√κ)H(1)
l+b(e

ν
√
κ)

= −i
π

(√
κ

2

)a−b

exp(−ν(2l + a + b))

⎡
⎣ m∑

j=0

(−1) j(l + a)!
j!( j + l + a)!

(
e−ν√κ

2

)2j
⎤
⎦

×
⎡
⎣ m∑

j=0

(l + b − j − 1)!
j!(l + a)!

(
eν

√
κ

2

)2j
⎤
⎦ + O

(
l−(m+2)) . (2.14)

We found this to be an excellent approximation for large l. It can also be accurately
evaluated for moderate m since the terms (l + a)!/( j + l + a)! and (l + b − j − 1)!/(l +
a)! can be evaluated as products of j and | j + 1 + a − b| terms respectively. In what
follows, we typically used this asymptotic form when l > 100 and took up to m = 5
terms. When plotting errors of our method, we were careful to compare against converged
computations for which the series (2.7) was evaluated directly using extended precision
(such checks were the only place where we made use of extended precision).

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f C

am
br

id
ge

, o
n 

05
 N

ov
 2

02
0 

at
 1

2:
30

:2
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

0.
74

6

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.746


Reducing aerofoil–turbulence interaction noise 906 A1-7

3. Theoretical calculation of lift

Here, we briefly review the theory of Hajian & Jaworski (2017) to calculate the lift
coefficient of a porous plate, where the porosity is permitted to vary along the chord.
Note, this does not account for the full aerodynamics since we are not calculating drag.

We suppose a flat-plate aerofoil is placed in uniform upstream flow of speed Uinf ex ,
where ex denotes the horizontal direction. We let za(x) denote the camber line of the
plate, which for our case of a flat plate at fixed angle of attack α ensures dza/dx = −α.
Under the assumption of small disturbance (neglecting O(α2)), the plate lies in the region
−1 ≤ x ≤ 1 where, once again, lengths are non-dimensionalised by semi-chord.

Assuming a Darcy-type boundary condition, we may connect the pressure jump to the
local normal flow rate through the plate, ws:

ws = −CR(x)( pu − pl), (3.1)

where C is defined as a porosity coefficient, and R(x) = αH(x) is the porosity distribution
(Hajian & Jaworski 2017, (2.9)). The integral equation linking the pressure jump to the
camber line and porosity distribution in thence given by

ρf Uinf CR(x)p(x)− 1
2
−
∫ 1

−1

p(t)
t − x

dt = 2
dza

dx
, (3.2)

where pressure is non-dimensionalised by (ρf U2
inf )/2. (Note this is different to the

non-dimensionalisation for the acoustics where pressure is non-dimensionalised with
respect to speed of sound). This equation is solved to yield

p(x) = 4ψ(x)
1 + ψ2(x)

dza

dx
− 4

π
√

1 + ψ2(x)
exp

(
−
∫ 1

−1

k(ψ(t))
t − x

dt
)

× −
∫ 1

−1

dza/dt√
1 + ψ2(t) exp

(
−
∫ 1

−1

k(ψ(ξ))
ξ − t

dξ
)
(x − t)

dt, (3.3)

where ψ(x) = 2ρf Uinf CR(x), and k( y) = π−1 cot−1( y). Implementation and validation
by comparison with Hajian & Jaworski (2017) is discussed shortly.

4. Flow resistivity through wings

To provide an initial porosity distribution along a flat plate, we consider the distributions
that appear in nature, in particular for barn owns and common buzzards.

4.1. Experimental measurements
In order to obtain quantitative data on the permeability of owl wings compared to the
wings of other, non-silently flying birds of prey, measurements of the flow resistance were
conducted on a set of prepared wing specimen. For measurements on porous materials
according to ISO 9053 (1991), the materials have to be cut into cylindrical samples of
constant thickness and tightly fitted into a sample holder. Since that is obviously not
possible for prepared bird wings, which may consist of only a single layer of feathers
especially close to the trailing edge (see, for example, the work of Nachtigall & Klimbingat
(1985) and Bachmann, Mühlenbruch & Wagner (2011)), a special measurement head
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Airflow

Wing

Measurement
head

Flexible, impermeable foam

q,
pu

pl

FIGURE 2. Set-up used to measure the wing air flow resistance R (4.1).

was constructed. It can be pressed onto the surface of the wings with a defined force,
allowing one to seal off the area of contact between the planar measuring head and
the feather surface. With the help of this measurement head, a defined air flow with a
volumetric airflow rate q (in m3 s−1) is conducted through the prepared wing (see figure 2).
The air flow resistance R at this position of the wing is then calculated from the resulting
static pressure difference across the wing

R = pu − pl

q
. (4.1)

Such measurements were conducted at each chosen wing location for seven different
volume flows. According to ISO 9053 (1991), the resulting value of the air flow
resistance was then obtained by linear extrapolation of the results to a low flow speed
of 5 × 10−4 ms−1.

