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Abstract Koopman operators linearize nonlinear
dynamical systems, making their spectral informa-
tion of crucial interest. Numerous algorithms have
been developed to approximate these spectral proper-
ties, and dynamic mode decomposition (DMD) stands
out as the poster child of projection-based methods.
Although the Koopman operator itself is linear, the
fact that it acts in an infinite-dimensional space of
observables poses challenges. These include spurious
modes, essential spectra, and the verification of Koop-
man mode decompositions. While recent work has
addressed these challenges for deterministic systems,
there remains a notable gap in verified DMD methods
for stochastic systems, where the Koopman operator
measures the expectation of observables. We show that
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it is necessary to go beyond expectations to address
these issues. By incorporating variance into the Koop-
man framework, we address these challenges. Through
an additional DMD-type matrix, we approximate the
sum of a squared residual and a variance term, each of
which can be approximated individually using batched
snapshot data. This allows verified computation of the
spectral properties of stochastic Koopman operators,
controlling the projection error. We also introduce the
concept of variance-pseudospectra to gauge statisti-
cal coherency. Finally, we present a suite of conver-
gence results for the spectral information of stochastic
Koopman operators. Our study concludes with practi-
cal applications using both simulated and experimental
data. In neural recordings from awakemice,we demon-
strate how variance-pseudospectra can reveal physio-
logically significant information unavailable to stan-
dard expectation-based dynamical models.
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1 Introduction

Stochastic dynamical systems arewidely used tomodel
and study systems that evolve under the influence of
both deterministic and random effects. They offer a
framework for understanding, predicting, and control-
ling systems exhibiting randomness. This makes them
invaluable across various scientific, engineering, and
economic applications.

Given a state-space � ⊂ R
d and a sample space

�s , we consider a discrete-time stochastic dynamical
system

xxxn = F(xxxn−1, τn), n ≥ 1, xxxn ∈ �, (1)

where {τn}n∈N ∈ �s are independent and identically
distributed (i.i.d.) random variables with distribution ρ

supported on �s , xxx0 ∈ � is an initial condition, and
F : � × �s → � is a function. In many applications,
the function F is unknownor cannot be studied directly,
which is the premise of this paper.Weadopt the notation
Fτ (xxx) = F(xxx, τ ) for convenience and express xxxn =
(Fτn ◦· · ·◦Fτ1)(xxx0), where ‘◦’ denotes the composition
of functions.

With the assumptions above, equation (1) describes
a discrete-time Markov process. For such systems,
the Kolmogorov backward equation governs the evo-
lution of an observable [34,40], with the right-hand
side defined as the stochastic Koopman operator [51].
The works [51,57] have spurred increased interest in
the data-driven approximation of both deterministic
and stochastic Koopman operators and in analyzing
their spectral properties [11,43,54]. Prominent appli-
cations span a variety of fields including fluid dynam-
ics [31,52,66,68], epidemiology [64], neuroscience
[9,14,47], finance [46], robotics [6,8], power systems
[75,76], and molecular dynamics [39,59,69,70].

Although the function F is usually nonlinear, the
stochastic Koopman operator is always linear; how-
ever, it operates on an infinite-dimensional space of
observables. Of particular interest is the spectral con-
tent of theKoopman operator near the unit circle, which
corresponds to slow subspaces encapsulating the long-
term dynamics. If finite-dimensional eigenspaces can
capture this spectral content effectively, they can serve
as a finite-dimensional approximation.Numerous algo-
rithms have been developed to approximate the spectral
properties ofKoopmanoperators [1,2,10,12,26,30,42,
48,52,55]. Among these, dynamic mode decomposi-

tion (DMD) is particularly popular [44]. Initially intro-
duced in the fluids community [67,68],DMD’s connec-
tion to the Koopman operator was established in [66].
Since then, several extensions and variants of DMD
have been developed [4,15,19,63,84,85], including
methods tailored for stochastic systems [24,72,82,87].

At its core, DMD is a projectionmethod. It is widely
recognized that achieving convergence and meaning-
ful applications of DMD can be challenging due to
the infinite-dimensional nature of Koopman opera-
tors [12,23,37,84]. Challenges include the presence
of spurious (unphysical) modes resulting from pro-
jection, essential spectra,1 the absence of non-trivial
finite-dimensional invariant subspaces, and the veri-
fication of Koopman mode decompositions (KMDs).
Residual Dynamic Mode Decomposition (ResDMD)
has been introduced to address these issues for deter-
ministic systems [20,23]. ResDMD facilitates a data-
driven approach to compute residuals associated with
the full infinite-dimensional Koopman operator, thus
enabling the computation of spectral properties with
controlled errors and the verification of learned dic-
tionaries and KMDs. Despite the evident importance
of analyzing stochastic systems through the Koopman
perspective, similar verified DMD methods in this set-
ting are absent.

