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a b s t r a c t 

This paper presents a rapid numerical method for predicting the aerodynamic noise gener- 

ated by foam-like porous aerofoils. In such situations, particularly for high-frequency noise 

sources, Darcy’s law may be unsuitable for describing the pressure jump across the aero- 

foil. Therefore, an inertial Forchheimer correction is introduced. This results in a non-linear 

boundary condition relating the pressure jump across the material to the fluid displace- 

ment. We aim to provide a quick, semi-analytical model that incorporates such non-linear 

effects without requiring a full turbulent simulation. The numerical scheme implemented 

is based on local Mathieu function expansions, leading to a semi-analytical boundary spec- 

tral method that is well-suited to both linear and non-linear boundary conditions (includ- 

ing boundary conditions more general than the Forchheimer correction). In the latter case, 

Newton’s method is employed to solve the resulting non-linear system of equations for 

the unknown coefficients. Whilst the physical model is simplified to consider just the 

scattering by a thin porous aerofoil with no background flow, when the non-linear in- 

ertial correction is included good agreement is seen between the model predictions and 

both experimental results and large eddy simulations. It is found that for sufficiently low- 

permeability materials, the effects of inertia can outweigh the noise attenuation effects of 

viscosity. This helps explain the discrepancy between experimental results and previous 

(linear) low-fidelity numerical simulations or analytical predictions, which typically over- 

estimate the noise reduction capabilities of porous aerofoils. 

© 2020 Elsevier Ltd. All rights reserved. 

 

 

 

1. Introduction 

The use of porosity as a means to control and attenuate aerofoil-interaction noise has become increasingly popular over 

recent years [1–5] . Within this notion of porosity lies two distinct concepts. The first arises for thin perforated plates [4,5] ,

whereby apertures fully puncture the material. Here, when there is no background steady flow, the apertures induce an 

acoustic (Rayleigh) conductivity on the surface [6] , and when there is background flow (tangential [7] or bias [8] ), the vor-

ticity generated by that flow over the apertures acts dissipatively. Both mechanisms may be captured by the Rayleigh con- 

ductivity parameter, K R , whose real part corresponds to conductivity and whose imaginary part to dissipation. The acoustic 

pressure, p e −i ωt (where the factor e −i ωt will be suppressed throughout), on a thin plate lying in y = 0 must satisfy the
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condition 

K R [ p] = i ρ f ω v , (1.1) 

where ρ f is the external fluid density and v is the normal fluid velocity averaged over a unit area of the surface. We use the

notation p(x, 0+) and p(x, 0 −) to denote the values of the pressure field just above and just below the plate respectively, and

for notational convenience, the jump p(x, 0+) − p(x, 0 −) across the plate is denoted by [ p](x ) . Under Howe’s derivation [7] ,

the condition in (1.1) is valid only when the open area of the plate is sufficiently small (low porosity), and the wavenumber

is much smaller than the reciprocal of a typical pore radius. 

The second notion of porosity arises for materials such as metal foams [1,9] , wherein microscopic void spaces are found

within a rigid framework. Here, the local Reynolds number, based on typical void space (pore size) within the foam, is

low and therefore viscous dissipation plays a dominant role. For sufficiently low local Reynolds numbers ( Re L < 1 ), only the

viscous dissipation is important, and the pressure jump across these materials may be described linearly by Darcy’s Law, 

K 

[ p] 

h 

= −μ v , 

where μ is the air viscosity, K is the permeability of the material and h is the small height over which the pressure jump

is taken. However, at higher local Reynolds numbers ( 1 < Re L < 10 ), a correction for inertial effects should be included, and

the pressure difference may be described by the non-linear boundary Forchheimer equation [10] , 

K 

[ p] 

h 

= −μ v − βρ f 

√ 

K v | v | , (1.2) 

where β is the inertial coefficient. Note also that the nature of this boundary condition still permits the time-harmonic form 

∼ e −i ωt . 

Previous theoretical [5] and low-fidelity numerical [11] work concerned with the prediction of aerodynamic noise scat- 

tering and absorption by porous materials focuses on the first notion of porosity, perforated plates, as these can be easily

described by two parameters; the Rayleigh conductivity, K R , and an open area ratio, α, of the surface. Due to the complex-

ity of a background steady flow interacting with a porous material, these models do not include such a background flow

and are purely concerned with acoustic scattering. For further simplicity, the models consider the boundary conditions to 

be linearised to y = 0 , thus effectively reducing an aerofoil to a flat plate. Both semi-infinite and finite plate models have

been considered this way [5,11] . Experimental findings show that porosity is effective at reducing low and mid-frequency 

noise, both for perforations and foam-like materials [3,4] . Theoretical and low-fidelity linear numerical models can capture 

this feature. However, these models often overpredict the potential reduction of noise. Often at mid and high frequencies, 

the discrepancy with experimental results is attributed to surface roughness, which is generated by the background flow 

interacting with the rough surface and is not accounted for in the theoretical models. 

Fewer models consider foam-like porous aerofoils, despite these being commonplace in the experimental literature. At 

high frequencies for these foam-like materials, the local Reynolds number can be sufficiently high within the material to 

require the inclusion of the non-linear Forchheimer correction. The Large Eddy Simulations (LES) conducted by Koh et al. 

[12,13] , which do take account of the Forchheimer correction, corroborate the reduction of noise observed experimentally, 

and thus confirm that current linear models overpredict noise reduction. Accordingly, this paper investigates the effect of 

this non-linear inertial term on the acoustic scattering by thin porous aerofoils, and quantifies the effect of the non-linear 

boundary condition on noise reduction versus a linear (Darcy) model. We aim to provide a quick, semi-analytical model 

that incorporates the non-linear effects of the Forchheimer model without requiring a full turbulent simulation (such as the 

models in Bae and Moon [14] , Ananthan et al. [15] ). 

To implement the non-linear condition, we extend a previous linear boundary collocation method [11,16,17] , which repre- 

sents the solution in terms of local Mathieu function expansions. In the context of the current paper, this method, along with

a partitioning of the system according to the different (kinematic and non-linear Forchheimer) boundary conditions, gives 

rise to a non-linear system of equations (see (3.10) ) for the unknown coefficients, which we solve via Newton’s method. The

result is a boundary spectral method that can deal with the non-linear Forchheimer correction, and more general non-linear 

boundary conditions, efficiently and accurately for a wide range of parameters. 