4.2. Theoretical modelling
We must relate the experimentally recovered values of flow resistance, R, to both the
aeroacoustic porosity parameter μ, and the aerodynamic parameter, C. We begin with
the aeroacoustic parameter μ. Recall that μ(x) = αH(x)KR/(πr2), where we assume the
porosity is created by circular apertures of constant radius, r, and, for a plate with circular
apertures, the Rayleigh conductivity of the plate, KR = 2r. However, for an arbitrary
material, KR is defined as KR = Q/(φu − φl), where Q = dq/dt is the volume flux through
the plate. Hence for the wing in harmonic flow, KR = ω2ρf /R. We thus have two ways of
calculating μ(x)

μ(x) = αH(x)
2
πr
, μexp(x) = α

exp
H ω2ρf

1
R

1
πr2

exp

, (4.2a,b)

where αH denotes the open area ratio of circular apertures or radius r in a flat plate, αexp
H

denotes the open area ratio of pores of typical radius rexp in a wing, and R is the measured
flow air flow resistance. We may thus equate the two to provide values for αH(x) to input
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into our model

αH(x) = ω2ρf rα
exp
H

2Rr2
exp

. (4.3)

We shall assume that the chordwise variation in (4.3) arises only due to the air flow
resistance, R, and that αexp

H and rexp are constant. According to Jaworski & Peake (2013) we
take the value αexp

H = 0.0014. This value arises from the trailing-edge brush experiment of
Herr (2007) wherein polypropylene fibres with physical properties similar to the feather
keratin of owl wings are used to investigate noise reduction. The fibres which exhibited
the best noise reduction were converted to the equivalent open area ratio parameter of
α

exp
H = 0.0014 by Jaworski & Peake (2013). Since in Jaworski & Peake (2013) lengths are

non-dimensionalised by a bending wave number (which does not feature in our analysis
since our plate is not flexible), it is more difficult to determine the corresponding value
of rexp. We, therefore, turn to detailed measurements made on the wings of barn owls by
Bachmann, Wagner & Tropea (2012), which results in a value of rexp = 5.5 × 10−4 m.
This arises from supposing for a given barn owl feather there are two fringes per mm
(Bachmann et al. 2012) (and thus two gaps between the fringes per mm) and the total
length of the vane of the feather is between 12.5 and 15 cm (Bachmann, Klän &
Baumgartner 2007). Therefore each feather has between 250 and 300 apertures in the
chordwise direction. We select rexp as the mid-value, supposing each aperture is 1/275 of
our fixed 15 cm chord.

For the theoretical model, we shall suppose a manufactured flat plate has holes with
radius r = 1 mm, which is practical to construct, and we use a typical frequency of ω =
500 Hz to complete our relationship between R and αH(x) since we wish to focus on
low-frequency noise reductions. Assuming the area of measurement over the wing was
1 cm2, we obtain a value of C = 0.016 for the porosity coefficient required in the lift
calculations. We shall use the same value of the parameter group αexp

H /(πr2
exp) (which can

be viewed as the closed area of the wing) for the owl and buzzard as input to obtain our
model, αH(x). Whilst this is unlikely to be true for the buzzard, it provides an upper bound
on the value of αH to input to our model, as it is clear from detailed wing pictures (Chen
et al. 2012) that the closed area of the buzzard’s wing is greater than that for the owl.

5. Results

5.1. Bio-inspired distributions
In this section, the results from the air flow resistance measurements on the prepared
wings are summarised and converted to their corresponding αH values. Overall, five wings
of the barn owl (tyto alba) and nine wings of the common buzzard (buteo buteo) were
investigated to obtain the data used in the present study. For each wing, measurements
were made at up to eight different positions, from which the first four were located in the
region of the primary and secondary remiges, and hence closer to the trailing edge, while
the last four were located closer to the leading edge, on the primary and secondary coverts.
Figure 3 illustrates the locations at which samples were taken for Wing 3 of the barn owl.
Table 1 summarises the results for the barn owl wings and table 2 those of the buzzard
wings.

We plot the variation in αH along the chord of each wing in figure 4, as calculated
from experimental measurements and using (4.3). For microphones close to the wing
tips (typically microphone position P1 as seen in figure 3), where the chord length
is substantially different to the main wing, we have neglected those results, since our
two-dimensional model cannot capture any spanwise variation in either wing shape
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P1

P2

P6
P5

P3

P4

(b)

P7

P8

(a)

FIGURE 3. Upper and lower side of Wing 3 of the barn owl samples, showing the positions at
which air flow resistance was measured.

Air flow resistance (kPa s m−3)

Position 1 2 3 4 5 6 7 8

Wing 1 1978 — 1749 1413 13 650 15 388 11 460 7505
Wing 2 2812 3647 2685 1819 14 085 9148 13 343 7043
Wing 3 1742 3244 1992 1456 11 286 14 707 10 064 9620
Wing 4 1824 3356 1774 2476 9167 6063 15 027 7064
Wing 5 1067 1726 1592 1728 3515 6513 8636 4329

TABLE 1. Air flow resistance of the barn owl wings.

