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1 Introduction 

Any finite and self-adjoint matrix .A ∈ C
n×n has an orthonormal basis of 

eigenfunctions. This basis diagonalizes A by decomposing the space . Cn into a sum 
of orthogonal eigenspaces. However, many applications require us to study a self-
adjoint operator . Lwith domain .D(L) ⊂ H on an infinite-dimensional Hilbert space 
. H with inner product .〈·, ·〉. Even when we are given a finite matrix, it is often an 
approximation or discretization of an underlying infinite-dimensional operator. In 
infinite dimensions, there may not exist a basis of eigenfunctions since . L can have 
a continuous spectral component. This situation arises in, for example, stochastic 
processes and signal-processing [1, 2] and [3,Ch. 7], scattering in particle physics 
[4, 5], density-of-states in materials [6, 7], and many other areas [8–11]. 

Instead of eigenfunctions, . L can be diagonalized through spectral measures 
supported on its spectrum .�(L) ⊂ R (see Sect. 2 and Eq. (3)). While efficient 
methods for computing spectral measures of (even very large) finite matrices exist 
[7], the infinite-dimensional case is more subtle. Most existing methods focus on 
specific operators where analytical formulas are available or perturbations of such 
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cases [12, Section 3]. Recently, [12] developed methods for computing spectral 
measures of general ODEs and integral operators using just two ingredients:1 

1. A numerical solver for shifted linear equations .(L− z)u = f for .z ∈ C\�(L). 
2. Numerical approximations to inner products of the form . 〈u, f 〉.

The software SpecSolve [18] implements these ingredients using spectral meth-
ods. 

This article extends SpecSolve to two important classes of operators with 
continuous spectra: singular integro-differential operators and operator pencils. 
Leveraging sparse spectral methods for the Hilbert transform on the real line, we 
compute spectral measures of singular integral operators such as 

.[Lu](x) = a(x)u(x) + 1

πi

∫
R

G(x, y)

y − x
u(y) dy, (1) 

where .G(x, y) = G(y, x) and real-valued .a(x) satisfy appropriate regularity 
constraints on . R. Additional differential terms are straightforward to incorporate 
to tackle a broad class of singular integro-differential operators. We also extend the 
two-step framework to compute spectral measures associated with the generalized 
spectral problem .Av = λBv, for operators . A and . B. The two essential computa-
tional steps are performed with off-the-shelf spectral methods, illustrating the power 
and flexibility of SpecSolve’s “discretization-oblivious” paradigm. 

2 Spectral Measures 

The spectral theorem for a finite self-adjoint matrix .A ∈ C
n×n states that there exists 

an orthonormal basis of eigenvectors .v1, . . . , vn for . Cn such that 

. v =
(

n∑
k=1

vkv
∗
k

)
v, v ∈ C

n and Av =
(

n∑
k=1

λkvkv
∗
k

)
v, v ∈ C

n,

(2) 

where .λ1, . . . , λn are eigenvalues of A, i.e., .Avk = λkvk for .1 ≤ k ≤ n. In other 
words, the projections .vkv

∗
k decompose . Cn and diagonalize A. 

Switching to infinite dimensions, associated with the operator . L is a projection-
valued measure, . E [19, Theorem VIII.6], whose support is the spectrum . �(L). The  
measure . E assigns an orthogonal projector to each Borel subset of . R such that 

. f =
(∫

R

dE(y)

)
f, f ∈ H and Lf =

(∫
R

y dE(y)

)
f, f ∈ D(L).

(3)

1 See also [13] which also includes computing spectral type in the context of the SCI hierarchy 
[14–16], and [17] for applications in physics. 



SpecSolve: Spectral Methods for Spectral Measures 185

Here, .D(L) denotes the domain of the operator . L. Analogous to (2), the relations 
in (3) show how . E decomposes . H and diagonalizes the operator . L. 