This paper presents several infinite-dimensional
techniques for the data-driven analysis of stochas-
tic systems. The central concept we explore is going
beyond expectations to include higher moments within
the Koopman framework. Figure1 illustrates this point
by depicting the evolution of two eigenfunctions
associated with the stochastic Van der Pol oscillator
(detailed in Sect. 5.2), alongside the expectation deter-
mined by the stochasticKoopmanoperator. Both eigen-
values and eigenfunctions are computed with a negli-
gible projection error.2 Notably, although both corre-
sponding eigenvalues oscillate at the same frequency
due to having identical arguments, the variances of the
trajectories exhibit significant differences. This diver-

1 For an illustrative example of a transition operator with non-
trivial essential spectra, refer to [3]. If the operator in ques-
tion is either self-adjoint or an L2 isometry, the methodologies
described in [18,21] and [23] respectively, can be applied to com-
pute spectral measures.
2 Here, ’projection error’ refers to the error incurred when pro-
jecting the infinite-dimensional Koopman operator onto a finite-
dimensional space of observables.
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Fig. 1 The evolution of two eigenfunctions on the attractor of the
stochastic Van der Pol oscillator from Sect. 5.2. The plots show
the arguments. In blue, we see a sample of the true trajectories,
while the expected values predicted from the stochasticKoopman
operator are shown in red. Top: Eigenfunction associated with
m = 0 and k = 1 in Table 1. The variance residual is small, and
trajectories hug the expectation closely. Bottom: Eigenfunction
associated with m = 1 and k = 1 in Table 1. The variance
residual is large, and trajectories deviate from the expectation

gence is quantified by what we define as a variance
residual (see Sect. 3.2).

1.1 Contributions

The contributions of our paper are as follows:

– Variance Incorporation: We integrate the concept
of variance into theKoopman framework and estab-
lish its relationship with batched Koopman oper-
ators. Proposition 2 decomposes a mean squared
Koopman error into an infinite-dimensional resid-
ual and a variance term. Additionally, we present
methodologies (see Algorithms 1 and 2) for inde-
pendently calculating these components, thereby
enhancing the understanding of the spectral prop-
erties of the Koopman operator and the deviation
from mean dynamics.

– Variance-Pseudospectra: We introduce a novel
concept of pseudospectra, termed variance-
pseudospectra (see Definition 2), which serves as
a measure of statistical coherency.3 We also offer

3 In the setting of dynamical systems, coherent sets or structures
are subsets of the phase space where elements (e.g., particles,

algorithms for computing these pseudospectra (see
Algorithms 3 and 4) and prove their convergence.

– Convergence Theory: Sect. 4 of our paper is dedi-
cated to proving a suite of convergence theorems.
These pertain to the spectral properties of stochas-
tic Koopman operators, the accuracy of KMD fore-
casts, and the derivation of concentration bounds
for estimating Koopman matrices from a finite set
of snapshot data.

Various examples are given in Sect. 5 and code is
available at: https://github.com/MColbrook/Residual-
Dynamic-Mode-Decomposition.

1.2 Previous work

Existing literature on stochastic Koopman operators
primarily addresses the challenge of noisy observables
in extended dynamic mode decomposition (EDMD)
methodologies [82], and in techniques for debiasing
DMD [27,35,77]. A related concern is the estima-
tion error in Koopman operator approximations due
to the finite nature of data sets. This issue is present
in both deterministic and stochastic scenarios. As [84]
describes, EDMD converges with large data sets to a
Galerkin approximation of the Koopman operator. The
work in [58] thoroughly analyzes kernel autocovari-
ance operators, including nonasymptotic error bounds
under classical ergodic and mixing assumptions. In
[60], the authors offer the first comprehensive prob-
abilistic bounds on the finite-data approximation error
for truncated Koopman generators in stochastic differ-
ential equations (SDEs) and nonlinear control systems.
They examine two scenarios: (1) i.i.d. sampling and
(2) ergodic sampling, with the latter assuming expo-
nential stability of the Koopman semigroup. Addition-
ally, the variational approach to conformational dynam-
ics (VAC), which bears similarities to DMD, is known
for providing spectral estimates of time-reversible pro-
cesses that result in a self-adjoint transition operator.
The connection of VAC with Koopman operators is
detailed in [83], and the approximation of spectral
information with error bounds is discussed in [39].

agents, etc.) exhibit similar behavior over some time interval.
This behavior remains relatively consistent despite potential per-
turbations or the chaotic nature of the system. In essence, within
a coherent structure, the dynamics of elements are closely linked
and evolve coherently.