This paper is organised as follows. In Section 2 , we introduce the mathematical model. The numerical method is pre-

sented in Section 3 , with convergence discussed in Section 4 . The results for physical models are presented and discussed

in Section 5 , including a comparison with LES and experimental data. A conclusion and discussion of future work is given in

Section 6 . Finally, code for the numerical method can be found at https://github.com/MColbrook/MathieuFunctionCollocation . 

2. Mathematical model 

Suppose that an acoustic source interacts with a plate { (x, 0) : −1 ≤ x ≤ 1 } (where lengths have been non-

dimensionalised by the semi-chord, d). The thickness of the plate, h (x ) , which is permitted to vary in the x direction, is

constrained to be much smaller than the semichord, h (x ) � 1 , and hence we consider the zero-thickness approximation.

We illustrate the setup in Fig. 1 where a lateral quadrupole is chosen to illustrate the acoustic source. The source will have

pressure denoted by p and the scattered field has pressure denoted by p. We assume that p and p have the usual time
I I 

2 
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Fig. 1. Schematic of the single plate { (x, 0) : −1 ≤ x ≤ 1 } (zero-thickness approximation) with a quadrupolar source. The shaded area corresponds to h (x ) 

of an NACA 4-digit aerofoil with 6% thickness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dependence e −i ωt (omitted throughout) and therefore p satisfies the Helmholtz equation (
∂ 

∂x 2 
+ 

∂ 

∂y 2 
+ k 2 0 

)
p = 0 , 

where k 0 = ω/c 0 is the acoustic wavenumber for angular frequency ω. Here, pressure has been non-dimensionalised by 

ρ f c 
2 
0 , where c 0 is the speed of sound. 

We shall focus on two primary sources; first, the pressure due to an acoustic plane wave of unit amplitude incident at

angle θ (measured from the positive x -axis anticlockwise in the usual manner), corresponding to the choice 

p I (x, y ) = e −i k 0 x cos θ−i k 0 y sin θ . (2.1) 

The second choice, most applicable to an aerodynamic setting, is a near-field quadrupole sound source corresponding to 

p I (x, y ) = P 0 
i k 2 0 

4 r 2 
0 

(x − x 0 )(y − y 0 ) H 

(1) 
2 

(k 0 r 0 ) , (2.2) 

where (x 0 , y 0 ) is the source location, r 0 (x, y ) = 

√ 

(x − x 0 ) 2 + (y − y 0 ) 2 , and H 

(1) 
n denotes the n th order Hankel function of

the first kind. We mention, however, that an arbitrary acoustic source could just as easily be used. In an aerodynamic setting,

the principle source of noise arises from quadrupole type sources, ∼ ∂T i j 

∂x i x j 
, as described by Lighthill [18] , where T i j = ρu i u j 

is the Lighthill tensor, with ρ and u i, j the typical (dimensional) density and (dimensional) velocities of the turbulent flow. 

We therefore allocate a (non-dimensionalised) scaling of the quadrupole corresponding to P 0 = M 

2 , where M is the (low)

Mach number of the flow local to the quadrupole. 

We denote the (non-dimensionalised) average fluid displacement normal to the plate by ηa , where averaging is done 

over a unit area of the porous material. Therefore, the non-dimensionalised kinematic condition on the plate takes the form 

∂ p 

∂y 

∣∣∣
y =0 

+ 

∂ p I 
∂y 

∣∣∣
y =0 

= C 0 (x ) ηa | y =0 , | x | < 1 , (2.3) 

with C 0 (x ) = k 2 0 . Here we have neglected O (h ) terms arising from the small thickness of the plate allowing us to present a

condition along y = 0 . 

The non-linear Forchheimer condition (similarly applied on y = 0 by taking only leading order in h ) is 

[ p] = C 1 (x ) ηa + C 2 (x ) ηa | ηa | , | x | < 1 , (2.4)

where C 1 (x ) = i k 0 h (x ) /G rn , and C 2 (x ) = i G r f h (x ) k 2 0 /G rn are defined in terms of the non-dimensional groups G rn =
ρ f Kc 0 / (μd) , and G r f = ρ f βc 0 

√ 

K /μ as in Cimolin and Discacciati [10] . (Recall that d is the dimensional semichord length.)

It is important to note here that we include the non-linear term C 2 (x ) ηa | ηa | , since is not necessarily smaller than the linear

term C 1 (x ) ηa , despite including an additional factor of ηa . Inclusion of this term is necessary when G r f k 0 is larger than O (1) ,

which is linked both to higher frequencies and higher permeability materials. It is particularly the high-frequency regime 

we wish to interrogate in order to consolidate previous linear theory of noise reduction with experimental measurements. 

When | x | > 1 , continuity and symmetry requires p(x, 0) = 0 , and the solution p is also required to satisfy the Sommerfeld

radiation condition for outgoing waves at infinity given by 

lim 

r→∞ 

r −1 / 2 

(
∂ p 

∂r 
− i k 0 p 

)
= 0 , where r = 

√ 

x 2 + y 2 . 

Finally, we have written the boundary conditions (2.3) and (2.4) in a general form with coefficients C 0 , 1 , 2 , since the

collocation method can deal with this generality. However, our focus will be on the above specified values of C i throughout.

Additionally, the method can be extended to different non-linear couplings in (2.4) , for example, sums of terms involving

ηa | ηa | α for α > −1 or higher-order corrections. 