Of particular interest are the (scalar-valued) spectral measures of . L with respect 
to .f ∈ H, given by .μf (�) := 〈E(�)f, f 〉, for Borel-measurable sets .� ⊂ R. 
Lebesgue’s decomposition of .μf is 

. dμf (y) =
∑

λ∈�p(L)

〈Pλf, f 〉 δ(y − λ)dy

︸ ︷︷ ︸
discrete part

+ ρf (y) dy + dμ
(sc)
f (y)︸ ︷︷ ︸

continuous part

.

The discrete part of .μf is a sum of Dirac delta distributions, supported on the set of 
eigenvalues of . L, which we denote by .�p(L). The coefficient of each . δ in the sum is 
.〈Pλf, f 〉 = ‖Pλf ‖2, where . Pλ is the orthogonal spectral projector associated with 
the eigenvalue . λ, and .‖ · ‖ = √〈·, ·〉 is the norm on . H. The continuous part of . μf

consists of an absolutely continuous2 part with Radon–Nikodym derivative . ρf ∈
L1(R) and a singular continuous component .μ(sc)

f . Without loss of generality, we 
assume throughout that .‖f ‖ = 1, which ensures that .μf is a probability measure. 

Computing .μf is important in many applications, and can be considered an 
infinite-dimensional analogue of computing eigenvectors. We aim to evaluate 
smoothed approximations of . μf . We compute a smooth function . με

f , with smooth-
ing parameter .ε > 0, that converges weakly to .μf [20, Ch. 1]. That is, 

.

∫
R

φ(y)με
f (y) dy →

∫
R

φ(y) dμf (y), as ε ↓ 0, (4) 

for any bounded, continuous function . φ. 

3 Algorithmic Framework for SpecSolve 

Our key ingredient is the resolvent .(L−z)−1 = ∫
�(L)

(λ−z)−1dE(λ) for . z �∈ �(L).

Stone’s formula [21] links the resolvent to convolution with the Poisson kernel: 

.με
f (x) = −1

π
Im

(
〈(L− (x − εi))−1f, f 〉

)
=

∫
R

επ−1

(x − λ)2 + ε2
dμf (λ). (5) 

As .ε ↓ 0, this approximation converges weakly to . μf . To compute . (L −
(x − εi))−1f we must somehow discretize the operator. However, for a given 
discretization size, if . ε is too small, the approximation via (5) becomes unstable 
[12, Section 4.3] due to the discrete spectrum of the discretization. We must 
adaptively increase the discretization/truncation size as .ε ↓ 0 and there is an

2 We take “absolutely continuous” to be with respect to the Lebesgue measure. 
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Algorithm 1 A computational framework for evaluating an approximate spectral 
measure of an operator . L at .x0 ∈ R with respect to a vector . f ∈ H
Input: L, f ∈ H, x0 ∈ R, a1, . . . , am ∈ {z ∈ C : Im(z) > 0}, and ε >  0. 
1: Solve the Vandermonde system (6) for the residues α1, . . . , αm ∈ C. 
2: Solve (L− (x0 − εaj ))u

ε
j = f for 1 ≤ j ≤ m. 

3: Compute με
f (x0) = −1 

π Im
(∑m 

j=1 αj 〈uε
j , f 〉

)
. 

Output: The approximate spectral measure με
f (x0). 

increased computational cost for smaller . ε. Therefore, replacing the Poisson kernel 
with higher-order rational kernels is advantageous. These kernels have better 
convergence rates as .ε ↓ 0, allowing a larger . ε to be used for a given accuracy, 
and thus a lower computational burden. 

Let .{aj }mj=1 be distinct points in the upper half plane and suppose that the 
constants .{αj }mj=1 satisfy the following (transposed) Vandermonde system: 

.

⎛
⎜⎜⎜⎝

1 . . . 1
a1 . . . am

...
. . .

...

am−1
1 . . . am−1

m

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

α1

α2
...