Air flow resistance (kPa s m−3)

Position 1 2 3 4 5 6 7 8

Wing 1 3910 3916 3864 4117 10 106 10 564 10 329 9026
Wing 2 4130 4242 3219 3934 — 11 964 9054 7545
Wing 3 3499 3743 4093 4389 9106 11 359 6997 9111
Wing 4 4994 3773 3948 4767 8161 12 106 7748 9721
Wing 5 3367 3304 3235 3164 12 005 8504 19 200 9249
Wing 6 4347 3705 2963 3872 9216 12 495 10 455 10 389
Wing 7 3141 3675 3516 3815 13 177 12 445 10 111 11 100
Wing 8 3374 3533 3612 3232 14 539 8692 10 180 13 297
Wing 9 3502 3440 4057 5008 13 910 15 121 17 296 9987

TABLE 2. Air flow resistance of the buzzard wings.

or morphology. The chord length is measured from the photographic microphone locations
using Matlab’s image viewer app, as illustrated in figure 5. There is an outlier in the
porosity data from the owl at a chord of ∼60 %. This outlier is due to the fact that
these wings are biological systems and as such, not perfectly homogeneous. As mentioned
before, this is especially true close to the trailing edge, where the wings consist only of
one or two layers of feathers.
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0 20 40 60 80
Percentage chord

100

0.1

0.2

0.3

0.4αH

0.5

0.6

0.7

0.8
Fitted axb

Fitted axb

Fitted ax  + b

Fitted ax2 + bx + c

FIGURE 4. Porosity, αH , as calculated from (4.3) from the measurement data for owls (blue,
circles) and buzzards (black, crosses). Best fit curves are given according to Matlab’s fit
command.

791.37

265.20

803.02

151.33

806.95
682.55

FIGURE 5. Chord locations are measured from photographs using Matlab’s image viewer app.
Lengths are given in terms of the number of pixels.

Lines of best fit are produced using Matlab’s fit command; both polynomial and
exponential fitting were considered, and the best-fitting lines from each reproduced in
figure 4. From these we shall take the variation which appears most likely in the owl wing
to be

αowl
H = 0.037 + 0.48

(
x

2
+ 1

2

)
, (5.1)
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FIGURE 6. Relative errors for [φ] (a, L2 norm error over [−1, 1]) and SPL (b). The method
has a high order of algebraic convergence, allowing us to compute physical values to several
significant figures.

and for the buzzard

αbuzz
H = 0.22

(
x

2
+ 1

2

)0.48

, (5.2)

recalling that our chord lies in the region x ∈ [−1, 1].

5.2. Numerical convergence and validation of methods

5.2.1. Acoustic calculations
To demonstrate convergence for the acoustic solution, in figure 6 we have plotted the

relative errors against N (the number of basis functions used) for the values of αowl
H and

αbuzz
H . These errors were estimated by comparing with values computed for larger N. We

have plotted the relative error in the L2 norm of [φ] (the jump in the field across the plate)
and the P values for a quadrupole source. This shows convergence for a wide range of
frequencies and also shows that we can easily gain several digits of relative accuracy.

To validate the acoustic calculations, we recreate figure 7(b) from Cavalieri et al. (2016)
for a uniformly porous plate in figure 7, which shows excellent agreement. Note, our
non-dimensionalisation of length is by semi-chord, whereas Cavalieri et al. (2016) use
chord, therefore the values of k0 and αH/R which we use are half the values from Cavalieri
et al. (2016). For this figure, we place a quadrupole at (1, 0.008), corresponding to the
non-dimensional location of (1, 0.004) used by Cavalieri et al. (2016).

5.2.2. Aerodynamic calculations
We recall that the pressure jump is given by (3.3), and the (non-dimensionalised) lift is

then given by the integral

L = −
∫ 1

−1
p(x) dx, (5.3)

where the minus sign corresponds to the pressure jump being taken to be pu − pl. To
calculate this, we need an accurate and efficient method to compute iterates of the Hilbert
transform. We used two approaches, which enables us to estimate the accuracy of our

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f C

am
br

id
ge

, o
n 

05
 N

ov
 2

02
0 

at
 1

2:
30

:2
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

0.
74

6

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.746


Reducing aerofoil–turbulence interaction noise 906 A1-13
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Perforated αH /R = 0.5
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FIGURE 7. Directivity, |D(θ)|, for k0 = 5 for uniformly porous plates. This shows excellent
agreement with figure 7(b) from Cavalieri et al. (2016).

estimate through comparison. To ease the exposition, we only discuss the computation of
the integral

g(x) = −
∫ 1

−1

f (t)
t − x

dt, (5.4)

for x ∈ (−1, 1) and sufficiently regular f (e.g. integrable and locally Hölder continuous in
(0, 1)).