3. Numerical method of solution 

We first consider the case of a single plate, where we compute the solution using separation of variables following

the method outlined in Ayton et al. [11] , Colbrook and Priddin [16] , Colbrook and Kisil [17] . This induces the well-known
3 
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expansion of the pressure field in terms of Mathieu functions, initially with unknown coefficients that must be determined 

by the boundary conditions (see the discussions and references in the above papers for the history of earlier methods that

use Mathieu functions, such as the early work of Morse and Rubenstein [19] or the recent boundary integral method of

Nigro [20] , discussed also in Colbrook et al. [21] , Ayton et al. [22] , for a single rigid impermeable plate). Additionally, we

expand ηa in Chebyshev polynomials (of the first kind). To cope with the resulting non-linear system of equations that 

determine the coefficients in these expansions (as opposed to the linear systems of equations appearing in Colbrook and 

Priddin [16] , Colbrook and Kisil [17] ), we collocate and use Newton’s method. Through a local separation of variables, we

can also handle multiple plates, as outlined in Section 3.3 and demonstrated in Section 4.2 , though this is not the focus of

the current study. 

3.1. The single plate case and Mathieu functions 

For a plate { (x, 0) : −d ≤ x ≤ d} , the scattered field p is an odd function in the variable y and hence we can consider solv-

ing the PDE system in the upper-half plane { (x, y ) : y > 0 } . We introduce elliptic coordinates via x = d cosh (ν) cos (τ ) , y =
d sinh (ν) sin (τ ) , where, with an abuse of notation, we write functions of (x, y ) also as functions of (ν, τ ) . Under this trans- 

formation, the appropriate domain becomes ν ≥ 0 and τ ∈ [0 , π ] . To simplify the formulae, we let Q = d 2 k 2 0 / 4 . Separation of

variables leads to the expansion 

p(ν, τ ) = 

∞ ∑ 

m =1 

a m 

se m 

(τ ) Hse m 

(ν) , (3.1) 

where se m 

(τ ) = se m 

(Q; τ ) denote sine-elliptic functions and Hse m 

(Q;ν) = Hse m 

(ν) denote Mathieu–Hankel functions. Full 

details of this process can be found in, for example, Colbrook and Priddin [16] , Colbrook and Kisil [17] , Colbrook et al. [21] . 

We expand the functions se m 

in a sine series given by 

se m 

(τ ) = 

∞ ∑ 

l=1 

B 

(m ) 
l 

sin (lτ ) , (3.2) 

where we find the coefficients B (m ) 
l 

via a simple Galerkin method. The functions Hse m 

(ν) can be expanded using Bessel

functions [23,24] : 

Hse m 

( ν) = 

∞ ∑ 

l=1 

( −1 ) 
l+ m B ( m ) 

l 

ˆ C m 

[ 
J l−1 

(
e −ν

√ 

Q 

)
H 

( 1 ) 
l+ p m 

(
e ν

√ 

Q 

)
− J l+ p m 

(
e −ν

√ 

Q 

)
H 

( 1 ) 
l−1 

(
e ν

√ 

Q 

)] 
, (3.3) 

where p m 

= 1 if m is even and p m 

= 0 if m is odd. Here J n denotes the Bessel function of the first kind of order n and we

remind the reader that H 

(1) 
n denotes the Hankel function of the first kind of order n . We choose the normalisation constants

ˆ 
 m 

such that Hse ′ m 

(0) = 1 . In certain parameter regimes, some care must be applied when using (3.3) ; see [17] for details on

using asymptotic expansions to avoid underflow and overflow associated with cancellations between the Bessel and Hankel 

functions. 

We use the boundary conditions to solve for the unknown coefficients a m 

, after which the solution can be evaluated

anywhere in the (x, y ) plane. Of particular interest is the far-field directivity, D (θ ) , which is defined via 

p(r, θ ) ∼ D (θ ) 
e i wr 

√ 

r 
, as r → ∞ , 

where (r, θ ) are the usual polar coordinates. Given the Bessel function expansion of Hse m 

(ν) in (3.3) , we can directly com-

pute D (θ ) from (3.1) using asymptotics of Bessel functions to obtain 

D (θ ) = 

√ 

2 

πk 0 

∞ ∑ 

m =1 

a m 

B 

(m ) 
1 

C m 

exp 

(
(2 p m 

− 3) π

4 

i 

)
se m 

(θ ) . 

An advantage of our approach is that we implicitly compute a sine series for the far-field directivity D (θ ) through the

expansions of the sine-elliptic functions se m 

(θ ) given by (3.2) . This allows easy computation of the scattered far-field sound, 

defined as 

P = 10 log 10 

(∫ 2 π

0 

| D (θ ) | 2 dθ

)
, (3.4) 

and measured in dB. 

3.2. Collocating the boundary conditions 

We adopt a spectral collocation approach to finding the unknown coefficients in the expansion (3.1) . Throughout, we 

denote the approximate coefficients by ˜ a m 

. We truncate the expansion (3.1) to M terms and supplement the expansion of p
4 
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with an expansion of ηa in terms of Chebyshev polynomials of the first kind 

ηa (x ) = 

∞ ∑ 

j=0 

b j T j 

(
x 

d 

)
. 

We truncate this expansion to N terms for approximate coefficients ˜ b j . The kinematic relation (2.3) becomes 

√ 

d 2 − x 2 · ∂ p I 
∂y 

(x ) + 

M ∑ 

m =1 

˜ a m 

se m 

(
cos −1 

(
x 

d 

))
= 

√ 

d 2 − x 2 · C 0 (x ) 
N−1 ∑ 

j=0 

˜ b j T j 

(
x 

d 

)
. (3.5) 

We collocate the kinematic condition (3.5) at the points {
d cos 

(
2 j − 1 

2 M 

π

)
: j = 1 , . . . , M 

}
, 

which correspond to (rescaled) Chebyshev points in Cartesian coordinates and equally spaced points in elliptic coordinates 

[25,26] . The non-linear coupling (2.4) yields 

2 

∑ M 

m =1 ˜ a m 

se m 

(
cos −1 

(
x 
d 

))
Hse m 

( 0 ) = 

[
C 1 ( x ) + C 2 ( x ) 

∣∣∑ N−1 
j=0 

˜ b j T j 
(

x 
d 

)∣∣][∑ N−1 
j=0 

˜ b j T j 
(

x 
d 

)]
, (3.6) 

which we collocate at N Chebyshev points. 