αm

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1
0
...

0

⎞
⎟⎟⎟⎠ . (6) 

Then the kernel 

. K(x) = 1

2πi

m∑
j=1

αj

x − aj

− 1

2πi

m∑
j=1

αj

x − aj

with Kε(x) = ε−1K(xε−1)

is an mth order kernel, and we have the following generalization of Stone’s formula 

.με
f (x) = [Kε ∗ μf ](x) = −1

π

m∑
j=1

Im
(
αj 〈(L− (x − εaj ))

−1f, f 〉
)

. (7) 

This provides .O(εm log(ε−1)) convergence in (4) if . φ is sufficiently regular, and 
similar rates for .με

f (x) → ρf (x) if .μf is sufficiently regular near x [12]. 
We consider the choice .aj = 2j/(m + 1) − 1 + i and the framework for 

evaluating .με
f is summarized in Algorithm 1. This algorithm forms the foundation 

of SpecSolve [18] and can be performed in parallel for several . x0. We compute 
an accurate value of .με

f provided that the resolvent is applied with sufficient 
accuracy. For an efficient adaptive implementation, SpecSolve constructs a fixed 
discretization, solves linear systems at each required complex shift, and checks the 
approximation error at each shift. If further accuracy is needed at a subset of the 
shifts, then the discretization size is doubled, applied at these shifts, and the error is 
recomputed. This process is repeated until the resolvent is computed accurately at 
all shifts.
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4 Singular Integro-Differential Operators 

Singular integral operators of Cauchy type play a pivotal role in the classical theory 
of PDEs and their spectral properties [22]. They appear in a wide range of physical 
models, along with their integro-differential and nonlinear counterparts [23]. 

Consider the self-adjoint singular integral operator . L in (1) with . G(x, y) =
G(y, x), and .a(x) real, continuously differentiable, and bounded. To compute 
spectral measures of . L in the SpecSolve framework, we must compute inner 
products between functions in .L2(R) and solve linear equations with a complex 
shift z, e.g., 

.(a(x) − z)u(x) + 1

πi

∫
R

G(x, y)

y − x
u(y) dy = f (x). (8) 

We discretize .L2(R) with the orthogonal rational basis functions . ρn(x) =
1√
π

(1+ix)n

(1−ix)n+1 , for .n ∈ Z. These functions have excellent approximation properties, 
are associated with banded differentiation and multiplication matrices, and 
expansion coefficients can be computed from function samples in quasi-linear 
time with the FFT [24]. Moreover, they diagonalize the Hilbert transform and lead 
to banded discretizations of (8) when .G(x, y) is sufficiently smooth and of low 
numerical rank [25]. 

Both the multiplicative and integral components of . L can contribute contin-
uous spectrum. When .G(x, y) = k(x)k(y) is a rank one kernel with . k(x) >

0, the spectrum fills the interval .[min |a(x) − k(x)|, max |a(x) + k(x)|] [26]. 
Figure 1 (left) shows the spectral measures . μf of . L, with .f (x) = √

2/π(1 − x2)−1,
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Fig. 1 Left: the smoothed spectral measures, .μ0.1
f , computed with a 4th order kernel are supported 

on the intervals .[min |a(x) − k(x)|, max |a(x) + k(x)|]. Right: the smoothed spectral measures, 
.μ0.05

f , computed with a 4th order kernel for .−d2/dx2 (top) and . −d2/dx2 + (1/πi)
∫
R
(y − x)−1dy

(bottom) are compared with analytical solutions (dashed lines)
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-5 0 5 
10-4 

10-2 

100 

Fig. 2 Left: the smoothed spectral measure, .μ0.2
f , of the partial integro-differential operator in (9) 

computed with a 6th order kernel. Middle: spectral projection .E([2.1, 3])f of . f (x, y) = (1 +
x)(1 + x2)−1 cos(πy/2)/

