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This paper considers the use of compliant boundary conditions to provide a homogenized model of a
finite array of collinear plates, modelling a perforated screen or grating. While the perforated screen
formally has a mix of Dirichlet and Neumann boundary conditions, the homogenized model has Robin
boundary conditions. Perforated screens form a canonical model in scattering theory, with applications
ranging from electromagnetism to aeroacoustics. Interest in perforated media incorporated within larger
structures motivates interrogating the appropriateness of homogenized boundary conditions in this case,
especially as the homogenized model changes the junction behaviour considered at the extreme edges
of the screen. To facilitate effective investigation we consider three numerical methods solving the
Helmholtz equation: the unified transform and an iterative Wiener–Hopf approach for the exact problem
of a set of collinear rigid plates (the difficult geometry of the problem means that such methods, which
converge exponentially, are crucial) and a novel Mathieu function collocation approach to consider a
variable compliance applied along the length of a single plate. We detail the relative performance and
practical considerations for each method. By comparing solutions obtained using homogenized boundary
conditions to the problem of collinear plates, we verify that the constant compliance given in previous
theoretical research is appropriate to gain a good estimate of the solution even for a modest number
of plates, provided we are sufficiently far into the asymptotic regime. We further investigate tapering the
compliance near the extreme endpoints of the screen and find that tapering with tanh functions reduces the
error in the approximation of the far field (if we are sufficiently far into the asymptotic regime). We also
find that the number of plates and wavenumber has significant effects, even far into the asymptotic regime.
These last two points indicate the importance of modelling end effects to achieve highly accurate results.
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1. Introduction

The scattering of waves by sets of collinear plates or gratings forms a canonical scattering problem
of interest in a range of applications including optics (Sturman et al., 2011), electromagnetism (Chen,
1971; Daniele et al., 1990; Guizal & Felbacq, 1999; Nye, 2002; Otoshi, 1971) and acoustics (Jin et al.,
2019). While diffraction gratings exist in a plethora of designs, the most simplistic transmission grating
is that consisting of periodically spaced plates as illustrated in Fig. 1. Despite its simplicity, there has
been continued interest in the problem since the 1950’s (Achenbach & Li, 1986; Erbaş & Abrahams,
2007; Heins & Baldwin, 1954), particularly for acoustic wave scattering. While many acoustic problems
for a single finite plate can be solved in closed form with the use of special functions (e.g. via separation
of variables in elliptic coordinates), there is no such solution for multiple plates. This limitation has
spawned a variety of numerical solution approaches, including several spectrally accurate numerical
schemes developed recently in Colbrook et al. (2019a); Priddin et al. (2020); Llewellyn Smith & Luca
(2019).

© The Author(s) 2020. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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Fig. 1. A perforated screen with aperture width 2a and separation d.

Previous work most commonly considers infinite gratings. However, with recent renewed interest
in applications such as the silent flight of owls (Graham, 1934; Jaworski & Peake, 2020, 2013; Lilley,
1998), there have been studies into the effects of noise reduction due to truncated perforated plates (also
referred to as porous plates) both experimentally and theoretically (Geyer et al., 2010; Kisil & Ayton,
2018; Priddin et al., 2019). A natural model for such physical designs is a finite grating, but since it
is difficult to model the precise setup of a porous plate, the typical approach in these finite grating
investigations is to homogenize the boundary condition, finding an effective compliance of the plate
and applying this over the whole grating’s length. This analysis provides a Robin boundary condition
constructed to capture the macroscopic phenomena of interest, allowing a more straightforward analysis
of structures involving the perforated material. It is desirable to understand the appropriateness of
this approximation to inform the development of physical designs, especially as the precise nature of
material junctions is known to be significant in scattering problems, and aerodynamic considerations
encourage the use of small porous elements. Throughout this paper we refer to compliance as defined
by Leppington (1977), wherein we mean the surface is locally reactive but elastic forces are negligible.

Early work by Lamb (1895) calculated the effective compliance of a two-dimensional infinite
grating comprised of thin plates and slits and obtained a constant compliance in this case, dependent
on the plate and slit lengths.1 Rayleigh calculated the conductivity of a circular aperture (Rayleigh,
1896, §307) and thus the effective compliance of an infinite screen perforated with circular holes. This
was extended to the case of flow by Howe (1998) (see also Grace et al., 1998, 1999). These works
also gave rise to a constant effective compliance that has been used to classify the porosity of plates
in recent applications relating to quiet flight (Cavalieri et al., 2014, 2016; Jaworski & Peake, 2013;
Kisil & Ayton, 2018). The effective compliance of more complex pore geometries has been recently
considered theoretically in Laurens et al. (2014), and it may also be determined experimentally by
measuring acoustic impedance Dalmont (2001). We emphasize that, for aeroacoustic investigations,
such a uniform effective compliance associated with an infinite medium has been repeatedly applied on
truncated sections.

However, Leppington’s (Leppington, 1977) analysis of the edge effects of semi-infinite perforated
screens indicates that the effective compliance ought not to be constant, and the constant approximation
holds only in the infinite grating limit. Despite this finding by Leppington, to the best of the authors’
knowledge, no one has taken account of this variable compliance when considering acoustic scattering
by perforated plates when finite edges are present. Previous studies have considered both scattering by
finite diffraction gratings (Guizal & Felbacq, 1999) and explicit consideration of truncation effects on
electromagnetic scattering by a semi-infinite array of dipoles (Camacho et al., 2019; Capolino & Albani,
2009), but this is typically isolated from the notion of an effective boundary condition.

This paper, therefore, investigates the effective compliance of finite gratings and the influence of
edge effects on the far-field scattered noise due to an incident plane wave. To do so, we employ
numerical methods to accurately solve for the scattered field, accounting for the precise grating

1 For a more recent derivation of homogenized boundary conditions for periodic arrangements of obstacles, see also Hewett &
Hewitt (2016).
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792 M. J. COLBROOK AND M. J. PRIDDIN

geometry, and compare to the scattered field when a constant or variable homogenized compliance
is imposed. As Leppington’s results only provide asymptotic limits for the compliance at the edge and
far from the edge, we further investigate the influence on the scattered field as one transitions between
these two limits.

The ubiquity of singular integral equations and singular edge behaviour in these problems means
care is required in all numerical implementations. While standard boundary element techniques could, in
principle, be employed, this would be difficult for the appropriate asymptotic regime considered in this
paper. We, therefore, take the opportunity to compare two recently developed approaches based upon
a spectral formulation. These two methods, the extension of the unified transform method to scattering
problems (Colbrook et al., 2019a) and an iterative Wiener–Hopf method (Priddin et al., 2020), have both
individually been seen to be spectrally convergent for acoustic scattering problems consisting of finite
flat plates. The unified transform approach can also treat more general geometries. In addition to using
these two methods to consider the impact of homogenized boundary conditions on perforated plates and
gratings, we also discuss their relative performance for such scattering problems giving indications as to
which method is best suited for grating-related problems, particularly as parameters vary; for instance,
the number of plates and characteristic Helmholtz numbers associated with the problem. We also seek to
note qualitative and practical differences of interest for those wishing to apply or extend our approaches.

Finally, in order to consider variable compliance, this paper presents an accurate (and simple)
collocation method, based on Mathieu functions, for solving scattering by a finite plate with a
variable Robin boundary condition imposed along the chord. Such a variable Robin condition has
been investigated for considering the aerodynamic problem of thin aerofoils with porosity gradients
(Baddoo et al., 2014; Hajian & Jaworski, 2017) where the authors solve the Laplace equation. The
present Mathieu collocation method may be used to solve the complementary aeroacoustic problem,
namely a Helmholtz equation problem, and so we believe it may be of broad interest in this community.
Future work will seek to extend this approach to include other boundary conditions, such as those
modelling elasticity.