For the first method, we use a standard subtraction technique and consider the function

h(x, t) := f (t)− f (x)
t − x

. (5.5)

We use the fact that, for sufficiently regular f and for x ∈ (−1, 1), h(x, t) is integrable over
t ∈ [−1, 1] with

g(x) =
∫ 1

−1
h(x, t) dt + f (x) log

(
1 − x

1 + x

)
. (5.6)

We compute the integral of h using global adaptive quadrature through MATLAB’s
integral command, keeping track of the tolerances when iterating the procedure.

Our second approach is to make use of spectral methods based on Chebyshev
polynomials, conveniently handled via the Chebfun software package (Driscoll, Hale &
Trefethen 2014). We first expand the function f (t)

√
1 − t2 in Chebyshev polynomials of

the first kind, Tn(·). These have the useful property that

−
∫ 1

−1

Tn(t)

(t − x)
√

1 − t2
dt = πUn−1(x), (5.7)
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–1.0 –0.5 0.50
x

1.0
10–1

100

p/ν2

ν1 = 10
ν1 = 1000

101

102

FIGURE 8. Pressure distribution for ν1 = 10 and ν1 = 1000, showing excellent agreement with
the results of Hajian & Jaworski (2017).

where Un(·) denote Chebyshev polynomials of the second kind (see (18.17.42) of Olver
et al. 2010). We can thus compute an expansion of g in Chebyshev polynomials of the
second kind. We can iterate this procedure, taking advantage of rapid algorithms for
computing the Chebyshev coefficients of g(x)

√
1 − x2 given the expansion of g.

To verify our approach, we reproduce the results of Hajian & Jaworski (2017), where

ψ(x) = 5
2

(
1 + tanh

(
ν1

(
x + 1

2

)))
,

dza

dx
= ν2, (5.8a,b)

for constants ν1, ν2. Figure 8 shows the results for ν1 = 10 and ν1 = 1000, with excellent
agreement with figure 2 of Hajian & Jaworski (2017).

5.3. Bio-inspired results
Having validated our numerical methodology and shown results in agreement with
previous work, we now present the acoustic results for the bio-inspired spanwise
variations. In figure 9 we show the difference in far-field noise, ΔP = Powl − Pbuzz for
P defined by (2.10), generated for a near-field quadrupole source located at (x0, y0) which
models a turbulent trailing-edge source. The incident potential is therefore given by

φI = ik2
0

4r2
0
(x − x0)( y − y0)H

(1)
2 (k0r0), (5.9)

where r0 = √
(x − x0)2 + ( y − y0)2, and H(1)

n are Hankel functions of the first kind.
It is perhaps no surprise to see that, via this model, the owl is predicted to produce less

trailing-edge noise than the buzzard given that the trailing edge of the owl’s wing is far
more porous (has a higher αH value) than that of the buzzard’s. This is particularly true
for low frequencies which are known to be significantly reduced by porosity (Jaworski
& Peake 2013), however, the total level of low-frequency noise reduction is intrinsically
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FIGURE 9. Value of ΔP for a near-field quadrupole source at x0 = 0.95 and various y0.
Negative values indicate the owl is quieter than the buzzard by that many dB.

linked to the vertical location of the quadrupole source. At higher frequencies, the owl
is predicted to produce only 7 dB less trailing-edge noise, and this is similar across
all quadrupole locations. We cannot currently extend this analysis to frequencies much
higher than k0 = O(10) since outside of this range the asymptotic requirements for the
homogenised boundary condition may not hold (Howe 1998).

We first compare our theoretical model to the noise reduction achieved by uniformly
porous aerofoils in Geyer & Sarradj (2014, figure 8, lowest panel); there a low-frequency
noise reduction of up to ∼10 dB is reported for a porous aerofoil with low resistivity
(high porosity) versus a porous aerofoil with high resistivity (low porosity). As frequency
increases, the noise reduction diminishes, and in some cases, a noise increase is observed
(largely due to surface roughness). This is in broad agreement with our theoretical results
comparing the owl (low resistivity at the trailing edge) to the buzzard (comparatively
higher resistivity at the trailing edge), although it does not account for any features of
continuously varying porosity.

Next, we compare our predicted noise reduction to that measured experimentally for owl
and buzzard wings in Geyer, Sarradj & Fritzsche (2013), and Sarradj, Fritzsche & Geyer
(2010). The measurements from Geyer et al. (2013) were performed in an anechoic wind
tunnel using microphone array techniques and acoustic beamforming (the same set-up
as used in Geyer & Sarradj (2014) for the uniformly porous aerofoils). As an example,
figure 10 shows a schematic of the experimental set-up used by Geyer et al. (2013) as well
as the sound pressure level difference between the results obtained for a buzzard wing and
a barn owl wing of similar size (wings numbers 2 and 10 from Geyer et al. 2013). For
low to moderate frequencies, the measured noise reduction is between 4 and 12 dB, whilst
for higher frequencies, the noise reduction can exceed 20 dB. In the flyover measurements
on living birds (Sarradj et al. 2010), however, smaller noise reductions between 3 dB at
medium frequencies (around 1.6 kHz, k0 ≈ 2) to 8 dB at higher frequencies (6.3 kHz,
k0 ≈ 8.5) have been obtained for the gliding flight noise from a barn owl compared to that
from a Harris’s hawk and a common kestrel (Sarradj et al. 2010).
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FIGURE 10. Schematic of the experimental set-up (a) and resulting ΔSPL between a buzzard
wing and a barn owl wing at a flow speed of approximately 13 ms−1 (b) Geyer et al. (2013).
Negative values indicate the owl is quieter than the buzzard by that many dB.