√
π associated with the third resonance peak from the left in the plot of 

.μ0.2
f . Right: the potential energy landscape .v(x, y) for the operator in (9) 

.k(x) = e−x2
, and .a±(x) = ±2/(1 + x2)2. The dashed grey lines highlight the 

support of the measures in the expected interval. We can also tackle singular 
integro-differential operators. Figure 1 (right) compares the spectral measures of 
.−d2/dx2 and .−d2/dx2 +(1/πi)

∫
R
(y−x)−1dy with respect to f . Both the second 

derivative and the singular integral are diagonalized by the Fourier transform, and 
the spectral measures can be computed analytically (dashed lines). The integral 
perturbation breaks the symmetry between positive and negative Fourier modes, 
which effectively splits the spectral measure of .−d2/dx2 into two duplicate peaks 
of half height at . ±1. 

The SpecSolve framework can also compute spectral projections . E([a, b])
associated with the projection-valued measure by omitting the inner product step 
in Algorithm 1 and applying endpoint corrections [27]. Figure 2 displays a scalar 
spectral measure and spectral projection for the partial integro-differential operator 

. − �u + v(x, y)u + 4

πi

∫
R

exp(−x2 − s2)

s − x
u(s, y)ds, H = L2(R × [−1, 1]),

(9) 

and the function .f (x, y) = (1+x)(1+x2)−1 cos(πy/2)/
√

π . The potential function 
.v(x, y) is also plotted in Fig. 2. The operator is discretized with a tensor product 
basis of the rational orthogonal functions .{ρn} and ultraspherical polynomials [28], 
resulting in a sparse and banded discretization (we use basis reordering to reduce 
the bandwidth). In Fig. 2, narrow peaks in the scalar measure reveal scattering 
resonances of the partial integro-differential operator and the associated spectral 
projections uncover wave-packet modes that are highly concentrated within the 
potential well.
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5 Linear Operator Pencils 

For matrices .A,B ∈ C
n, the classical generalized eigenvalue problem is the 

problem of finding .v ∈ C
n\{0} and .λ ∈ C such that .Av = λBv. For example, 

this problem arises in finite element discretizations of eigenproblems for elliptic 
partial differential operators, where A corresponds to the “stiffness matrix” and B 
corresponds to the “mass matrix” [29]. Another example is linearization methods 
for non-linear eigenvalue problems [30]. For many applications, A and B are finite 
approximations of (possibly unbounded) operators . A and . B acting on a separable 
Hilbert space. We consider the case that . A and . B are both self-adjoint and that . B
is positive and invertible. We study the generalized spectral problem through the 
operator formally defined as . L = B−1A.

5.1 Recovering a Self-Adjoint Operator 

It is well-known that .D(B1/2) is complete with respect to the norm . ‖f ‖B :=
〈B1/2f,B1/2f 〉 [31, Theorem 4.4.2]. We denote the induced Hilbert space by .HB. 
The operator .B−1A with domain .D(A)∩D(B1/2) is symmetric in .HB.3 However, 
to apply the spectral theorem, we need a self-adjoint operator. We assume that 
.D(A) ∩ D(B1/2) is a dense subspace of the Hilbert space .HB. Since .B−1A is 
symmetric in .HB, it is closable. We define the symmetric closed operator 

.L = B−1A|D(A)∩D(B1/2
)
, (10) 

where the closure is performed with respect to .HB. This allows us to perform 
numerical computations with . L by restricting to the subspace .D(A) ∩ D(B1/2). 
To do this, we consider the inner product space .{f : f ∈ H} with inner product 
.〈f, g〉B−1 = 〈B−1/2f,B−1/2g〉. We take the completion of this space, .HB−1 . 
.D(B) is dense in .HB and hence . B can be extended to an invertible isometry from 
.HB to .HB−1 , and .HB−1 can be identified with the dual of .HB. We assume that 
.A|D(A)∩D(B1/2

)
: HB→ HB−1 is closable, with closure denoted by .AB. We can 

now define 

.