The layout of this paper is as follows. We first describe the mathematical modelling of scattering
by a set of collinear plates and review results on the use of homogenized boundary conditions to be
interrogated. We then outline the unified transform and iterative Wiener–Hopf method applied to the
problem of collinear finite plates, highlighting similarities and divergences between these approaches
and compare their performance. To investigate a variable Robin condition imposed on a finite screen, we
introduce a separation of variables boundary collocation method (which we believe may be of further
interest in the acoustic community). Finally, we compare the use of the homogenized boundary condition
to the exact case, indicating the appropriateness of its use in relevant parameter regimes.

2. The mathematical model

In this paper, we are primarily concerned with the scattering of acoustic sources by a finite collection
of collinear plates as illustrated in Fig. 2. We denote the set of plates by γ = ∪M

i=1γi, where each plate
is located at y = 0 and x ∈ [xi,0, xi,1] = γi with xi,0 < xi,1 < xi+1,0 (i.e. the plates do not touch). Thus
our total scattering domain consists of R2\γ , where the scattered field q must satisfy the Helmholtz
equation

∂2q

∂x2 + ∂2q

∂y2 + k2
0q = 0, (2.1)
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Fig. 2. Example of the geometry and labelling convention for three plates.

for acoustic wavenumber k0. An example of the set up for three plates with labelled endpoints is shown
in Fig. 2.

A canonical heterogeneous obstacle is a perforated screen or grating that is a sound-hard wall with
several small open apertures—see Fig. 1. On the sound-hard plates we impose a Neumann boundary
condition, and away from the plates a continuity condition, which here is equivalent to a sound-soft
boundary:

∂q

∂y
(x, 0) + ∂qI

∂y
(x, 0) = 0 x ∈ γ , [q](x, 0) := q(x, 0+) − q(x, 0−) = 0 x ∈ R \ γ , (2.2)

where qI denotes the incident field. The typical choice in this paper is

qI(x, y) = e−ik0x cos θ−ik0y sin θ (2.3)

corresponding to a wave incident at angle θ measured in the anti-clockwise direction from the positive
x-axis. Throughout, we will also impose the Sommerfeld radiation condition on the scattered field q.

Rather than solving for each disjoint boundary condition, the screen can be considered to have one
homogenized Robin boundary condition in appropriate limits as we now discuss. In scattering problems,
the fundamental quantities of interest are typically the far-field wave scattered by an obstacle, or if the
obstacle divides two regions, the reflection and transmission coefficients across this border such as that
calculated in Lamb (1895). If the obstacle is heterogeneous, but only due to defects that are small relative
to all other length scales, then we might naturally seek a homogenized boundary condition that captures
the important macroscopic effects on these physically relevant quantities.

If the wavelength 2π/k0 of the incident disturbance is much larger than the length scales of the
grating, i.e. the aperture width 2a and spacing d, then the defects are compact, and we observe the desired
separation of scales to permit homogenization of the boundary condition. Our focus concerns the use of
effective compliance (Leppington, 1977) as this homogenized boundary condition, i.e. approximating
the boundary conditions on the plates by a boundary condition on the full screen of the form

∂q

∂y
(x, 0) + ∂qI

∂y
(x, 0) = μ(x)[q](x, 0), x ∈ [x1,0, xM,1] (2.4)

in order to model a perforated screen of finite extent. Typically, we will take [x1,0, xM,1] = [−1, 1],
which is without loss of generality since we can always non-dimensionalize lengths by the semi-chord
of the screen. We will refer to this boundary condition as a Robin boundary condition, consistent with
the partial differential equation (PDE) literature.

Leppington (1977) considered scattering by a perforated screen of semi-infinite extent (x ∈ R≥0)
formed from a set of collinear plates and the homogenized boundary condition this required. By first
constructing an integral equation associated with the scattering problem and restricting attention to the
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794 M. J. COLBROOK AND M. J. PRIDDIN

asymptotic regime

a � d � k−1
0 , (2.5)

the effective compliance at x � d was found to be

μ = μ0 = π

2d

{
log

(
d

πa

)}−1

(2.6)

consistent with results in Lamb (1895) for an infinite screen. Leppington also analysed a formula for the
effective compliance when x ∼ d near the plate edge. However, the analysis breaks down for smaller x,
and it is not clear how one should let μ approach zero at the end of the plate. In fact the formula given
in Leppington (1977) becomes negative for small enough x ∼ a. A correction enforcing μ ≥ 0 was also
proposed, but this leads to μ(x) ↑ ∞ as x ↓ 0 as opposed to the physically correct value μ(0) = 0.2

In general, there is very little said in the literature about the values of μ close to the plate ends. For
our finite screen, we will therefore consider the constant compliance given by (2.6) as well as different
approaches of tapering the effective compliance to zero at both plate edges (see § 6.3).

The numerical methods considered for solving the non-homogenized problem (2.2) in this paper
enable the direct interrogation of when these homogenized boundary conditions (2.4) may be appropri-
ate: i.e. how ‘deep’ within the asymptotic regimes we must be in order for a homogenized boundary
condition to offer a good approximation. Three primary limits present themselves:

(a) How small must the open area fraction (i.e. void fraction, or porosity in other subjects) 2a/d
be?

(b) How small must the grating Helmholtz number k0d be?

(c) How large must the screen Helmholtz number 2k0 or the number of plates M be for end effects
to be negligible?

2.1 The numerical approaches

We consider two spectral methods to solve the problem of scattering by a set of collinear finite rigid
plates. The differences between the two approaches are illustrated in Fig. 3. Both approaches start with
essentially the same equation relating integral transforms of the unknown boundary values (the ‘global
relation’), though each employs a distinct solution method. The unified transform simply views this
equation as providing a set of linear relations parametrized by a variable α (and hence is applicable
to more general problems/geometries). This equation may be discretized by choosing a suitable basis
for the unknown physical boundary values, and the resulting linear system is solved by collocation,
employing closed form expressions for the Fourier transforms of the basis functions. By contrast,
the iterative Wiener–Hopf approach views the global relation as defining a jump problem between
sectionally analytic functions: a matrix Wiener–Hopf problem that may be solved by considering a
sequence of scalar Wiener–Hopf problems to give a fixed-point iteration scheme. For the problem
considered in this paper, this iterative process has a physical interpretation as the analogue of
Schwarzschild diffraction series (Shanin, 2003) in the spectral domain. Practically, the iterative Wiener–
Hopf method requires choosing a basis for the jumps of functions along branch cuts and employing

2 For a porous plate, a hole cannot exist at the end point of the plate.
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Fig. 3. Illustration of the two numerical methods considered.

closed form expressions for their Cauchy transforms. Whereas the unified transform recovers an
expression for the physical boundary values and their Fourier transform, the iterative Wiener–Hopf
approach only solves directly for their Fourier transform, and the physical boundary values must be
recovered by numerically inverting a Fourier transform. However, the iterative Wiener–Hopf approach
is suitable for recovering the far-field directivity using a saddle-point approximation. The entire solution
may be recovered using integral representations of the boundary values or their Fourier transform.

The key differences to note are as follows:

• Nature of the functions to be approximated: oscillatory boundary values versus Fourier
transform of boundary values, evaluated on steepest descent contour. For the unified transform,
the boundary values along each segment of the domain must be represented accurately,
typically requiring more degrees of freedom for large wavenumbers. In the iterative Wiener–
Hopf method, the Fourier transforms of the boundary values are represented in terms of Cauchy
transforms of smooth non-oscillating functions.

• Solution method: collocation of discretized global relation versus iteration of scalar Wiener–
Hopf problems associated with scattering events. This means the iterative method is more
naturally suited to problems involving large wavenumbers.

• Solution quantity most easily recovered: boundary values (jump over the plates) versus Fourier
transform of boundary values (and so far-field directivity) in the iterative Wiener–Hopf method.
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796 M. J. COLBROOK AND M. J. PRIDDIN

We now outline each method and its implementation in more detail, before comparing the
performance of each method for multiple plates in § 5.