These results differ greatly from the porous aerofoil results in Geyer & Sarradj (2014),
particularly at high frequencies since there are numerous other silent-flight designs on
the owl’s wing which are not modelled by porosity alone, such as leading-edge combs,
serrations and canopies, all of which may alter the owl’s noise reduction at different
frequencies (Jaworski & Peake 2020). At high frequencies, serrations are particularly
effective for noise reduction, with Moreau & Doolan (2013) observing up to 13 dB of
noise reduction. Thus we anticipate the divergence of the theoretical predictions and the
experimental results to be at least in part due to the serrated feature of the owl’s wing. In
addition, acoustic absorption by the owl’s downy coat may play a role at high frequencies.

For comparison to owl wing noise, we therefore only concern ourselves with the
low-to-moderate-frequency behaviour. Our theory overpredicts the noise reduction versus
the realistic wing experimental measurements by up to 7 dB. This discrepancy at low
frequencies may be due to the distortion of the flow over the wings (the three-dimensional
behaviour) which has a significant effect on owl-generated noise since their leading-edge
comb deflects the surface flow towards the wing tips. Geometric features such as the
specific camber and thickness of the wing may also play a role. These features, which
are lacking in our model, are also not taken account of in the porous aerofoil noise
measurements in Geyer & Sarradj (2014), which similarly disagree with the realistic wing
measurements. We, therefore, believe our results correctly predict the effects of porosity
along on aerofoil noise, but cannot represent the true total noise reduction of realistic wings
due to a number of additional noise-reduction features present on realistic owl wings.

In figure 11 we consider the effects of the owl versus buzzard distributions on
leading-edge noise, and see surprisingly that the owl distribution also would produce less
leading-edge noise despite the two wings having similar leading-edge porosity values. We
consider an incident gust by selecting a potential satisfying ∂φI/∂y|y=0 = −eiδx , where
δ = k1/

√
1 − M2, and k1 = √

1 − M2k0/M thus the Helmholtz number, k0, is δM, such
that the gust convects from upstream with the mean flow with Mach number M. Full
details of why this is the case may be found readily in the literature for leading-edge noise
(Tsai 1992; Ayton & Kim 2018). We assume the same impedance style boundary condition,
(2.2), noting that here the low Mach number approximation has been used. The difference
in leading-edge noise levels is given in figure 11, for M = 0.05. We notice that, again,
the owl is quieter than the buzzard for low frequencies, however, now the reduction is only
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FIGURE 11. Value of ΔP for an incident gust. Negative values indicate the owl is quieter than
the buzzard by that many dB.

approximately 3.5 dB. Note the frequency range difference between the trailing-edge noise
and the leading-edge noise; trailing-edge noise is a high-frequency phenomenon, whilst
leading-edge noise is more dominant at lower frequencies. The lowest-frequency flyover
noise reductions (Sarradj et al. 2010) of 3 dB are in agreement with our leading-edge
noise-reduction predictions. However, it is unclear how much noise produced during the
flyover tests can be attributed to each edge.

We now turn to the steady pressure distribution along the flat plates with prescribed
porosity (5.1) and (5.2), which can be seen in figure 12. At an angle of attack 5.7◦ =
0.1 rad, the corresponding lift coefficients are 1.131 for the buzzard type, and 1.031 for the
owl type, which are obtained by integrating the surface pressure given by (3.3). This is, of
course, not the whole story for the actual owl and the buzzard, as they will have wings of
different camber which significantly influences lift. Geyer et al. (2013) have measured the
mean lift coefficient of barn owls, C̄L = 0.185, and buzzards, C̄L = 0.084 at zero angle
of attack and a flow speed of approximately 13 ms−1, indicating the camber of the wing
greatly enhances the lift for the owl. The effect of camber of the owl’s wing, therefore,
may mitigate the aerodynamic penalty from the more porous trailing edge. It is, however,
beyond the scope of the current paper to include camber in our models.

5.4. Monotonic distributions
Here we investigate the effect of the precise distribution of porosity in the interior of the
plate on trailing-edge noise. We consider varying porosity along a flat plate through the
model

αH(x) = αL + (αT − αL)

(
x

2
+ 1

2

)γ

, (5.10)

where αL,T denote the open area ratios at the leading and trailing edge, respectively. We
consider only the case αT ≥ αL, whereby the trailing edge has the same or greater porosity
than the leading edge, as is observed from our wing measurements. We vary γ from γ =
0.1, where the porosity very rapidly changes at the leading edge, to γ = 4, where the
porosity changes slowly at the leading edge. Sample variations are illustrated in figure 13
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FIGURE 12. Steady pressure along the plate, divided by angle of attack, for the owl and
buzzard porosity distributions.
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FIGURE 13. Monotonic porosity distributions αH(x) = 0.3(x/2 + 1/2)γ for various values
of γ , corresponding to αL = 0 and αT = 0.3.

for αL = 0 and αT = 0.3. Note that this choice of variation means the average porosity for
the whole wing is greater for a lower value of γ than a higher value of γ .