Coupling the two collocated relations, namely (3.5) and (3.6) , leads to the non-linear equation 

A v + (B v ) ◦ | C v | = c , (3.7) 

where A, B, C ∈ C 

(M+ N) ×(M+ N) , v is the concatenated vector of the unknown coefficients { ̃  a m 

, ̃  b j : m = 1 , . . . , M, 

j = 0 , . . . , N − 1 } , c denotes the forcing that arises from the ∂ y p I term in (3.5) , ◦ denotes component-wise multiplication

of vectors, and the absolute value is taken component-wise. Before describing the method to numerically solve (3.7) , we

briefly discuss extensions to multiple plates. 

3.3. Extensions to multiple plates 

We can easily extend the method to scattering from multiple plates, each of which satisfies corresponding kinematic and 

porous boundary conditions. Suppose that we have plates P [ i ] for i = 1 , . . . , S, whose lengths are 2 d [ i ] (see, for example the

setup shown in Section 4.2 ). We also suppose that the open set R 

2 \ (∪ 

S 
i =1 

P [ i ] ) is connected (in particular, we exclude the

possibility that plates enclose a region, though this can be dealt with via suitable modifications). We use sub/superscripts 

[ i ] to denote quantities associated with the plate P [ i ] . Each plate P [ i ] induces a corresponding scattered field given by 

p [ i ] (x, y ) = 

∞ ∑ 

m =1 

a [ i ] m 

se m 

(
Q [ i ] ; τ[ i ] 

)
Hse m 

(
Q [ i ] ;ν[ i ] 

)
, 

where (ν[ i ] , τ[ i ] ) = (ν[ i ] (x, y ) , τ[ i ] (x, y )) are elliptic coordinates centred around P [ i ] , and Q [ i ] = d 2 
[ i ] 

k 2 0 / 4 . The total scattered field

is given by the sum of these contributions p = 

∑ S 
i =1 p [ i ] and along each plate we apply kinematic conditions and non-linear

coupling as before. 

We take M [ i ] Mathieu functions for the expansion along the i th plate and we supplement the expansion of p [ i ] with

an expansion of η[ i ] 
a in terms of N [ i ] Chebyshev polynomials of the first kind along the plate P [ i ] . The kinematic relation

becomes 

∑ M i 

m =1 
˜ a [ i ] m 

se m 

(
Q [ i ] ; cos −1 

(
x [ i ] 
d [ i ] 

))
−

√ 

d 2 
[ i ] 

− x 2 
[ i ] 

· C [ i ] 
0 

(x [ i ] ) 
∑ N [ i ] −1 

j=0 
˜ b [ i ] 

j 
T j 

(
x [ i ] 
d [ i ] 

)
= −

√ 

d 2 
[ i ] 

− x 2 
[ i ] 

· ∂ 
∂y 

[ 
p I + 

∑ 

j � = i 
∑ M [ j] 

m =1 
a [ j] m 

se m 

(
Q [ j] ; τ[ j] 

)
Hse m 

(
Q [ j] ;ν[ j] 

)] 
(x, y ) , 

where x [ i ] denotes a unit speed parametrisation of the plate P [ i ] for x [ i ] ∈ [ −d [ i ] , d [ i ] ] . We collocate this relation for (x, y )

points corresponding to M [ i ] Chebyshev points along P [ i ] (so that x [ i ] /d [ i ] correspond to standard Chebyshev points). The 

non-linear coupling becomes 

2 

∑ M [ i ] 

m =1 
˜ a [ i ] m 

se m 

(
Q [ i ] ; cos −1 

(
x [ i ] 
d [ i ] 

))
Hse m 

(Q [ i ] ; 0) 

−
[ 

C [ i ] 
1 

(x [ i ] ) + C [ i ] 
2 

(x [ i ] ) 

∣∣∣∑ N [ i ] −1 

j=0 
˜ b [ i ] 

j 
T j 

(
x [ i ] 
d [ i ] 

)∣∣∣] [ ∑ N [ i ] −1 

j=0 
˜ b [ i ] 

j 
T j 

(
x [ i ] 
d [ i ] 

)] 
= 0 , 

and we collocate at N [ i ] Chebyshev points along P [ i ] . 

Coupling the two collocated relations across all S plates, leads to a system of the form 

A v + (B v ) ◦ | C v | = c , (3.8) 

where now A, B, C ∈ C 

( 
∑ S 

i =1 M [ i ] + N [ i ] ) ×( 
∑ S 

i =1 M [ i ] + N [ i ] ) , v is the concatenated v ect or of the unknown coefficients { ̃  a 
[ i ] 
m 

, ̃  b 
[ i ] 
j 

: m =
1 , . . . , M [ i ] , j = 0 , . . . , N [ i ] − 1 , i = 1 , . . . , S} and c denotes the relevant (known) forcing term. 
5 
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3.4. Solving the non-linear system 

For ease of exposition, in the case of multiple plates, we set M = 

∑ S 
i =1 M [ i ] and N = 

∑ S 
i =1 N [ i ] . To solve the discretised

Eq. (3.8) , we apply Newton’s method, and hence it is advantageous to reduce the dimension of the non-linear system (solved

at each step) as much as possible. A closer inspection of the collocation relations yields the following block structure. If we

partition the unknown coefficients into first the M unknown coefficients { ̃  a 
[ i ] 
m 

} and then the N unknown coefficients { ̃ b 
[ i ] 
j 
} ,

and the collocation points into the kinematic conditions and then the non-linear couplings, we obtain the following block 

structure of the matrices A, B and C, and the vectors v and c : 

A = 

(
A 11 A 12 

A 21 A 22 

)
, B = 

(
0 0 

0 B 22 

)
, C = 

(
0 0 

0 C 22 

)
, v = 

(
v 1 
v 2 

)
, c = 

(
c 1 
0 

)
. 