T(z) : D(AB) → HB−1 , f ↪→ (AB − zB)f,

�(A,B) = {z ∈ C : T(z) does not have bounded inverse}.
(11)

3 Suppose that .f, g ∈ D(A) ∩D(B1/2). Then . 〈B1/2(B−1A)g,B1/2f 〉 = 〈B−1/2Ag,B1/2f 〉 =
〈Ag, f 〉. The first equality follows since .B−1Ag ∈ D(B1/2), whereas the second follows since 
.B−1/2 is a bounded self-adjoint operator on . H. Similarly, we have that . 〈B1/2g,B1/2(B−1A)f 〉 =
〈g,Af 〉. 
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Propostion 1 For any .z ∈ C, .D(T(z)) = D(L) and .T(z) = B(L− z). Moreover, 
.�(A,B) = �(L) and if .z ∈ C \ �(L), then . (L− z)−1 = T(z)−1B.

Proof Let .z ∈ C and .f ∈ D(L). Then there exists .fn ∈ D(A) ∩ D(B1/2) such 
that .limn→∞ fn = f (in .HB) and .limn→∞(L− z)fn = (L− z)f (in .HB). Since 
.‖T(z)fn − T(z)fm‖B−1 = ‖(L − z)fn − (L − z)fm‖B, it follows that . {T(z)fn}
is Cauchy in .HB−1 and hence converges to some .g ∈ HB−1 . Since .T(z) is closed, 

.f ∈ D(T(z)) and .T(z)f = g. Moreover, . ‖(L−z)fn−B−1g‖B = ‖T(z)fn−g‖B−1

converges to zero. Since . L is closed, .(L−z)f = B−1g and hence that . B(L−z)f =
T(z)f . A similar argument shows that .D(T(z)) ⊂ D(L). Hence, . D(T(z)) = D(L)

and .T(z) = B(L − z). The proposition follows since .B : HB → HB−1 is an 
isometry. ��

The following theorem gives sufficient conditions for . L to be self-adjoint. 
Common examples of these conditions include when . A and . B are suitable elliptic 
PDEs of the same differentiation order (see condition (C1)), . A is bounded (see 
condition (C2)), and . B is a suitable weight function (see condition (C3)) 

Theorem 2 Consider the operators . A, . B and . L above. Suppose that any of the 
following conditions hold: 

(C1) There exist constants .a, b > 0 such that for any . f ∈ D(A) ∩D(B1/2)

.‖B−1/2Af ‖ ≤ a‖f ‖ + b‖B1/2f ‖. (12) 

(C2) . A is a relatively bounded perturbation of . B, meaning that . D(B) ⊂ D(A)

and there exist constants .a, b > 0 such that for any . f ∈ D(B)

.‖Af ‖ ≤ a‖f ‖ + b‖Bf ‖. (13) 

(C3) .Sp(A) �= R and . B is a relatively bounded perturbation of . A, meaning that 
.D(A) ⊂ D(B) and there exist constants .a, b > 0 such that for any . f ∈
D(A)

.‖Bf ‖ ≤ a‖f ‖ + b‖Af ‖. (14) 

Then . L is self-adjoint on . HB. Moreover, when .(C1) holds, . L is bounded. 