We focus on trailing-edge noise, using the same quadrupole source as (5.9) with x0 =
0.95 and y0 = 0.05 unless otherwise specified, and M = 0.05. We plot the varying lift
and sound in figure 14 for αL = 0 and αT = 0.3; the acoustics show the effects at different
frequencies. The acoustic results have been normalised by PTE, corresponding to the value
P would take if the whole plate had a constant porosity of αT , i.e. when γ = 0. Thus a
positive value indicates allowing for a monotonic reduction of porosity along the chord
from the trailing-edge results in additional noise than if the porosity remained consistently
at the trailing-edge value for the entire chord. The level of radiated noise is influenced by
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FIGURE 14. Effect of different monotonic variations of porosity from αH = 0 to 0.3 on lift
coefficient at 0.1 rad angle of attack (a) and on trailing-edge noise (b).

both frequency and distribution of porosity, whilst the lift coefficient, L = − ∫ 1
−1 p(x) dx ,

increases monotonically with increasing γ : the lower the average porosity of the wing, the
greater the lift, as would be anticipated.

Given the seemingly complicated frequency dependence of the scattered noise, we
now consider two further cases in figures 15 and 16. In figure 15 we vary αH from 0
to 0.1 and see a similar variation in noise as the previous case of figure 14; the lowest
frequencies (0.2,0.5) have values of γ which permit a noise reduction (negative values)
whilst the higher frequencies (5,10) give consistent noise increases for all values of γ . As
the frequency is increased further (50), the variation with γ tends to zero simply because
porosity is ineffective, thus varying it has little effect.

Figure 16 shows that when the leading edge is porous (αL = 0.1), the trend for all
frequencies is that increasing γ increases noise in contrast to our previous result. This,
however, is perhaps the simplest case to interpret first; each different value of γ describes
a plate with a different average porosity (0.5

∫ 1
−1 αH(x) dx). The larger the value of γ , the
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FIGURE 15. Effect of different monotonic variations of porosity from αH = 0 to 0.1 on
trailing-edge noise. Legend is identical to that for figure 14.

0 1 2 3 4 5 6 7 8

2

4

6

8 0.2
0.5
1
2
5
10
50

10

k0

P
 –

 P
TE

γ

FIGURE 16. Effect of different monotonic variations of porosity from αH = 0.1 to 0.3 on
trailing-edge noise.

lower the average porosity, particularly in the vicinity of the quadrupole at the trailing
edge, thus the more noise will radiate from the interaction of the acoustic source with the
plate on comparison to a plate with a constant, higher porosity, of αT throughout.

This theory holds for the high-frequency cases in figures 14 and 15, however, at low
frequencies, we see very different behaviour. The fact that the leading edge is specifically
impermeable, αL = 0, must play a key role in the acoustic scattering, and peculiarly,
by introducing a less porous region of the plate, we find values of γ at which the
noise significantly reduces. We, therefore, consider the effect of varying the leading-edge
porosity value, αL, for fixed γ = 2 and fixed αT = 0.3 in figure 17. If αL /= 0, the effect
of increasing the porosity at the leading edge is to uniformly reduce the noise across all
frequencies, due to the increasing average porosity of the total plate. However, specifically
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FIGURE 17. Effect of varying αL on trailing-edge noise over a range of frequencies. In all cases
the porosity at the trailing edge is fixed at αT = 0.3.

αL = 0 opposes this trend at low frequencies, where the noise is reduced versus even a
plate with a constant higher porosity of αT = 0.3.

The fact that this trend alters at low frequencies where the plate is acoustically compact
is not unexpected. For impermeable plates, back scattering from the leading edge (Moreau
& Roger 2009) is a significant contributor to the total far-field noise. This back scattering
arises because a non-zero jump in pressure across the plate at the leading edge must be
smoothly reduced to zero upstream of the plate. If the leading edge is porous, αL > 0, the
back scattering is much weaker than if αL = 0, since there is communication between the
upper and lower surfaces of the plate and the pressure jump across the plate at the (porous)
leading edge is dampened (Chaitanya et al. 2020). This gives rise to two possible reasons
for noise reduction at low frequencies as we vary γ ; increased average plate porosity and
back scattering effects result in edge-to-edge interference.