By considering the rows corresponding to collocating the kinematic condition, this yields the relation 

v 1 = A 

−1 
11 ( c 1 − A 12 v 2 ) . (3.9) 

Substituting this into the non-linear coupling yields [
A 22 − A 21 A 

−1 
11 A 12 

]
v 2 + (B 22 v 2 ) ◦ | C 22 v 2 | = −A 21 A 

−1 
11 c 1 . (3.10) 

We solve (3.10) via Newton’s method. To do this we split vectors into real and imaginary parts so that taking absolute

values is differentiable almost everywhere. We also choose the linearised solution (obtained by setting B 22 = 0 ) as our initial

vector. Other choices are possible, such as a zero-padded solution vector to the non-linear equation for smaller M and N, 

but we stick to this choice throughout for simplicity. 1 Once v 2 is computed, v 1 is computed via (3.9) . Note that using

the decompositions reduces the dimensions of the linear systems we solve at each iteration of Newton’s method from 

(2 M + 2 N) × (2 M + 2 N ) to (2 N ) × (2 N) (the factors of two arise from splitting into real and imaginary parts). Since the

linear systems are dense, for the choice of M = N, and ignoring the difference in the number of iterations of Newton’s

method, this leads to a roughly eightfold speed-up for large M = N. 

4. Numerical convergence 

In this section, we interrogate our numerical method. The linear case of C 2 = 0 with real-valued C 0 and C 1 has been pre-

viously validated and compared with other methods [16,17] . We therefore confine ourselves to demonstrating convergence 

for a single plate, with both a linear example (with complex-valued C 1 and C 2 = 0 ) and a non-linear example, as well as a

simple multiple plate example. We take M = N throughout. Comparison with experimental data and high-fidelity numerics 

is provided in Section 5 , and in this section, we focus on numerical convergence as opposed to a specific physical model or

findings. We compute the relative error of P (given by (3.4) ), as well as the relative error of [ p] along the plate (measured

in the L 2 norm using a large number of discrete points), by comparing to a larger value of M = N. We tested the numerical

method extensively, and for all cases, we found similar behaviour to the two following examples. 

4.1. Interrogation for a single plate 

To demonstrate generality (similar convergence also occurred for the experiments in Section 5 ), we consider the case of 

C 0 (x ) = k 2 0 , C 1 (x ) = i k 0 (1 . 2 + sin (20 x )) , C 2 (x ) = i 20 k 2 0 (x 2 + 1) , 

where C 2 is set to zero for the linear case. The pressure due to the acoustic source is taken to be a plane wave of unit

amplitude incident at angle π/ 3 , as in (2.1) . 

Fig. 2 shows the convergence for k 0 = 5 and k 0 = 100 . We see that in both cases we can obtain a relative accuracy of

at least 10 −7 for [ p] and 10 −10 for P, for M = N = 10 0 0 . We also see that, for a given accuracy, a smaller number of basis

functions are needed for a smaller k 0 . Consistent with the linear case in previous works, there is a value of M = N (typically

of the order k 0 ) after which the convergence rate increases (particularly visible in the P error curves), before settling to

an algebraic rate for large M = N. 2 Fig. 3 shows the corresponding far-field directivities. The non-linear term causes an

amplification of the scattered sound, though the scattered field still concentrates around the expected lobes, particularly for 

larger k 0 . 

Finally, we consider the convergence of iterates of Newton’s method. For a fixed k 0 and fixed M = N, we consider the

convergence of the iterates to the vector of coefficients { ̃  a m 

} M 

m =1 in C 

M , taking the relative l 2 -norm error of the computed
1 There is an additional reason for choosing the linearised solution as the initial vector. We cannot rule out the possibility of multiple solutions to the 

non-linear system of Eq. (3.10) . In the case of multiple solutions, we expect the physically correct solution to be the one closest to the linearised solution. 

However, in the following examples we checked for additional solutions using deflation and were unable to find any. This provides numerical evidence 

(though not a mathematical proof) that there is a unique solution to (3.10) . For further details on Newton’s method and deflation in the context of spectral 

methods and infinite-dimensional problems, see, for example, the thesis of Birkisson [27] and the references therein. 
2 For the case of a rigid impermeable plate with the usual linear boundary conditions, i.e. C 0 = 0 , this convergence is improved to exponential. This is 

because, in this case, the sine functions (used in Section 3.2 ) in elliptic coordinates, and more specifically, the sine-elliptic functions correctly capture the 

square-root type behaviour of [ p] at the ends of the plate. 
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Fig. 2. Convergence of the method for the linear case (left) and non-linear case (right). 

Fig. 3. Far-field directivities; the dotted lines show the positions of the expected dominant lobes. 

Fig. 4. Convergence of Newton’s method to solve the non-linear equation in (3.10) . We have plotted the relative error of the sought after coefficients ˜ a m 
(convergence for the ˜ b j is similar), which are computed from the solution of (3.10) by solving the linear Eq. (3.9) . 

 

 

 

 

coefficients. Note that we measure the error relative to the converged (in terms of the Newton iterates) values of { ̃  a m 

} M 

m =1 
for a fixed M = N, rather than compared to the actual coefficients a m 

. This allows us to see how fast Newton’s method

converges for the truncated/discretised Eq. (3.8) . Fig. 4 shows the results, where we have plotted the square of the number

of iterations of Newton’s method along the horizontal axis. This scaling shows the expected quadratic convergence (i.e. the 

number of correct digits roughly doubles each iteration). There are two further notable features. First, as expected, a larger 

M = N requires a larger number of iterations and also has a larger error plateau. However, the number of iterations to

gain near machine precision is still very small for all the parameter values we consider throughout this paper (we never
7 
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Fig. 5. Real part of total field for multiple plate example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

needed more than ten iterations and did not run into any convergence issues). Second, it appears that one or two fewer

iterations are needed for k 0 = 100 compared to k 0 = 5 . We found that the number of iterations needed varies weakly with

k 0 . For k 0 ≥ 1 , this is due to the scalings in the coefficients of C 0 , C 1 , C 2 in terms of k 0 . Using the standard error analysis of

Newton’s method near a solution (in terms of the Jacobian and higher-order derivatives), it is easy to construct examples 

of different scalings where the number of iterations needed increases or decreases with increasing k 0 . Hence, and because

only a small number of iterations are needed for the selected parameters in this paper, we have not pursued the (difficult)

task of a general analysis of the number of iterations needed in terms of k 0 and M = N. Instead, we terminate the iteration

process when the residual of the non-linear system is near machine precision. 