Proof Suppose first that .(C1) holds. Since .B1/2 is strictly positive, (12) implies 
that there exists a positive constant c such that .‖B−1/2Af ‖ ≤ c‖B1/2f ‖ for any 
.f ∈ D(A) ∩D(B1/2). This is equivalent to boundedness of . B−1A|D(A)∩D(B1/2

)

in the Hilbert space .HB, and hence . L is bounded and self-adjoint on .HB. 
For .(C2) or .(C3), we claim that it is enough to show that there exists some . γ > 0

and .κ ∈ R such that the operators 

.T± = A+ κI ± iγB, D(T±) = D(A) ∩D(B) (15)
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are closable (in . H), and that their closures, denoted . T±, are invertible (in . H). To see 
this, suppose that these conditions hold. Let .g ∈ D(B) and set .f ± = T −1± Bg. Then, 
by definition of the closure, there exists . f ±

n ∈ D(A) ∩D(B) ⊂ D(A) ∩D(B1/2)

such that .f ±
n → f ± and .T±f ±

n → Bg as .n → ∞ (with convergence in . H). Thus, 
.‖B−1(A + κI)f ±

n ± iγf ±
n − g‖B = ‖B−1/2 (

T±f ±
n − Bg

) ‖ → 0 as . n → ∞.

Since .D(B) is dense in .HB, it follows that the ranges of . γ −1B−1(A + κI) ± iI

are also dense in .HB. It follows that .γ −1B−1(A+ κI) is essentially self-adjoint in 
.HB [19, p. 257], and hence so is .B−1A. This proves the claim. 

Now suppose that .(C2) holds. Since . B is strictly positive, (13) implies that there 
exists a positive constant .c < 1 and .γ > 0 such that .‖Af ‖ ≤ c‖γBf ‖ for any 
.f ∈ D(B) ⊂ D(A). Hence . A is a relatively bounded perturbation of .iγB, with 
.iγB-bound less than 1. Stability of bounded invertibility [[32],Theorem IV.4.1.16] 
implies that . T± in (15) (with .κ = 0) are closed and invertible (in . H). 

Finally, suppose that .(C3) holds. Choose .κ ∈ R with .−κ �∈ Sp(A) so that . A+κI

is invertible, and set .C = A+ κI . For any .f ∈ D(A) and .γ > 0, (14) implies that 

.‖γBf ‖ ≤ γ (a + |κ|)‖f ‖ + γ b‖Cf ‖. (16) 

Choose .γ > 0 so that .γ (a + |κ|)‖C−1‖ + γ b < 1. The stability of bounded 
invertibility [32, Theorem IV.4.1.16] and (16) imply that .T± are closed and 
invertible. ��

5.2 Framework for Generalized Spectral Measures 

To extend SpecSolve to the above pencil problem, we simply apply (7) with the 
operator . L defined in (10) and the Hilbert space .HB. We suppose for simplicity that 
.f ∈ D(B). Using Theorem 1 and (7) and the self-adjointness of . B1/2, we have  

. 

με
f (x) = [Kε ∗ μf ](x) = −1

π

m∑
j=1

Im
(
αj 〈(B1/2T(x − εaj )

−1Bf,B1/2f 〉
)

= −1

π

m∑
j=1

Im
(
αj 〈(T(x − εaj )

−1Bf,Bf 〉
)

,

(17) 

where we use that .B1/2 is self-adjoint in the second line and .〈·, ·〉 denotes the 
inner product on . H. This leads to Algorithm 2, which generalizes Algorithm 1. 
To apply Algorithm 2, we only need to compute approximations of .g = Bf , 
solve the systems .(A − (x0 − εaj )B)uε

j = g, and then compute inner products. 
We approximate . uε

j using spectral methods and compute inner products using 
quadrature.
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Algorithm 2 A computational framework for evaluating an approximate spectral 
measure of an operator . L in (10) corresponding to the pencil .A − λB at . x0 ∈ R

with respect to a vector . f ∈ D(B)

Input:A, B, f ∈ D(B), x0 ∈ R, a1, . . . , am ∈ {z ∈ C : Im(z) > 0}, and ε >  0. 
1: Compute g = Bf . 
2: Solve the Vandermonde system (6) for the residues α1, . . . , αm ∈ C. 
3: Solve (A− (x0 − εaj )B)uε

j = g for 1 ≤ j ≤ m. 
4: Compute με

f (x0) = −1 
π Im

(∑m 
j=1 αj 〈uε

j , g〉
)

. 
Output: The approximate spectral measure με

f (x0). 