3. Unified transform

In this section, we briefly discuss the unified transform and how it can be used as a numerical method
for scattering problems (Ayton et al., 2019; Colbrook et al., 2019a). For a full discussion of the method
applied to elastic plate geometries, we refer the reader to Colbrook & Ayton (2019). The first step is to
obtain the so-called ‘global relation’. Once the global relation is obtained, we can expand all unknown
boundary data in terms of carefully selected basis functions to obtain a linear system for the expansion
coefficients. Finally, the linear system can be evaluated at collocation points to solve for the unknown
expansion coefficients.

3.1 The global relation for collinear plates

The unified transform can be applied to arbitrary elliptic PDEs with constant coefficients (Colbrook et
al., 2019a, 2018) and more general separable PDEs (Colbrook, 2020). However, in this paper, we are
solely concerned with the Helmholtz scattering problem for the geometry outlined in § 2. We define
Λ = (−1, 0) ∪ (1, ∞) ∪ {eiθ : π < θ < 2π} and let β = k0/2. The global relation for our problem (see
Colbrook & Ayton, 2019, for a simple derivation using Green’s theorem) is

∫
R\γ

e−iβx(λ+ 1
λ
)qy(x, 0)dx

+
∫

γ

e−iβx(λ+ 1
λ
)

[
qy(x, 0) + β

2

(
λ − 1

λ

)
[q](x, 0)

]
dx = 0, λ ∈ Λ. (3.1)

The idea is to expand the unknowns in this relation in suitable basis functions and evaluate at enough
collocations points λ to set up a well-conditioned linear system for the unknown coefficients. In the
special case of this collinear geometry, there is another interpretation of the global relation that we
wish to highlight. Using the fact that the scattered field is anti-symmetric in the y-direction yields the
boundary integral equation

1

4
[q](x, 0) +

∫
R

G(x − x′)qy(x
′, 0)dx′ = 0, (3.2)

where G is the Green’s function

G(x) = i

4
H(1)

0 (k0 |x|)

and where H(1)
α (·) denotes the Hankel function of the first kind of order α. Taking the Fourier transform

of (3.2) with frequency parameter w = β (λ + 1/λ) and using the convolution theorem yields

∫
γ

e−iβx(λ+ 1
λ
)[q](x, 0)dx + i

∫
R

e−iβx(λ+ 1
λ
)qy(x, 0)dx

∫
R

e−iβx(λ+ 1
λ
)H(1)

0 (k0 |x|)dx = 0.
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Note that the allowed λ values correspond exactly to real w. The Fourier transform of the Hankel
function is known (Olver et al., 2010) and yields

i
∫
R

e−iβx(λ+ 1
λ
)H(1)

0 (k0 |x|)dx = 2

β(λ − 1/λ)
.

It follows that the global relation (3.1) in this case is exactly the Fourier transform of the boundary
integral equation (3.2). The convolution with the singular integral is transformed into a multiplication
in Fourier space and hence the unified transform avoids the need for difficult quadratures. We should
stress that this interpretation as collocating the Fourier transform of boundary integral equations does
not hold in generality. However, it does serve as an intuition behind the method for more complicated
geometries. Note also that we obtain the same equation when using the Wiener–Hopf method in (4.3)
through the formal substitution β(λ + 1

λ
) = −α and

K(α) =
√

α2 − k2
0 = β

(
λ − 1

λ

)
.

In other words, we can view the unified transform, in particular the global relation (3.1), as a natural
generalization (when considering more complex domains) of Fourier transforms of the boundary integral
equations. The method itself can be viewed as a numerical method for solving Wiener–Hopf type
problems for arbitrary domains.

3.2 Basis functions and the approximate global relation

We split R\γ into the following intervals. Let I1 = (−∞, x1,0) and I2 = (xM,1, ∞). Then [x1,0, xM,1]\γ
can be split into disjoint open intervals Ji for i = 1, ..., M − 1. For notational convenience, we introduce
Li = ∣∣γi

∣∣ = xi,1 − xi,0 and mi = (xi,1 + xi,0)/2 for i = 1, ..., M as well as L′
i = ∣∣Ji

∣∣ and m′
i equal to the

midpoint of Ji for i = 1, ..., M − 1. We suppose that along each plate γi we are given a relation of the
form

qy(x, 0) − μi[q](x, 0) = fi(x),

for known functions fi and parameters μi (which when considering the unified transform, we assume to
be constant along each plate). The unknowns in the global relation (3.1) are [q] on each interval γi and qy
on I1, I2 and on each Ji. For the finite intervals γi, in order to capture the square-root type singularities
of q near the edge tips we define

Cm(t) =
√

1 − t2 · Um(t), (3.3)

where Um(·) denote Chebyshev polynomials of the second kind. These have the following Fourier
transform Olver et al. (2010):

∫ 1

−1
eiλt

√
1 − t2 · Um(t)dt = (m + 1)imπ

λ
Jm+1(λ), (3.4)
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798 M. J. COLBROOK AND M. J. PRIDDIN

where Jα(·) denotes the Bessel function of the first kind of order α. We expand [qi] = [q] on γi as

[qi](x) ≈
Ni∑

n=1

ai,nCn−1

(
2x − 2mi

Li

)
.

Similarly, for the M − 1 intervals Ji we expand qy,i = qy as

qy,i(x) ≈
N′

i∑
n=1

bi,nSn−1

(
2x − 2m′

i

L′
i

)
,

where Sm(t) = Tm(t)(
√

1 − t2)−1 and Tm(·) denote Chebyshev polynomials of the first kind. These are
chosen to capture the derivatives of the relevant square root type singularity and have

∫ 1

−1
eiλt Tm(t)√

1 − t2
dt = imπJm(λ). (3.5)

For the semi-infinite intervals I1 and I2 we expand (after a relevant affine change of variables) in terms
of the Bessel functions {J n+1

2
(k0x)/x}n≥0. These functions have the advantage of capturing the correct

singular behaviour near the plate edges when n is even. They also decay with the correct algebraic rate
at infinity and have easy to compute Fourier transforms (Olver et al., 2010):

∫ ∞

0
eiλt Jα(bt)

t
dt =

⎧⎨
⎩

exp(iαarcsin(λ/b))
α

, for 0 ≤ λ ≤ b
bα exp(απ i/2)

α
(
λ+

√
λ2−b2

)α , for 0 < b ≤ λ
. (3.6)

Explicitly, we approximate qy,0 = qy on I1 via

qy,0 ≈
N′

0∑
n=1

b0,n

J n
2
(k0(x1,0 − x))

x1,0 − x

and qy,M = qy on I2 via

qy,0 ≈
N′

M∑
n=1

bM,n

J n
2
(k0(x − xM,1))

x − xM,1
.

Using the formulae for the relevant Fourier transforms, we thus form an approximate global relation

M∑
i=1

Ni∑
n=1

Ai,n(λ)ai,n +
M∑

i=0

N′
i∑

n=1

Bi,n(λ)bi,n ≈ −
M∑

i=1

∫
γi

e−iβx(λ+ 1
λ
)fi(x)dx. (3.7)
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FAST AND SPECTRALLY ACCURATE NUMERICAL METHODS FOR PERFORATED SCREENS 799

The coefficients Ai,n are given by

Ai,n(λ) =
(

1

λ
− λ − 2μi

β

)
e−iβmi(λ+1/λ) nin−1π

2
(
λ + 1

λ

)Jn

(
−βLi

2

(
λ + 1

λ

))
.

We also have

B0,n(λ) = e−iβx1,0(λ+1/λ)

∫ ∞

0
eiβt(λ+1/λ)

J n
2
(k0t)

t
dt,

BM,n(λ) = e−iβxM,1(λ+1/λ)

∫ ∞

0
e−iβt(λ+1/λ)

J n
2
(k0t)

t
dt.

Finally, for 0 < i < M, we have

Bi,n = L′
ii

n−1π

2
e−iβm′

i(λ+1/λ)Jn−1

(
−βL′

i

2

(
λ + 1

λ

))
.

We evaluate (3.7) at C ≥ ∑
Ni + ∑

N′
i collocation points λ ∈ Λ to set up a linear system for

the unknown coefficients (typically with |C| ∼ ∑
Ni +

∑
N′

i ). This is then inverted in the least-squares
sense. Once the coefficients are computed, we can reconstruct approximations of the unknown functions.