4.2. Interrogation for multiple plates 

To demonstrate the method for four plates, we consider the parameters 

C [1] 
0 

(x [1] ) = k 2 0 , C [1] 
1 

(x [1] ) = i k 0 , C [1] 
2 

(x [1] ) = 30 i k 2 0 , 

C [2] 
0 

(x [2] ) = 0 , 

C [3] 
0 

(x [3] ) = 1 , C [3] 
1 

(x [3] ) = tanh (x [3] ) , C [3] 
2 

(x [3] ) = − sin (πx [3] ) 

C [4] 
0 

(x [4] ) = −1 , C [4] 
1 

(x [4] ) = 1 / cosh (x [4] ) , C [4] 
2 

(x [4] ) = i 
√ | x [4] | . 

Again, these parameters are not chosen to correspond to any specific physical model (though the parameters for the first 

plate can be cast in terms of the physical model of this paper), but rather to demonstrate the generality of the method

and the ability to cope with both a range of functions and a mixture of sign patterns. This flexibility exhibits the versatility

commonly found in collocation approaches. We leave the investigation of physical models with multiple plates for future 

work. In defining the above parameters, we have not specified C 
[2] 
1 

and C 
[2] 
2 

since the second plate is rigid and impermeable.

We consider the case of k 0 = 15 and a quadrupole sound source at (0 , −2) with P 0 = 1 in (2.2) . The four plates and total

field are shown in Fig. 5 . Convergence of the method for this example is shown in Fig. 6 , where we see the same behaviour

as before (here, we set M [ i ] = M and N [ i ] = N). In this example, all relative errors are well below 10 −6 for M = N = 100 . We

also show the far-field directivity in Fig. 6 (right), which shows a complicated structure due to interference of scattered 

fields from multiple sharp edges in similar proximity to the source. 

5. Results 

5.1. Comparison to LES 

First we attempt to verify our results with the existing LES results for porous plates which take into account the Forch-

heimer correction [12,13] . In particular, we recreate the directivity patterns from [ 13 , Fig. 29]. In that paper, a plate of

uniform thickness of h = 3 mm and total chord length 10 cm is simulated in a uniform flow of 20 ms −1 . The fore-region of

the plate is impermeable (solid) and the aft-region is porous, with a permeability coefficient 

K = 

d 2 p φ
3 

C K (1 − φ) 2 
, (5.1) 
8 
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Fig. 6. Left: Convergence for multiple plate example. Right: far-field directivity | D (θ ) | . 

Fig. 7. Far-field directivity plots comparing data from [ 13 , Fig. 30] (symbols) to our model predictions. Blue corresponds to the impermeable/solid cases, 

and red to the porous cases. The symbols correspond to Cases A ( ∗), B ( ◦) and C ( ×). (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

and a Forchheimer coefficient 

F = 

d p ρ

C F (1 − φ) μ
| v | . (5.2) 

Here, φ = 0 . 5 is the porosity parameter, and d p = 0 . 078 mm denotes the typical particle diameter. The coefficients are C K =
180 and C F = 100 . 3 These parameters correspond to K = 1 . 7 × 10 −11 and β = 0 . 38 in our model definitions, and we use the

non-dimensional thickness h = 0 . 03 . 4 

For comparison, we include all edge shapes from [13] ; rounded edges (Case A), square/sharp edges (Case B, which our

setup most accurately mimics), and fully circular edges (Case C). We have extracted the data from [ 13 , Fig. 30] and replotted

with predictions from our model for a quadrupole at (1,0.05) in flow of M = 0 . 06 in Fig. 7 . Vortex shedding occurs at St ≈ 0 . 2

which is neglected in our model, thus we only consider the data for St = 0 . 3 , 0 . 4 . The quadrupole model results have been

rescaled by 9 × 10 −7 and 6 . 75 × 10 −7 respectively to align with the results from [13] . We have rescaled since the results in

Koh et al. [13 , Eq. (23)] use parameters which are not present in our model, such as spanwise correlation lengthscales and

a finite plate span. However, since these are multiplicative factors to the overall power spectral density, the relative noise 

reduction should be well captured by our model (as these factors cancel out when we take logarithms to calculate the noise

in dB). 

The results in Fig. 7 indeed compare well and indicate that our model is capable of rapidly evaluating the effects of a

non-linear Forchheimer boundary condition on trailing edge noise generated by porous aerofoils (producing all of our data 

for each plot in Fig. 7 took less than a tenth of second on a six year-old laptop). As expected, there are some discrepancies

since LES allow for fully turbulent flows, in particular, multiple turbulent eddies and therefore a streamwise correlation 
3 The dimensional parameter d p is found by calculating the inner wall lengthcale, l ∗ = ν/u τ from the boundary-layer based Reynolds number Re τ = 

δ99 /l∗ = 492 where δ99 is the 99% boundary layer thickness, equal to 1 . 5 h, and combining with the stated Re K = 

√ 

K /l∗ = 0 . 45 . 
4 This is chosen since Koh’s model uses a volume averaging over the fluid inside the porous material, < · > 

γ , rather than, as we have defined, the average 

over the total volume (including both solid and fluid phases). To avoid needing to alter our dimensional definitions of μ and ρ f in (1.2) , it is easiest to 

adapt our model to match Koh’s boundary condition [ 13 , Eq. (2)] by scaling h by 1 /φ since μ = φ < μ > 

γ and ρ f = φ < ρ f > 

γ . 
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Table 1 

Summary of test cases. † No inertial parameter specified; we have selected an inertial pa- 

rameter close to that of the sintered material of Case 4. 

Case K (m 

2 ) β Material Ref. 

1 0 – Impermeable –

2 2 . 7 × 10 −9 0.14 Alantum NiCrAl open-cell metal foam [9] 

3 5 . 72 × 10 −11 0 . 5 † Sintered PE granulate (Porex) [28] 

4 3 . 65 × 10 −12 0.613 Sintered SUS316L powder (Group 2, 9 mm) [29] 

Fig. 8. Far-field sound across a range of frequencies for each Case. Left: Results for non-dimensionalised thickness of h (x ) = 0 . 012 . Right: Results for an 

NACA 4-digit aerofoil with 6% thickness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

lengthscale. Further, it is possible that the spanwise correlation lengthscale varies between porous and impermeable cases 

which we cannot account for. 