Recently, Chaitanya et al. (2020) proposed source-cutoff and edge-to-edge interference
as the two main noise-reduction mechanisms for fully and partially porous flat plates,
when in the porous section the porosity is uniformly distributed. A possible alternative
explanation for the source cutoff is due to the presence of evanescent surface waves of
the form exp(iαk0x ± √

1 − α2 y) by the impedance-type boundary condition of the form
ik0p = Z(∂p/∂y), as previously observed by Rienstra & Hirschberg (2004) (where α =
±√

1 − Z−2). For our porous plate model, Z = −iμ/k0 thus is purely imaginary, and these
surface waves may be induced. For variable-porosity plates, any surface wave structure
will be more complex and is not focussed on in this current study any further.

For our variable-porosity plate, in all cases of αL > 0 the back scattering and hence
edge-to-edge interference may be neglected since the leading-edge porosity dampens the
jump in surface pressure, and we hypothesise that the overall acoustic behaviour depends
only on the relative average porosity, thus mimics the high-frequency behaviour. For a
plate with an impermeable leading edge, the back scattering cannot be neglected, and thus
generates an additional acoustic source at the leading edge. Depending on the relative
source strength of these sources, at a given frequency when the two sources are out of
phase they will destructively interfere to result in a lower total amount of far-field noise.
Similarly, if the back scattering is in phase, additional noise will be created. We illustrate
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FIGURE 18. Effect of varying αL on the jump in (real) surface pressure, [p] for k0 = 0.5. In all
cases the porosity at the trailing edge is fixed at αT = 0.3, and γ = 2.

–1.0

–1.0

–0.5

–0.5

0

0

x
0.5

0.5

1.0

1.0

–1.0 –0.5 0
x

0.5 1.0
–10

–5

0
[ p]

[ p]

5

10

15

–0.5
0

0.5

–0.025

–0.020

–0.015

–0.010

–0.005

00
2
4
6
8
10

0.005
γ

(b)(a)

x

FIGURE 19. Effect of varying γ on the jump in surface pressure, [p], for k0 = 0.5. (a) Shows
the real part of [p], (b) the imaginary part. In all cases the porosity at the trailing edge is fixed at
αT = 0.3, and at the leading edge at αL = 0.

this feature by considering the jump in surface pressure along the plate in figure 18. There
is a clear pressure jump induced near the leading edge for αL = 0, which is not present for
porous leading edges even when the porosity is very small.

We investigate the effect of γ on this pressure jump near the leading edge in figures 19
and 20 for low and high frequencies. Both real and imaginary parts of the pressure
jump are now given. At low frequencies for small γ , the pressure jump near the leading
edge is dominated by a negative real part. However, as γ increases the imaginary part
near the leading edge increases. Therefore, the relative phase difference between the
fields alters, and an optimal γ value should exist whereby the fields are in optimal
destructive interference with each other. This is in contrast to the back scattering for a
fully impermeable plate, whereby the respective pressure jump across the plate is always
positive for low frequency k0 = 0.5, as illustrated in figure 21, and only a fixed interference
can be achieved. The ability of the variably porous plate to induce a destructively
interfering leading-edge field is echoed by the minimum feature in figure 13, which
illustrates a value of γ exists for which the total scattered noise is minimal.
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FIGURE 20. Effect of varying γ on the jump in surface pressure, [p], for k0 = 5. (a) Shows the
real part of [p], (b) the imaginary part. In all cases the porosity at the trailing edge is fixed at
αT = 0.3, and at the leading edge at αL = 0.
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FIGURE 21. Jump in surface pressure, [p], for k0 = 0.5, 5 in the case of an impermeable plate,
αH = 0.

At the higher frequency, k0 = 5, the real and imaginary parts of [p] in figures 19 and 20
are both oscillatory and similar in magnitude across all values of γ . This is very similar
to the case for the impermeable plate in figure 21. We, therefore, expect that at high
frequencies any back scattering effects for a variable porous plate with an impermeable
leading edge are similar to those observed for a fully impermeable plate, namely that the
magnitude of the back scattering is significantly reduced (Moreau & Roger 2009) and does
not play a key role in the overall far-field noise.

Our results, therefore, corroborate the hypothesis that low-frequency behaviour is
dominated by back scattering when the leading edge is rigid, and high-frequency
behaviour is dominated by average plate porosity. This neglects the possibility of surface
wave source cutoff, for which a more detail numerical study would be required to fully
validate our hypothesis in case these surface waves may also play a role.

Finally, we consider the far-field directivities at different frequencies for various porosity
distributions to again illustrate the hypothesised noise-reduction mechanisms. These two
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FIGURE 22. Directivity, |D(θ)|, for a quadrupole near the trailing edge with k0 = 0.2, when
αL = 0 and αT = 0.3. PTE denotes the directivity if αH = αT throughout, and αH = γ ave

i
denotes the directivity if αH takes a constant value equal to the average porosity when γ = i.

mechanisms which operate as we alter the porosity distribution by varying γ are the
change in average porosity, and the relative interference of the main trailing-edge acoustic
field and the back scattered leading-edge field. Due to the importance of this back scattered
field at low frequencies, the interference feature should overpower the effect of average
plate porosity at values of γ where the two fields are out of phase. This is illustrated in
figure 22; if we take a plate with constant porosity (right) and decrease that porosity, the
far-field noise uniformly increases (recall αTE > γ ave

1 > γ ave
2 > γ ave

3 ). However, if we take
a plate and alter the porosity through the variable αH(x) (left), we see completely different
behaviour; now the noise may reduce even though average plate porosity has decreased
(γ has increased). The reduction here is due to the tuned phase difference between the
main trailing-edge field and the back scattered field. This cannot be achieved for a plate
with constant porosity, since in that case an insufficiently strong back scattered field is
generated.