As we will see later, when μi = 0, the unified transform with the above basis choices
converges at least exponentially. However, the introduction of Robin boundary conditions induces (poly-
)logarithmic type singularities due to resonance phenomena in the poles of the Mellin symbol. This
is a well-studied phenomenon in the PDE literature (Martin & Monique, 1996; Mghazli, 1992). The
dominant singularities are still square-root, and hence, the unified transform will converge in this case
algebraically with a large order of convergence. See § 6.3 for this effect and another interpretation of
the above choice of basis functions in elliptic coordinates as a sine series.

3.3 Collocation points and obtaining the scattered field

Unfortunately, in contrast to standard spectral methods (Boyd, 2001), there is no current theory
describing the best choices for collocation points.3 For collocation points λ ∈ Λ, we chose Halton
nodes (scattered points with a lack of regularity used in quasi-Monte Carlo integration) in the interval
(−1, 0), minus their reciprocal values in (1, ∞), and points in {e−iθ : 0 < θ < π} with θ corresponding
to Halton nodes in (0, π). This choice corresponds to sampling frequencies along the entire real line
of the Fourier transforms of the relevant functions. The complex collocation points along the unit
circle are allowed precisely because the solution satisfies the Sommerfeld radiation condition so that
the contribution of Green’s identity along the relevant semi-circular arc vanishes in the infinite radius
limit (see Spence, 2011). To obtain accurate numerical solutions, we needed to sample these points,
and hence, we considered the full complex solution. This sampling corresponds to implementing the
boundary conditions that make the boundary value problem well posed.

3 See Colbrook et al. (2019b) for a good choice for bounded convex polygons given as rays in the complex plane, which we
cannot adopt here due to the restrictions on the values of λ.
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800 M. J. COLBROOK AND M. J. PRIDDIN

In all of the examples encountered in this paper, the scattered field is an odd function in the y
variable. Hence, by considering the reflected Green’s function

GR(x, y, x′, y′) = 1

4i

(
H(1)

0

(
k0

√
(x − x′)2 + (y − y′)2

)
− H(1)

0

(
k0

√
(x − x′)2 + (y + y′)2

))
,

and its normal derivative, we can write

q(x, y) = ik0y

4

∫
γ

H(1)
1 (k0

√
(x − x′)2 + y2)√

(x − x′)2 + y2
[q](x′, 0)dx. (3.8)

For points off the union of plates γ , (3.8) can be evaluated rapidly using standard Gaussian quadrature.
Near the plates (where the integrand becomes singular) we can use first-order approximations from the
computed q and its normal derivative along the plates (Colbrook et al., 2019b). We can also evaluate the
far field using steepest descent.

4. An iterative Wiener–Hopf method

In this section, we discuss an alternative approach to scattering problems using an iterative Wiener–Hopf
formulation. The method we use was introduced in Kisil & Ayton (2018) and implemented for a set of
M collinear finite plates in Priddin et al. (2020). A matrix Wiener–Hopf problem is formulated, viewed
as a set of coupled scalar problems and then solved by fixed-point iteration. We briefly discuss the key
steps and refer the reader to Priddin et al. (2020) for details.

4.1 Matrix Wiener–Hopf equation for collinear plates

The fundamental equation to be solved is analogous to the global relation (3.1). However, this is typically
derived in the context of Wiener–Hopf problems by exploiting the y-anti-symmetry of the scattered field
q and Fourier transforming the boundary value problem in the x variable using the convention

Q(α, y) =
∫ ∞

−∞
q(x, y)eiαx dx. (4.1)

The x-Fourier transform Q(α, y) of the general solution q(x, y) satisfying the governing Helmholtz
equation and decaying as |y| → ∞ may then be represented as

Q(α, y) = sgn(y)A(α)e−K(α)|y| (4.2)

where K(α) =
√

α2 − k2
0. Here the branch cuts are taken to be the rays {α = ±k0 ± is : 0 < s < ∞}

parallel to the imaginary axis. For y = 0 this provides the relationship Q′ + KQ = 0, where ∂Q
∂y ≡ Q′,

and so

∫
R\γ

eiαxqy(x, 0)dx +
∫

γ

eiαx
[
qy(x, 0) + K(α)q(x, 0)

]
dx = 0, (4.3)
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which may be recovered from (3.1) using the substitution β(λ+ 1
λ
) = −α and using the fact that q is an

odd function in the y variable (as noted in Colbrook et al., 2019a). We now restrict attention to y = 0+.
The normal derivative of the scattered field q on each plate is prescribed by the incident field qI , say

Q′
γm

= Fγm
1 ≤ m ≤ M (4.4)

where Fγ denotes the Fourier transform of a function f along the contour γ . We rewrite equation (4.3)
as

M∑
m=1

(
KQγm

+ Fγm

)
+ Q′

I1
+ Q′

I2
+

M−1∑
m=1

Q′
Jm

= 0. (4.5)

This is the fundamental equation to be solved that relates Fourier transforms of unknown boundary
values. In order to apply the iterative Wiener–Hopf technique we must identify the analyticity and
growth at infinity of each term in the upper and lower half planes, annotating those analytic in the
upper half plane by + and the lower half plane by −. Further, to be consistent with the original paper
describing this method, we shall relabel the end points of the plates as x1, x2, ..., x2M , i.e. xi,0 → x2i−1
and xi,1 → x2i for i = 1, ..., M. We first denote the unknown functions by

V1 = Q′
I1

, V2m+1 = Q′
Jm

for m = 1, ..., M − 1, V2M+1 = Q′
I2

, V2m = Qγm
for m = 1, ..., M

(4.6)
and then to ensure + and − functions do not grow exponentially in their half-plane of analyticity we
define the shifted functions

Ψ
(m)
− = e−iαxmVm (4.7a)

Ψ
(m)
+ = e−iαxmVm+1 (4.7b)

for 1 ≤ m ≤ 2M, each Ψ
(m)
− now having algebraic behaviour in the lower half plane, and Ψ

(m)
+ in

the upper half plane. We may now find an 2M × 2M matrix Wiener–Hopf system suitable for the
iterative scheme as follows. The mth row may be obtained from equation (4.5) by rescaling by e−iαxm

and recasting in terms of Ψ±. We find

HΨ− + GΨ+ = F (4.8)

where H and G are triangular matrices with entries given by

Hlm =

⎧⎪⎨
⎪⎩

0 l < m

E(l,m) m odd and l ≥ m

E(l,m)K(α) m even and l ≥ m

, Glm =

⎧⎪⎨
⎪⎩

0 l > m

E(l,m)K(α) m odd and l ≤ m

E(l,m) m even and l ≤ m

(4.9)

where E(l,m) ≡ ei(xm−xl)α . The forcing term F is given by

F(m) = −e−iαxm

M∑
l=1

Fγl
. (4.10)
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802 M. J. COLBROOK AND M. J. PRIDDIN

This formulates a matrix Wiener–Hopf equation where a partial matrix factorization has been achieved
to ensure all terms involving unknown functions are analytic with algebraic behaviour at infinity in the
upper or lower half planes.

4.2 Solution by iteration

We now look to solve equation (4.8) by constructing a fixed-point iteration scheme. The (2m + 1)th row
of the matrix equation (4.8) is

m+1∑
l=1

E(2m+1,2l−1)Ψ
(2l−1)
− +

m∑
l=1

E(2m+1,2l)KΨ
(2l)
−

+
M+1∑

l=m+2

E(2m+1,2l−1)Ψ
(2l−1)
+ +

M∑
l=m+1

E(2m+1,2l)KΨ
(2l)
+ = F(m).