5.2. Comparison to experiments 

We now present a selection of results for various porous materials that have been used in experimental tests. For these

we first determine their porous properties, namely the permeability K and Forchheimer coefficient β . The remaining param- 

eters shall be set as standard for air: ρ = 1 . 225 kg m 

−3 , c 0 = 343 ms −1 , μ = 1 . 81 × 10 −5 Pa s , and we shall use a semichord

length of 75 mm which is in line with small-scale experimental wind tunnel tests [1,4,9,28] . We obtain a number of test

case parameters for K and β from [9,28,29] , which are summarised in Table 1 . 

First, we compare the linear and non-linear prediction for noise generated by a quadrupole close to the trailing edge of

a plate of uniform thickness of 0 . 9 mm corresponding to a non-dimensionalised thickness of h (x ) = 0 . 012 . This thickness is

much larger than the characteristic size of the selected materials in Table 1 , which vary from ∼ 50 − 800 μm. The quadrupole

is placed at (0.99,0.1), corresponding to a vertical height of 5% chordlength. When considering Case 2, we alter C 0 to 

C 0 (x ) = 

{
0 , if x ≤ 0 . 6 , 

k 2 0 , otherwise, 

in order to more accurately model the setup of [9] (here x corresponds to the parametrisation of the plate lying in

{ (x, 0) : −1 ≤ x ≤ 1 } ). There, an impermeable aerofoil had porous inserts appended to the trailing edge, resulting in potential

junction noise (at the impermeable-permeable junction). This choice of C 0 endows our model with similar properties; an 

impermeable fore section, −1 < x ≤ 0 . 6 , and a porous rear section, 0 . 6 < x < 1 . 

Fig. 8 (left) illustrates the non-dimensional scattered far-field sound, defined in (3.4) as 10 log 10 

∫ 2 π
0 | D (θ ) | 2 dθ, for our

four cases. Case 1 is the reference impermeable case. We see that for low permeability (Case 4) there is little difference

between the linear and non-linear predictions over the whole frequency range, and such a low permeability does not pro- 

duce a significant noise reduction versus the impermeable Case 1. As permeability increases, the noise reduction versus 

the impermeable plate increases but so too does the difference between the linear and non-linear results for mid and high

frequencies. Thus, for higher permeability, inertial effects can become significant on the generation of aerodynamic noise. 

The particular metal foam for Case 2 has the largest pores ∼ 800 μm, thus the largest local Reynolds number. It is therefore

expected that the non-linear effects should be greatest in this case [10] . 

The maximum noise reduction observed by Rubio Carpio et al. [9] for Case 2 was 10 dB , and a noise increase of ∼ 8 dB

was observed at high frequencies. The linear prediction hugely overestimates the noise reduction and does not capture any 

possible noise increase, whereas the non-linear model predicts a similar ∼ 10 dB noise reduction. As frequency increases, the 

noise reduction does diminish for the non-linear case, although an increase is not seen. The high-frequency noise increase 
10 
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in the results of [9] is dominated by roughness noise. Hence, we do not expect to capture this feature in our model. Fur-

thermore, for this case, the local Reynolds number is Re L ∼ 54 ωηa , where ωηa is the local flow speed. This highly porous

material constructed from large cells may therefore exceed the limit of validity of the Forchheimer model ( 1 < Re L < 10 ,

[10] ). Nevertheless, the results indicate a reasonable comparison to [9] . 

Case 3 has a lower local Reynolds number than Case 2 due to smaller pore sizes and thus should be better described

by the Forchheimer model. The acoustic results from Geyer et al. [28] for Case 3 indicate a maximum noise reduction of

∼ 6 dB , and a noise increase at higher frequencies. Our non-linear model again captures a similar maximum noise reduc- 

tion, and trends towards a noise increase at high frequencies. Of course, this model still excludes any surface roughness 

noise, which becomes important at high frequencies. However, we can see that not all of the noise increase at high fre-

quencies can be directly attributed to surface roughness, and some should be attributed to inertial (non-linear) effects. The 

noise increase observed in Geyer et al.’s data [ 28 , Fig. 6 bottom panel] at low frequencies is a spectral peak that is at-

tributed to trailing-edge bluntness noise which is not captured in our model. Thus we do not observe a similar peak in our

results. 

Case 4 has the lowest local Reynolds number and lowest permeability. Thus the effects of inertia should be weakest. 

Indeed this is observed in our results since the linear and non-linear predictions differ only by ∼ 1 dB . The defined porosity

of the material in Case 4 is close to 50% (Cases 2 and 3 have higher porosities). Therefore, we anticipate that for materials

with porosities lower than ∼ 50% , the linear Darcy model would be suitable. However, for materials with greater porosities, 

the non-linear inertial effects must be included. Predictions from this model, however, will only be accurate if the local 

Reynolds number is sufficiently small Re L < 10 , thus materials with large open pores may still not be suitably described. We

repeat the results for a NACA 4-digit aerofoil with 6% thickness in Fig. 8 (right), and, as expected, observe similar trends to

the constant thickness plate case. 

To investigate further the agreement with experimental results and the impact the location of the quadrupole source, 

we plot the noise reduction in Fig. 9 for Case 2 and Case 3. Here, a positive value indicates that the corresponding case is

quieter than a fully impermeable plate of the same geometry by that many dB . We include a range of quadrupole locations

at (1 , 0 . 1) , (1 , 0 . 05) , (0 . 97 , 0 . 09) , (0 . 99 , 0 . 06) corresponding to heights of 3.3–7.05 mm above the surface of the plate. Since

all quadrupole sources are scaled as required by Lighthill’s analogy [18] , we see only a minor impact due to the location

of the point quadrupole. Both Case 2 and Case 3 illustrate that the plate geometry has a minor effect on noise reduction

for the non-linear case, but a more significant effect in just the linear case. Data from [28] in Fig. 10 for Case 3 covers

a wider range of comparable frequencies and, discounting the trailing-edge bluntness noise increase ( k 0 ∼ 4 ), and high-

frequency roughness noise ( k 0 � 20 ) we see reasonable agreement between the non-linear model and the experimental 

results. Here our model uses the sum of all four quadrupoles as its acoustic source. The linear model in contrast (with

the same source) greatly over predicts the noise reduction. Whilst we do not expect our quadrupole model to replicate a

fully turbulent trailing-edge flow, we see that, with appropriate Lighthill scaling, the non-linear model is replicating realistic 

noise reductions whereas the purely linear model is not. 