In figure 23 we repeat the results from figure 22, but now change the leading-edge
value of the variable porosity cases to αL = 0.1. The leading-edge back scattered field is
now heavily reduced since the surface pressure jump is dampened, and correspondingly
altering the value of γ results in an identical trend to altering the average porosity of the
plate. The overall magnitudes of the directivities for constant or variable porosity differ
since each variable-porosity case, γ = 1, 2, 3, has a higher porosity at the trailing edge
than the average cases.

At higher frequencies, where the plate is non-compact, the overwhelming noise source
becomes dominated by the trailing edge. The far-field acoustic behaviour, therefore,
returns to a dependence on just average porosity of the plate, regardless of whether
the leading edge of the variable plate has zero porosity or not. This can be seen in
figure 24; the same increasing noise trend is seen as γ increases as when the average
plate porosity decreases. This is true for both the zero-porosity leading edge and the
non-zero-porosity leading edge. We note, however, the variation in the directivity shape
between constant and variable-porosity cases when the leading-edge is impermeable (left).
The directivity is more oscillatory when αL = 0 but not when the leading edge is porous.
The oscillations in the impermeable leading-edge case are caused by the small, O(k−1/2

0 ),
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FIGURE 23. Directivity, |D(θ)|, for a quadrupole near the trailing edge with k0 = 0.2, when
αL = 0.1 and αT = 0.3. PTE denotes the directivity if αH = αT throughout, and αH = γ ave

i
denotes the directivity if αH takes a constant value equal to the average porosity when γ = i.
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FIGURE 24. Directivity, |D(θ)|, for a quadrupole near the trailing edge with k0 = 5, when
αL = 0 (a) and αL = 0.1 (b). For both, αT = 0.3, PTE denotes the directivity if αH = αT
throughout, and αH = γ ave

i denotes the directivity if αH takes a constant value equal to the
average porosity when γ = i.

back scattering effects which are still present at high frequencies albeit are less crucial
to the overall magnitude of the directivity. When the leading edge is porous, similar to
at low frequencies, the back scattering is reduced, and the oscillations become much less
pronounced.

6. Conclusions

This paper has considered the aeroacoustic effects of plates with chordwise-varying
porosity distributions. We have measured the distributions from two species of bird;
the barn owl and the common buzzard, and matched their chordwise-varying air flow
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resistance to an effective open area ratio as arises in the acoustic theoretical modelling of
perforated plates. A plate with a porosity mimicking that of the buzzard’s is seen to be
more aerodynamically efficient, whilst one modelling the owl’s produces much less noise
than the buzzard. The additional camber of the owl’s wing, which is not included in the
results here, may mitigate the adverse aerodynamic effects of porosity. The aeroacoustic
effect of camber is known to be small (Devenport, Staubs & Glegg 2010), particularly in
comparison to the effect of surface porosity. Therefore we would not expect including
camber in our acoustic model to significantly alter those results. The noise reduction
observed is in agreement with previous experimental results for uniformly porous plates,
and is shown to be similar to that measured during flyover tests. However, the theory
over-predicts that seen in laboratory tests. This is most likely due to additional features on
the owl’s wing that promote silent flight such as serrations and a downy upper coat. These
features have not been modelled here.

A further study of the effects of general monotonic streamwise distributions was then
undertaken. It is seen that for low frequencies, a monotonic variation from a porous trailing
edge to an impermeable leading edge can be more acoustically beneficial than if the
plate remained at the constant trailing-edge porosity. This is attributed to the leading-edge
back scattered field (Moreau & Roger 2009); an impermeable leading edge has a strong
back scattered field which is able to destructively interfere with the trailing-edge field. At
high frequencies, the back scattered field is both weaker and of much higher frequency,
therefore inducing oscillations in the far-field directivity rather than a global reduction
(or increase) of noise.

This model cannot capture the effects of finite wing span or roughness-induced noise,
both of which will affect the noise generated by a realistic wing. Nevertheless, we hope the
theoretical acoustic model developed here, combined with a previous aerodynamic model
(Hajian & Jaworski 2017), may be useful for future simultaneous studies of the effects of
porosity on aerodynamic and aeroacoustic efficiency, and may aid in the design of new
quiet aerofoils. The particular route of interest highlighted here is in varying the porosity
of a plate in such a way as to induce a destructively interfering acoustic field. This has the
potential to benefit both the acoustics and the aerodynamics.
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