(4.11)

We solve at the rth iterative step by considering

Ψ
(2m+1),r
− + KΨ

(2m+2),r
+ = −

m∑
l=1

E(2m+1,2l−1)Ψ
(2l−1),r−1
− −

m∑
l=1

E(2m+1,2l)KΨ
(2l),r−1
−

−
M+1∑

l=m+2

E(2m+1,2l−1)Ψ
(2l−1),r−1
+ −

M∑
l=m+2

E(2m+1,2l)KΨ
(2l),r−1
+ + F(m)

(4.12)

where Ψ
(m),r
± denotes the estimate of Ψ

(m)
± at the rth solution step, and Ψ

(m),0
± = 0. An analogous

equation may be found for even rows. Since the terms on the right-hand side are known, equation (4.12)
may be solved by the standard scalar Wiener–Hopf technique. This solution may then be used to update
the ‘forcing’ in the remaining rows of the matrix equation. We initialize the scheme by setting unknown
terms on the left-hand side to vanish. The iteration sequence may be terminated when an appropriate
error threshold between consecutive iterations is reached.

4.3 Numerical implementation

The problem has been reduced to solving a sequence of scalar Wiener–Hopf problems of the form

KΨ+ + Ψ− = F, (4.13)

which are well understood. Using exact scalar multiplicative factorizations of K = K+K− and additive
Wiener–Hopf factorizations, we may represent the solution in terms of Cauchy transforms along
appropriately chosen contours (Noble, 1988). We define the branch cuts of K(α) to be parallel to the
imaginary axis in order to be paths of steepest descent of the exponential factors eiαxm . By deforming
the Cauchy integration contours onto these branch cuts, we induce square root endpoint singularities at
both ends of the branch cut in the integrand. All the Cauchy transforms that must be computed are then
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of the form ∫ ∞

0

f (z)

z1/2(z − α)
dz (4.14)

where f is a smooth, non-oscillatory function on (0, ∞) decaying as z → ∞. To evaluate such singular
integrals numerically, we first relate the Cauchy transform on the half-line to one on the finite interval
(−1, 1) with similar endpoint and non-oscillatory behaviour using a Möbius map (Trogdon & Olver,
2016). We then employ the spectral approach to Cauchy transforms introduced in Olver (2011) and
implemented in the programming language Julia in Slevinsky & Olver (2017), encoding the square root
endpoint singularities through the weight (1 − x2)−1/2 of ‘modified’ Chebyshev polynomials Tz

n(·) on
(−1, 1) introduced in Trogdon & Olver (2016). Specifically, we define Tz

n(x) by

Tz
0(x) = 1, Tz

1(x) = x, Tz
n(x) = Tn(x) − Tn−2(x), n ≥ 2 (4.15)

where the Tn(·) are Chebyshev polynomials of the first kind. The associated moments of the Cauchy
transform on (−1, 1) have simple expressions in terms of elementary functions. The application of the
iterative scheme may then be cast in terms of fast transforms between function values and coefficients
on the branch cuts, and the evaluation of Cauchy transforms by contracting matrices of precomputed
Cauchy transform moments with vectors of coefficients. In Llewellyn Smith & Luca (2019), where the
Wiener–Hopf problems for scattering by a half-plane is considered numerically, the square root endpoint
singularities in the spectral function Q (Φ in Llewellyn Smith & Luca, 2019) on a doubly infinite interval
are encoded through the use of rational mappings that have multiple inverses. Since we only consider
semi-infinite rays (having deformed a doubly infinite interval onto each side of a semi-infinite branch
cut), we avoid this complication.

While a small number of degrees of freedom are typically required to approximate a function with
given exponential or algebraic decay by tuning the mapping, for ease of implementation, we consider
a single mapping for all cases. Therefore the present implementation requires more degrees of freedom
for problems involving high and low wavenumbers, and those involving larger numbers of plates; this is
associated with approximating a range of different exponential decay rates.

To recover the spatial field q(x, y) we must invert the x-Fourier transform (4.1):

q(x, y) = sgn(y)

2π

∫ ∞

−∞
Q(α, 0+)e−iαx−K(α)|y| dα (4.16)

Again, the asymptotic far field may be readily recovered by the method of steepest descent. For
evaluation of the far field in or near the direction of the reflected wave, one must take care of the
removable singularity in the spectral forcing term F. One approach is to compute Q using the Cauchy
integral formula.

5. Analysis of methods for multiple plates

We now compare the two spectral methods for scattering by a set of collinear finite sound-hard plates.
All experiments in this section were performed with an incident field given by (2.3) with θ = π/4. It
is of primary interest to quantify performance at different wavenumbers and plate numbers in order to
identify which method should be preferred. It is also pertinent to highlight a number of qualitative points
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804 M. J. COLBROOK AND M. J. PRIDDIN

Fig. 4. Left: Example computed total field for k0 = 50. Right: Exponential convergence of the unified transform (near field and
far field) for different k0.

regarding performance differences for obtaining different aspects of the solution, ease of implementation
and adaptability.

We start with the case of two equally spaced plates with d = 2a = 2/3 in the interval [−1, 1].
Figure 4 (left) shows the total computed field for k0 = 50. To measure error, we will consider both the
near field and the far field. For the near field, we compute an approximation [q̃] to [q], the jump in q
across the plates, at equally spaced points {xj} ⊂ γ and define

Enear =
∑

j

∣∣∣[q̃](xj, 0) − [q](xj, 0)

∣∣∣∑
j

∣∣∣[q](xj, 0)

∣∣∣ . (5.1)

The unified transform computes [q̃] via a series expansion, whereas the iterative Wiener–Hopf method
obtains [q̃] from the inverse Fourier transform of Q̃ (an approximation of Q), which we compute using
Gaussian quadrature. For the far field, the asymptotic form of the solution can be computed via steepest
descent applied to the Fourier inversion integral to obtain

q(r, θ) ∼ eik0r sin θ

√
k0

2πr

∫
γ

e−ik0x cos θ q(x, 0+)dx, as r → ∞, (5.2)

where (r, θ) are the usual polar coordinates. The quantity D(θ) is defined by

D(θ) = sin θ

∫
γ

e−ik0x cos θ q(x, 0+)dx
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so that (5.2) becomes

q(r, θ) ∼ eik0r

√
k0

2πr
D(θ), as r → ∞.

Note that the finite extent of the plates means that the Fourier transform of q is pole free; poles would
give rise to Fresnel regions and require special treatment to achieve a uniformly valid expression (in our
case the far field is beyond the Rayleigh distance). We compute an approximation D̃ to D at equally
spaced angles {θj} ⊂ (0, π) and define

Efar =
∑

j

∣∣∣D̃(θj) − D(θj)

∣∣∣∑
j

∣∣∣D(θj)

∣∣∣ .

Note that D̃ can be computed using the unified transform and the relevant Fourier transforms (see (3.4))
of the functions {Cm} (defined in (3.3)), whereas the iterative Wiener–Hopf method directly computes
these Fourier transforms at points of interest. In reality, we do not have access to the true scattered field q
to compute the above errors. Hence we will use a ‘converged’ solution (computed using a larger number
of degrees of freedom). In what follows, Enear was computed using 201 evenly spaced points on each
plate and Efar was computed using 99 evenly-spaced angles.

Figure 4 (right) shows the exponential convergence of the unified transform for different wavenum-
bers k0 and Ni = N′

i = N. As discussed in Colbrook & Ayton (2019), we found that for larger k0, larger
N is needed before we see exponential convergence. This is due to the more oscillatory solution and
typically the N needed to gain a given accuracy scales linearly with k0. However, we also see another
effect. For small k0 = 1, the convergence is slower, plateauing at a larger relative error ≈ 10−9. This can
be overcome by increasing the number of collocation points and, for the examples in this paper, was not
an issue in practice. There does seem to be an inherent ill-conditioning of (3.1) and equivalently (4.3) for
smaller k0, which can be understood as a consequence of the branch points of K(α) coalescing. Another
interpretation is the slower decay properties of the solution at infinity—the unified transform expands
the y-derivative of the scattered field along the infinite portions of R\γ , whereas the iterative Wiener–
Hopf method involves integrands that decay at a slower rate for smaller k0. Also, in the case of small
k0, it is well known that the large incompressible region around a screen causes numerical difficulties.
There is a large amount of energy in this region compared to the scattered field, and hence standard
numerical methods must resolve both regimes. This difficulty highlights the importance of boundary
approaches such as the ones we present, which can capture such behaviour.