123

https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition


M. J. Colbrook et al.

1.3 Data-driven setup

We present data-driven methods that utilize a dataset of
“snapshot” pairs alongside a dictionary of observables.
While numerous approaches for selecting a dictionary
exist in the literature [17,32,80–82,84,85], this topic
is not the primary focus of our current study.4 Follow-
ing the methodology outlined in [79], we consider our
given data to consist of pairs of snapshots, which are

S =
{
(xxx (m), yyy(m))

}M

m=1
, yyy(m) = F(xxx (m), τm). (2)

Unlike in deterministic systems, for stochastic systems,
it can be beneficial for S to include the same initial
condition xxx (m) multiple times, as each execution of the
dynamics yields an independent realization of a trajec-
tory. We say that S is M1-batched if it can be split into
M1 subsets such that

S = ∪M1
j=1S j ,

S j = {(xxx ( j), yyy( j,k)) : k = 1, . . . , M2, yyy
( j,k) = F(xxx ( j), τ j,k)}.

In other words, for each xxx ( j), we have multiple realiza-
tions of Fτ (xxx ( j)). Using batched data, we can approxi-
mate higher-order stochasticKoopmanoperators repre-
senting the moments of the trajectories. An unbatched
dataset can be adapted to approximate a batched dataset
by categorizing or “binning” the xxx points in the snap-
shot data. In practical scenarios, one may encounter
a combination of both batched and unbatched data.
Depending on the type of snapshot data used, Galerkin
approximations of stochastic Koopman operators can
be achieved in the limit of large datasets (as discussed
in Sect. 2.2).

2 Mathematical preliminaries

This section discusses several foundational concepts
upon which our paper builds.

4 ResDMD has been shown to effectively verify learned dictio-
naries in deterministic dynamical systems [20].

2.1 The stochastic Koopman operator

Let g : � → C be a function, commonly called
an observable. Given an initial condition xxx0 ∈ �,
measuring the initial state of the dynamical system
through g yields the value g(xxx0). One time-step later,
the measurement g(xxx1) = g(Fτ (xxx0)) = (g ◦ Fτ )(xxx0)
is obtained, where τ is a realization from a probability
distribution supported on �s , i.e., τ ∼ ρ. The “pull-
back” operator, given g, outputs the “look ahead” mea-
surement function g ◦ Fτ . This function is a random
variable, and the stochastic Koopman operator is its
expectation [56]:

K(1)[g] = Eτ [g ◦ Fτ ] =
∫

�s

g ◦ Fτ dρ(τ). (3)

Here, Eτ represents the expectation with respect to the
distribution ρ. The subscript (1) indicates this is the
first moment. Throughout the paper, we assume that
the domain of the operatorK(1) is L2(�,ω), where ω

is a positive measure on�. This space is equipped with
an inner product and norm, denoted by 〈·, ·〉 and ‖ · ‖,
respectively. We do not assume thatK(1) is compact or
self-adjoint.

We now introduce the batched Koopman operator,
designed to capture the variance and other higher-order
moments in the trajectories of dynamical systems. For
r ∈ N and g : �r → C, we define

K(r)[g] = Eτ [g(Fτ , . . . , Fτ )] , (4)

where the same realization τ ∼ ρ is used for the r argu-
ments of g. Notably, both the classical and the batched
versions of the Koopman operators adhere to the semi-
group property, as we will demonstrate.

Proposition 1 For any r, n ∈ N,

K n
(r)[g] = Eτ1,...,τn

[
g(Fτn ◦ · · · ◦ Fτ1 , . . . , Fτn ◦ · · · ◦ Fτ1 )

]
.

Proof For r = 1, see [24]. For r > 1, note thatK(r) is
a first-order Koopman operator of a dynamical system
on �r . �

This proposition indicates that n applications of the
stochastic Koopman operator yield the expected value
of an observable after n time steps. It is crucial to under-
stand that K(1) only calculates the expected value. To
gain insights into the variability around thismean and to
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understand the projection error inherent in DMDmeth-
ods, we need to consider higher-order statistics, such
as the variance. These aspects are further explored in
Sect. 3.