5.3 Examples 

We now present two examples, using Fourier spectral methods and a spectral 
element method, respectively. Both examples fall into the setup of Theorem 2. 

Pseudo-Differential Operators and Internal Waves Spectral properties of 0th 
order pseudo-differential operators arise naturally in fluid mechanics [33] and 
pseudoparabolic equations [34]. See [35] for the study of internal waves and [36] 
for connections with scattering resonances. As a simple example, we consider 

. A = −i(1 + cos(x)/2)∂y, B = (1 − ∂2
y )1/2, x, y ∈ [−π, π]per,

where the initial Hilbert space is .H = L2([−π, π ]2
per). To solve the linear systems 

in Algorithm 2, we use the standard tensor product Fourier basis. 

Figure 3 (left) shows the smoothed spectral measures computed using .ε = 0.01, 
and the first and sixth-order kernels for .f (x, y) = C exp(sin(x + y))/(2 + cos(y)), 

Fig. 3 Left: smoothed spectral measures, .μ0.01
f , computed using the 1st and 6th order kernels. 

The zoomed-in section shows better resolution of jump discontinuities in . ρf for larger m. Right: 
relative pointwise convergence to . ρf and expected rates shown as dashed black lines
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where C is a normalization constant so that . μf is a probability measure. The spectral 
measure has an absolutely continuous component (with piecewise continuous 
Radon–Nikodym derivative), and an eigenvalue at 0. The higher order kernel (. m =
6) provides a better localization of the singular part of the spectral measure at 0, and 
also a better resolution of jumps in the Radon–Nikodym derivative (see zoomed-in 
section). Figure 3 (right) shows the pointwise convergence to the Radon–Nikodym 
derivative and the expected rates of convergence for .m = 2, 4 and 6. 

Elliptic Differential Operator Preconditioners A common use of . L in (10) is 
preconditioning, where . B is a preconditioner of . A [37]. For example, sometimes 
one can prove mesh-independent bounds on condition numbers for methods such 
as finite elements [38], which are useful for applying Krylov space methods. The 
papers [39, 40] discuss the spectrum of . L in this context. The spectral measure of 
. L and its discretizations determine the behavior of Krylov subspace methods. See 
[39, Section 2] for a instructive example for which the spectrum is not enough. 

We follow [41] and consider a bounded Lipschitz domain .� ⊂ R
2. We take  

. Au = −∇ · [(1 + exp(−x2 − y2))∇u], Bu = −∇2u,

both with zero Dirichlet boundary conditions. The spectrum of . L is the interval [41] 
.�(L) = [inf(x,y)∈� 1 + exp(−x2 − y2), sup(x,y)∈� 1 + exp(−x2 − y2)

]
, but the 

spectral measure is unknown. To solve the linear systems in Algorithm 2, we use  
the (hp-adaptive and sparse) ultraspherical spectral element method [42]. 

We take . � to be a regular n-gon and set .f = C(�)B−1g, where . g(x, y) =
x2 + y2 and .C(�) are normalization constants so that each .μf is a probability 
measure. Figure 4 (left) shows these f and Fig. 4 (right) shows the smoothed 
spectral measures. The endpoints of the spectrum are shown as vertical dashed lines. 

Fig. 4 Left: functions f for different n. Right: smoothed spectral measures, . με
f , for different n-

gons computed using the 6th order kernel. For .n < ∞ we use .ε = 0.05 and for the circle we use 
.ε = 0.001. The dashed vertical lines are the endpoints of the spectrum
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The measures appear to be absolutely continuous and converge to the corresponding 
measure for the disk (. n = ∞) as  n gets larger. To deal with the disk, we use 
separation of variables and solve the resulting radial ODEs using the ultraspherical 
spectral method [28]. 
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