Figure 5 shows the exponential convergence of the iterative Wiener–Hopf method. There are two
key parameters in the numerical implementation of the iterative stage of the method: the number of
degrees of freedom used to compute the Cauchy transforms using the spectral approach described in
§ 4.3, and the number of iterations undertaken before the solution is extracted. The left-hand panel of
Fig. 5 demonstrates that the method converges exponentially in the number of degrees of freedom,
and the right-hand panel that the method converges exponentially in the number of iterations. For
the present implementation, the number of degrees of freedom required to obtain a given accuracy
increases outside an optimal regime centred near and around k0 = 10. This is associated with the need
to approximate smooth functions with a range of decay rates; for ease of implementation, we consider
a single quadrature scheme that can still provide a high degree of accuracy for a range of wavenumbers
with around 100 degrees of freedom. Convergence with iteration is fastest for high wavenumbers.
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806 M. J. COLBROOK AND M. J. PRIDDIN

Fig. 5. Left: Exponential convergence in degrees of freedom used for computing factorizations using Cauchy transforms of the
iterative Wiener–Hopf method (near field and far field) for different k0. Right: Exponential convergence in iteration of the iterative
Wiener–Hopf method (near field and far field) for different k0.

As mentioned previously, obtaining the near field requires more care for large wavenumbers using
the iterative approach due to issues around inverting the x-Fourier transform of functions with strong
exponential behaviour, while also choosing a contour to avoid the branch points at ±k0. This difficulty is
evidenced for the case of k0 = 100 in each panel where the method struggles to achieve more than seven
digits of accuracy (compared to about 14 digits obtained with the unified transform). Should particular
applications require higher accuracy, specialization might mitigate these issues. The inversion method
employed uses a single contour for each spatial location, which means errors are largest at angles ±π/2
and 0, π from each plate edge.

Though each method converges exponentially, we found that when computing the far field, the
iterative Wiener–Hopf method scales better for large frequencies. On the other hand, both methods
perform similarly for smaller k0. This is shown in Fig. 6 (left) where we have shown the time taken4

by each method to reach Efar < 10−4 for a single plate between [−1, 1]. The unified transform is more
appropriate for computing the near field (as shown in Fig. 5), and so we have measured the error via
Efar. We have also compared the time taken to reach Efar < 10−4 for different values of M (number
of plates) with d = 2a in Fig. 6 (right) for k0 = 2. In this case, we see that the unified transform is
slightly faster, though both methods seem to scale with the same algebraic rate (roughly cubically).
Finally, we compare the computation time to gain Efar ≤ 10−2 for 20 plates with k0 = 2 and different
open fractions 2a/d in Fig. 7. The unified transform fares much better than the iterative Wiener–Hopf
method when 2a/d is small, with a much slower increase in computation time as 2a/d decreases (the
step shape for the unified transform is due to the increasing number of basis functions needed). This
agrees with Priddin et al. (2020) where it was noted that the number of iterations required to achieve
a given degree of accuracy is strongly correlated with the smallest Helmholtz number (wavenumber ×
lengthscale) present in the problem.

4 All timings were performed using the BenchmarkTools.jl package on a 2018 MacBook Pro, a 2.3Ghz processor and 8GB
memory, with the figures quoting the mean time from each trial.
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Fig. 6. Average time taken to achieve four digits of accuracy in the far-field directivity D̃ using unified transform (solid blue) and
iterative Wiener–Hopf method (dashed red). Left: Single plate with endpoints at [−1, 1] for different wavenumbers k0. Right: M
plates with plate length and spacing all equal, with extreme endpoints at {−1, 1} for wavenumber k0 = 2.

Fig. 7. Average time taken to achieve two digits of accuracy in the far-field directivity D̃ using unified transform (solid blue) and
iterative Wiener–Hopf method (dashed red) for twenty plates (M = 20) and k0 = 2. We have plotted against d/a as opposed to
the open fractions 2a/d since this best shows the growth in time taken.

In summary:

• Both methods converge exponentially in the number of degrees of freedom used.

• Both methods offer similar scaling (computation time) as the number of plates is increased.

• The unified transform is better suited for computing the spatial field, especially on or near the
domain boundary, since the solution is represented in physical space.

• The iterative Wiener–Hopf method is better suited to large wavenumbers and generally appears
to be less sensitive to changes in the wavenumber.
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• The time taken for the iterative Wiener–Hopf method depends strongly on the smallest
Helmholtz number (and so lengthscale) present and the method is therefore much slower than
the unified transform when the open fraction 2a/d is small.

• The unified transform requires care in choosing the basis functions for the unknowns (in our
case the functions in (3.3) to capture endpoint singularities) and also the collocation points.

• The iterative Wiener–Hopf method requires care in order to cope with singular features, such as
singularities of the solution (captured by the orthogonal weights of the Chebyshev polynomi-
als), evaluation near removable singularities and conducting effective spatial inversion. There
is also a need to balance the number of iterations with the degrees of freedom. For the problems
considered, 400 degrees of freedom are typically sufficient, and we iterate until a prescribed
relative error between iterates is reached.

Finally, in general, the unified transform is more versatile and able to cope with more complicated
geometries. We will use the unified transform to compute the near field in § 7.1 and both methods for
the far field (in order to verify computations) in § 7.2.

6. A collocation method for a single compliant plate

In this section, we discuss the numerical solution of the scattering by a single plate x ∈ [−1, 1] with
Robin boundary conditions. Our solution will be obtained via a mixture of separation of variables and
collocation. The geometry of a single plate can be transformed into a separable PDE on a rectangular
domain. Essentially, a flat plate can be considered as a degenerate ellipse of zero thickness (Morse
& Rubenstein, 1938). The solution can be written down as an infinite series of Mathieu functions,
the appropriate eigenfunctions, the theory of which can be found in McLachlan (1951). Separation
of variables yields the solution everywhere in the domain and not just the unknown boundary values,
bypassing the need for Green’s representation theorem or steepest descent to evaluate the solution in the
exterior domain. Of course, we must still numerically sum a series of special functions, which can be
represented efficiently using series representations, as shown below.

6.1 Separation of variables

The first few steps, which we recall for the benefit of the reader, are standard for the case of μ ≡ 0 and
can be found, e.g. in Colbrook et al. (2019a); Nigro (2017). First, we introduce elliptic coordinates via
x = cosh(ν) cos(η), y = sinh(ν) sin(η), where, with an abuse of notation, we write q(ν, η), μ(η) and
f (η). The appropriate domain then becomes ν ≥ 0 and η ∈ [0, π ] and the PDE, boundary conditions
and radiation condition become

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂2q
∂η2 + ∂2q

∂ν2 + cosh(2ν)−cos(2η)
2 k2

0q = 0,

q|η=0 = q|η=π = 0,
1

sin(η)
∂q
∂ν

(0, η) − 2μ(η)q(0, η) = f (η),

limν→∞ ν1/2
(

∂
∂ν

− ik0

)
q(ν, η) = 0.

(6.1)
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To simplify the formulae, we let Q = k2
0/4. Separation of variables for solutions of the form V(ν)W(η)

leads to the regular Sturm–Liouville eigenvalue problem

{
W ′′(η) + (λ − 2Q cos(2η)) W(η) = 0,

W(0) = W(π) = 0.
(6.2)

The solutions of this are sine-elliptic functions, denoted by sem with eigenvalue λm, which we expand
as

sem(λm, η) =
∞∑

l=1

B(m)
l sin(lη). (6.3)

The eigenfunctions are real and orthogonal, and we choose the normalization

∫ π

0
sem(η)sen(η)dη = π

2
δmn. (6.4)

We also split the solutions further by symmetry or antisymmetry about η = π/2 and write

se2m(η) =
∞∑

l=1

B(2m)
2l sin(2lη), (6.5)

se2m+1(η) =
∞∑

l=0

B(2m+1)
2l+1 sin((2l + 1)η). (6.6)

For the even order solutions, the eigenvalue problem then becomes the tridiagonal system

⎛
⎜⎜⎜⎝

22 − λ2m Q
Q 42 − λ2m Q

Q 62 − λ2m Q
. . .