5.3. Far-field directivity and surface pressure distribution 

Finally, we consider the effect of the non-linear boundary condition on the far-field directivity and surface pressure 

jump at specific frequencies to interrogate the physical effects of introducing this non-linear correction. We focus specif- 

ically on Case 3 for which we know the Forchheimer model is well-suited. Fig. 11 illustrates the pressure jump across

y = 0 for both linear and non-linear boundary conditions for a plate of constant thickness, alongside the far-field direc-

tivity (plotted on a log scale). For low frequencies ( k 0 = 0 . 1 ), there is little difference between the linear and non-linear

results, and thus minimal impact of inertia, as is expected due to relatively low velocities. For higher frequencies and thus

higher velocities, we see the non-linear results produce a higher trailing-edge peak surface pressure than the linear case, 

indicating that whilst viscosity dissipates pressure at the surface, inertial effects either hinder this viscous mechanism or 

independently amplify pressure. The effect of this difference in surface pressure on the far-field directivity is twofold. First, 

a higher overall surface pressure for the non-linear case results in a greater overall magnitude of far-field noise. Second, a

higher peak trailing-edge pressure for the non-linear case results in a scattered field dominated by just the scattering at the

trailing edge, and thus a reduced interference pattern in the far-field directivity when compared to the linear case (fewer 

oscillations). 

These results are repeated for the NACA 0 0 06 profile in Fig. 12 , where overall similar effects are observed for k 0 =
0 . 1 , 1 . The variable thickness plate, however, results in a more oscillatory surface pressure at high frequencies ( k 0 = 10 )

than the constant thickness plate. The impact of this is an increased interference-type pattern (more oscillations) in far- 

field directivities, with the linear case being most impacted upon comparison to Fig. 11 . Nevertheless, inertial effects in

the non-linear model again govern the amplitude of the overall surface response, and as for the constant-thickness case, 

the trailing-edge peak is far more dominant in the non-linear case than in the linear case. Therefore, despite some impact

from the viscous effects on the far-field directivity, overall the dominance of the trailing-edge peak for the non-linear model 

determines the total scattered noise and thus there is minimal difference between the constant and variable thickness plates 

observed in Fig. 9 (right). 
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Fig. 9. Noise reduction calculated for Cases 2 (left) and 3 (right) for various quadrupole sources (locations 1–4 from top to bottom). 

Fig. 10. Comparison of noise reduction for multiple quadrupole sources with experimental data from [ 28 , Fig. 6 bottom panel]. 
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Fig. 11. Left: Surface pressure jump for different values of k 0 . The real parts are shown as solid lines, whereas the imaginary parts are shown as dashed 

lines. Right: Far-field (log) directivity. In all cases, the plate thickness is constant, h = 0 . 012 . 

Fig. 12. Left: Surface pressure jump for different values of k 0 . The real parts are shown as solid lines, whereas the imaginary parts are shown as dashed 

lines. Right: Far-field (log) directivity. In all cases the plate thickness takes a NACA 0 0 06 profile. 

 

 

 

 

 

 

6. Conclusion 

This paper has presented a low-fidelity numerical solution to rapidly predict aerofoil trailing-edge noise accounting for 

both linear viscous effects and non-linear inertial effects within metal foam-like porous materials. The linear model at high 

frequencies can hugely over-predict the noise reduction upon comparison with experimental data. However, when supple- 

mented with a non-linear Forchheimer correction, we see good agreement in maximum noise reduction predictions versus 

experimental data. The model can account for constant or non-constant plate thickness, however, for quadrupole-type noise 

sources, the peak scattered pressure on the surface at the trailing edge is sufficiently dominant that the effects of altering

the aft (front) of the plate are minimal. Conversely, if only viscous (linear) effects are accounted for, significant attenuation 

of the source occurs at the trailing edge, and therefore the response along the full plate contributes to the far-field scattered

noise; variations in the boundary conditions along the plate, therefore, have a greater impact on the scattered noise. 

We conclude that for mid and high frequencies and typical high permeability materials, the local inertial effects at the 

trailing edge can dominate the overall acoustic scattering behaviour. Thus accurate modelling of the aft of the aerofoil is 

unnecessary in comparison to the importance of including the inertial effects of the material local to the source, in this case,

the boundary layer. Of course, it is not solely the permeability which determines the inertial effects, since an independent 

inertial coefficient in the Forchheimer model must also be provided to characterise the porous material. It may also be 

the case that this inertial coefficient is non-constant; many empirical formulae exist for permeable rocks [30] . However, 

the literature is less complete for the application considered here of metal foams in air. Since the model presented here

can deal with non-constant coefficients, a variable Forchheimer coefficient or indeed a chord-wise variable permeability 

coefficient could certainly be used should one be determined for a material of interest, or wish to consider partially porous

aerofoils. This model further does not account for the impact of the rough porous surface on the generation of turbulence,

and cannot capture any roughness noise measured experimentally. However, it may be possible to supplement this model 

with a prediction of surface roughness noise [31] . 
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Regarding the numerical method, future work will look at the possible inclusion of hierarchical solvers for multiple plates 

and methods for the rapid evaluation of the solution at a large number of points. One further possibility when solving by

iteration, in the case of multiple plates, is to split up the non-linear relation according to the plates to reduce the size of the

linear systems. Finally, spectral methods such as those in this paper have great flexibility in terms of the possible boundary

conditions and different models that can be numerically solved. We hope that this will be useful for further problems in

addition to the current paper. 

Numerical code 

Downloadable code (written in MATLAB) for the method of this paper is provided at https://github.com/MColbrook/ 

MathieuFunctionCollocation . 
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