. . .
. . .

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

B(2m)
2

B(2m)
4

B(2m)
6
...

⎞
⎟⎟⎟⎟⎠ = 0. (6.7)

A similar system holds for the odd order solutions:

⎛
⎜⎜⎜⎝

12 − λ2m+1 − Q Q
Q 32 − λ2m+1 Q

Q 52 − λ2m+1 Q
. . .

. . .
. . .

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

B(2m+1)
1

B(2m+1)
3

B(2m+1)
5

...

⎞
⎟⎟⎟⎟⎠ = 0. (6.8)

These eigenvalue problems are solved using square n × n truncations of the infinite matrix (also known
as the finite section method or Galerkin method). Since the spectrum of the associated (self-adjoint)
linear operator is discrete, we do not have to worry about issues such as spectral pollution (Colbrook
et al., 2019c; Lewin & Séré, 2010).
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Fig. 8. Convergence results for the finite section method for even order system (6.7) with k0 = 1000. Left: Relative absolute
error for first four eigenvalues. Right: Maximum relative absolute error over η ∈ [0, π ] for first four eigenfunctions.

The convergence to the eigenvalues and eigenfunctions depends on the parameter Q, in general
being slower for larger Q. However, the convergence is exponential, yielding machine precision for
small truncation parameter n, even for very large Q. Figure 8 shows the convergence for Q = 250, 000,
corresponding to k0 = 1000—at least an order of magnitude larger than those considered in the rest of
this paper. Typically for the parameter regimes discussed in this paper, a few dozen sine functions are
enough to yield machine precision.

The corresponding V(ν) with the appropriate radiation condition at infinity are given by the
Mathieu–Hankel functions

Hsem(ν) = Jsem(ν) + iYsem(ν),

where Jsem and Ysem denote radial Mathieu functions (Olver et al., 2010). These can be expanded in a
rapidly convergent series using Bessel functions (see McLachlan, 1951). We choose the normalization
Hse′

m(0) = 1 and the full solution can then be written as

q(ν, η) =
∞∑

m=1

amsem(η)Hsem(ν).

In order to determine the coefficients {am}, we need to use the Robin boundary conditions. These
boundary conditions yield the relation

∞∑
m=1

amsem(η)
[
1 − 2μ(η)Hsem(0) sin(η)

] = sin(η)f (η). (6.9)

6.2 Numerical approach

For non-zero μ, there are at least two natural ways to proceed. We can truncate the relation (6.9) to
N terms and collocate at η ∈ [0, π ]. Another option is to multiply by sen(η) and integrate along the
interval η ∈ [0, π ], using the orthogonality of the sine-elliptic functions. For each n = 1, ..., N, this
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second approach yields the approximate linear relation

an − 4

π

N∑
m=1

amHsem(0)

∫ π

0
μ(η)sem(η)sen(η) sin(η)dη = 2

π

∫ π

0
sin(η)sen(η)f (η)dη. (6.10)

Both of these approaches lead to a dense linear system and this is the price we pay for the more
complicated boundary conditions (the system becomes diagonal when μ = 0). When μ is constant,
we can easily evaluate the relevant integrals in (6.10) to machine precision. For example,

∫ π

0
sem(η)sen(η) sin(η)dη =

∞∑
l,k=1

B(m)
l B(n)

k

∫ π

0
sin(lη) sin(kη) sin(η)dη (6.11)

=
∞∑

l,k=1

B(m)
l B(n)

k

{
2kl

(
(−1)k+l+1

)
4k2l2−(k2+l2−1)2 , if |k − l| �= 1

0, otherwise
. (6.12)

The typical forcing term corresponding to (2.3) can be written in terms of Bessel functions as

2

π

∫ π

0
sin(η)sen(η)f (η)dη = 2

π
ik0 sin(θ)

∞∑
l=1

B(n)
l

∫ π

0
sin(η) sin(lη)e−ik0 cos(θ) cos(η)dη (6.13)

= −2 tan(θ)

∞∑
l=1

i−llB(n)
l Jl(k0 cos(θ)). (6.14)

However, unless μ lends itself to integration against a triple product of highly oscillatory sine functions,
the integrals in the left-hand side of (6.10) are very difficult to evaluate numerically for large m, n.
One approach is to expand μ in a sine series using the FFT and use formulae for integrating quadruple
products of sine functions. Instead, we shall take the simpler approach of truncating (6.9) to N terms
and collocating at N equally spaced points in [0, π ]. In physical space, this corresponds to collocation
at Chebyshev nodes.

6.3 Verification of methods

We now verify that our computational method converges. We will measure the error via the same discrete
relative absolute error in (5.1) but now over 199 equally spaced points in the interval [−1, 1]. Figure 9
(left) shows the convergence of separation of variables (both collocation and Galerkin matrix), as well
as the unified transform for θ = π/4, k0 = 10, M = 10 and 2a/d = 0.2 with the constant choice (see
(2.6))

μ0 = π

2d
{log (d/πa)}−1 .

We see that all three methods are comparable in terms of convergence with N. As noted earlier at the end
of § 3.2, we also see that the convergence is now algebraic owing to the Robin boundary conditions (and
induced (poly-)logarithmic singularities). The rate of convergence is large since the dominant singularity
of the solutions is square-root at the endpoints, which is still captured by our choice of basis. The
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812 M. J. COLBROOK AND M. J. PRIDDIN

Fig. 9. Left: Convergence of the collocation method, direct matrix method and unified transform for constant μ0. Right:
Convergence of collocation method for μ0, μ1 and μ2.

agreement between the unified transform and separation of variables can be understood in terms of
basis functions √

1 − x2 · Um(x) = sin((m + 1)η).

These sine functions also appear in (6.3), however as an infinite expansion. Despite this, we see the
same qualitative convergence. Out of all three methods, the collocation approach is the most accurate
with very stable convergence rates.

In order to consider the effect of varying the compliance near the extreme endpoints, as speculatively
suggested in Leppington (1977), we will also use two ways of tapering μ to 0 at the endpoints, shown in
Fig. 10. The first, μ1, will decay to zero like 1/ log(1/(

∣∣x2 − 1
∣∣)) at the end points, whereas the second,

μ2, will decay to zero exponentially fast near the endpoints (specifically using a tanh function). For both
of these, the envelope of decay was chosen to be of the order d, consistent with the physical picture (we
found this to be more accurate than other decay length-scales such as a). Specifically, we take

μ̃−1
1 (x) = log

(
d + (x + 1)

aπ x+1
d

)
+ log

(
d + (1 − x)

aπ 1−x
d

)
− log

(
d

aπ

)
, μ1(x) = μ0

μ̃1(x)

μ̃1(0)
, (6.15)

μ̃2(x) = tanh

(
3
(x + 1) − d

d

)
+ tanh

(
3
(1 − x) − d

d

)
, μ2(x) = μ0

μ̃2(x) − μ̃2(−1)

μ̃2(0) − μ̃2(−1)
. (6.16)

The functions μ̃1 and μ̃2 describe the qualitative shape of the compliances. The choice of μ1 is motivated
by the analysis in Lamb (1895) but now has the correct limiting value of μ = 0 at the endpoints.

The convergence of the collocation method, in these cases, is shown in Fig. 9 (right) where we see
algebraic convergence for μ1 but exponential convergence for μ2 owing to the rapid decay of μ2 near
the endpoints. For our comparison between Robin boundary conditions and the perforated screen, the
several digits typically obtained when N = 100 are easily sufficient for our purposes. Smaller errors can
be obtained for larger N if desired.
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Fig. 10. Examples of μ for ten plates between [−1, 1] with 2a/d = 0.2.

7. Robin boundary condition versus small rigid plates

Now that we have discussed our numerical methods, and shown them to be effective for the considered
problem, we turn to the application that motivated this paper, namely, the investigation of (2.4). We will
begin with the near field, where we use the unified transform (which is easier to compute the near field
with than the iterative Wiener–Hopf method) and note that we do not expect small errors very near the
plate. In fact, we expect large errors near the plates up to distances of approximately O(d). We then
move onto the acoustic far field where we use both the unified transform and the iterative Wiener–Hopf
method to verify our numerical computations. However, the computation when 2a/d is small is much
faster for the unified transform, as noted in § 5.

In this section, errors refer to the difference between the scattered field produced by an array of
sound-hard plates and the single plate with boundary condition (2.4), and not to numerical errors (all of
the examples below were computed so that numerical errors are negligible compared to physical errors).

7.1 Near-field

To quantify the near-field error, we compute the pointwise relative error, |q̃(x, y)/q(x, y)| for approxima-
tions q̃ of q computed using a single plate with various μ (which were listed in § 6.3). The converged
reference solution q for an array of sound-hard plates is computed using the unified transform. These
errors are shown (in log scale) in Fig. 11 for k0 = 0.2 and Fig. 12 for k0 = 2, both for various values
of 2a/d and k0d (which must be small for the relevant asymptotic regime). We have not shown the
errors for larger k0 since they were very large. As expected, we see large relative errors for the rigid
approximation μ = 0. As 2a/d and k0d decrease, the relative errors away from the plates for μ0, μ1 and
μ2 all decrease. There is also an apparent oscillatory shape for the magnitude of the relative errors with
height of order d, corresponding to the tips of each plate (hence 4 to 19 wave peaks depending on the
parameters). It is also apparent that tapering can, in some cases, reduce the error, but can also sometimes
increase the error. These comments underline the importance of edge effects in these types of physical
models. It is not clear which choice of tapering is more effective for the smaller k0 = 0.2, but the choice
μ1 is more reliable and effective at reducing the error than μ2 when k0 = 2.
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814 M. J. COLBROOK AND M. J. PRIDDIN

Fig. 11. Near-field relative errors for k0 = 0.2 (screen Helmholtz number = 0.4) shown in log10 scale. The red lines show the
positions of the plates.

7.2 Far-field

Figures 13–15 show the relative far-field scattered noise |D(θ)| for k0 = 0.2, 2 and 10, respectively,
with the same parameter selections as before. We have plotted the results for an array of sound-
hard plates (computed using the unified transform and iterative Wiener–Hopf method) and denoted
by ‘True’ in the figures. Immediately, we see that when both 2a/d and k0d are small, there is excellent
agreement between the homogenized boundary conditions (with μ = μ0, μ1 or μ2) and the sound-
hard plates. This agreement verifies the appropriateness of using a constant compliance (neglecting
end effects) in this case to provide a good approximation to the physically relevant far-field directivity.
However, we see that the number of plates and wavenumber also play important roles. For example,
when comparing Fig. 15(d) where there is excellent agreement, to Figs 13(b) and 14(b) where there
is less good agreement, despite the open fraction and grating Helmholtz numbers being smaller. This
difference again highlights the importance of edge effects—for Fig. 15(d) there are more plates and a
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FAST AND SPECTRALLY ACCURATE NUMERICAL METHODS FOR PERFORATED SCREENS 815

Fig. 12. Near-field relative errors for k0 = 2 (screen Helmholtz number = 4) shown in log10 scale. The red lines show the
positions of the plates.

larger wavenumber so edge effects at ±1 are less important. The different choices also do not seem to
affect the number of oscillations in the far-field directivity, even for large wavenumber k0 = 10.

To quantify these results further, we have plotted the relative power (the integral of |D(θ)| 2 divided
by the integral corresponding to the array of rigid plates) at infinity for the scattered field for different k0
in Fig. 16. The left plot shows the relative power as a function of the open fraction for 20 plates. We see
that as 2a/d decreases, the curves approach 1 for each choice of μ. However, for larger k0, μ2 produces
an overestimate of the power for small 2a/d. We see however that if k0 is small (so that k0d is small)
then μ2 provides the best estimate for the power. Similarly, in the right plot of Fig. 16, we have plotted
the relative power for 2a/d = 0.02 and various plate numbers M. We see that if M is too small, μ2 can
provide a severe overestimate (which seems to be worse for smaller k0). For larger k0, it is also possible
for μ0 and μ1 to overestimate the power as well. Note also that in all cases, the power produced using
μ2 is greater than when using μ1, which in turn is greater than μ0. This highlights the importance of
edge effects when considering a finite screen. Moreover, while as we move deeper into the appropriate
asymptotic regime (decreasing 2a/d, k0d and increasing M), the agreement with the exact case improves.
Finally, out of all the physical parameters, it appears that the most important for the homogeneous
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Fig. 13. Relative absolute value of D(θ) for k0 = 0.2 (screen Helmholtz number = 0.4).

approximation to hold is the open fraction 2a/d. This is consistent with the homogenization approach
in Leppington (1977), which applies the asymptotic limit by considering each gap as a point.

We have also shown the corresponding errors in Fig. 17. These errors highlight the above points—if
2a/d and k0d are small enough, then μ2 provides the best estimate of the far field. However, for larger
k0, it can provide a worse estimate than even μ0 (no tapering). Overall we note that even the simple
model of constant compliance can yield good agreement of utility for practical engineering studies,
provided there is a sufficiently

• large number of plates, M > 10,

• small open fraction 2a/d < 0.04,

• small grating Helmholtz number k0d < 1.

However, outside of these limits, one should take care in selecting a compliance parameter for finite
sections of perforated materials.
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Fig. 14. Relative absolute value of D(θ) for k0 = 2 (screen Helmholtz number = 4).

8. Conclusion

This paper contributes to understanding the applicability of a compliant or Robin boundary condition
to modelling scattering by a truncated array of collinear rigid plates. In particular, we interrogate the
role of end effects of such homogenized boundary conditions to finite perforated screens incorporated
in larger structures of interest in applications, such as bio-inspired adaptations in aeroacoustics
(Kisil & Ayton, 2018). We solve the exact problem using two methods: the unified transform and an
iterative Wiener–Hopf method. The former provides a versatile method and is more suited to computing
the near field, while the latter is more specialized, most appropriate for large wavenumbers. We detail the
regimes in which each method is competitive and practical considerations for implementation, which we
hope to be of broader interest to those applying such methods. We found that the unified transform was
more appropriate for the asymptotic regimes studied in this paper. This paper also presents an effective
collocation approach based on Mathieu functions for tackling the problem of scattering by a finite plate
on which a variable Robin boundary condition is applied, which is also likely to be of broader interest.
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Fig. 15. Relative absolute value of D(θ) for k0 = 10 (screen Helmholtz number = 20).

We verified the appropriateness of the homogenized constant Robin boundary condition given in
Leppington (1977) to achieve good agreement (< 10%) in the far-field directivity with the exact
problem even for a modest number of plates (> 10) and sufficiently far into the asymptotic regime
of validity for the homogenization (2a/d < 0.04) and small k0. Investigating the role of end corrections
to the compliance by taking μ ↓ 0 to include the sound-hard endpoint junctions can improve the
approximation, but a generically suitable manner of tapering is unclear. Nevertheless, a simple tanh-
type tapering seemed the most effective choice in this paper for small 2a/d and k0d. These findings,
and the slow convergence of the (physical) approximation as we proceed deeper into the appropriate
asymptotic regime, highlight the importance of junction effects in scattering problems and may offer an
interesting direction for future research should applications require more accurate models. Further, while
we anticipate these findings to broadly carry across to alternative homogenization models for structured
media, their significance may warrant special interrogation. For each of these points, the extension of
the unified transform to variable boundary conditions and the application of the Wiener–Hopf technique
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Fig. 16. Relative far-field power for different k0. Left: For M = 20 and various 2a/d. Right: For 2a/d = 0.02 and various M.

Fig. 17. Same as Fig. 16 but now showing the far-field relative error Efar.

to semi-infinite truncated arrays (Capolino & Albani, 2009) may be useful, in addition to the collocation
Mathieu function method introduced here for the problem of a finite plate of variable compliance.
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