2.2 Extended dynamic mode decomposition

EDMD is a widely-used method for constructing
a finite-dimensional approximation of the Koopman
operatorK(1), utilizing the snapshot data S in (2). This
approach involves projecting the infinite-dimensional
Koopman operator onto a finite-dimensional matrix
and approximating its entries. For notational simplic-
ity, we will omit the subscript (1) when referring to the
Koopman operator in this section. Originally, EDMD
assumes that the initial conditions are independently
drawn from a distributionω [84]. However, in our adap-
tation,we applyEDMDto anygivenS, treating thexxx (m)

as quadrature nodes for integration with respect to ω.
This flexibility allows us to use different quadrature
weights depending on the specific scenario.

One first chooses a dictionary {ψ1, . . . , ψN } in the
space L2(�,ω). This dictionary consists of a list of
observables that form a finite-dimensional subspace
VN = span{ψ1, . . . , ψN }. EDMD computes a matrix
K ∈ C

N×N that approximates the action ofK within
this subspace. Specifically, the goal is to achieve K =
PVNK P∗

VN
, where PVN : L2(�,ω) → VN is the

orthogonal projection onto VN . In the Galerkin frame-
work, this equates to:

〈K [ψ j ], ψi 〉 =
N∑

s=1

Ks, j 〈ψs, ψi 〉, 1 ≤ i, j ≤ N .

A matrix K satisfying this relationship is given by

K = G†A, Gi, j = 〈ψ j , ψi 〉, Ai, j = 〈K [ψ j ], ψi 〉.

Commonly, we stack the � and define the feature map

�(xxx) = [
ψ1(xxx) · · · ψN (xxx)

]� ∈ C
1×N .

Then, for any g ∈ VN ,weuse the shorthand g = �ggg for
g(xxx) = ∑N

j=1 g jψ j (xxx). With the previously defined
K , the approximation becomes

K [g](xxx) ≈
N∑
i=1

⎛
⎝

N∑
j=1

Ki, j g j

⎞
⎠ψi (xxx) = �(xxx)Kggg.

The accuracy of this approximation depends on how
well VN can approximate K g.

The entries of the matrices G and A are inner prod-
ucts andmust be approximated using the trajectory data
S. For quadrature weights {wm}, we define G̃ as the
numerical approximation of G:

G̃i, j =
M∑

m=1

wmψ j (xxx
(m))ψi (xxx (m)) ≈ 〈ψ j , ψi 〉 = Gi, j .

(5)

The weights {wm} reflect the significance assigned to
each snapshot in the dataset, influenced by factors such
as data distribution or reliability, which wewill explore
further. Similarly, for A, we define

Ãi, j =
M∑

m=1

wmψ j (yyy
(m))ψi (xxx (m)) ≈ 〈K [ψ j ] , ψi 〉 = Ai, j .

(6)

Let �X , �Y ∈ C
M×N collect the dictionary’s evalua-

tions of these samples:

�X =
⎛
⎜⎝

��(xxx (1))
...

��(xxx (M))

⎞
⎟⎠ , �Y =

⎛
⎜⎝

��(yyy(1))
...

��(yyy(M))

⎞
⎟⎠ , (7)

and let W = diag(w1, . . . , wM ). Then we can suc-
cinctly write

G̃ = �∗
XW�X , Ã = �∗

XW�Y . (8)

Throughout this paper, the symbol X̃ denotes an esti-
mation of the quantity X .

Various samplingmethods converge in the large data
limit, meaning that

lim
M→∞ G̃ = G, lim

M→∞ Ã = A. (9)
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We detail three convergent sampling methods:

(i) Random sampling: In the initial definition of
EDMD,ω is a probabilitymeasure and {xxx (m)}Mm=1
are independently drawn according to ω with
each quadrature weight set to wm = 1/M . The
strong law of large numbers guarantees that (9)
holds with probability one [38, Section 3.4] [41,
Section 4]. Typically, convergence occurs at a
Monte Carlo rate of O(M−1/2) [13].

(ii) Ergodic sampling: If the stochastic dynamical
system is ergodic, the Birkhoff–Khinchin theo-
rem [33, Theorem II.8.1, Corollary 3] supports
convergence using data from a single trajectory
for almost every initial point. Specifically,weuse:

xxx (m+1) = F(xxx (m), τm), wm = 1/M.

This sampling method’s analysis for stochastic
Koopman operators is detailed in [82]. An advan-
tage is that knowledge of ω is not required. How-
ever, the convergence rate depends on the specific
problem [36]. Note that in an ergodic system, the
stochastic Koopman operator is an isometry on
L1(�,ω) but typically not on L2(�,ω).

(iii) High-order quadrature:When the dictionary and
F are sufficiently regular, and the dimension d is
not too large, and if we can choose the {xxx (m)}Mm=1,
employing a high-order quadrature rule is advan-
tageous. For deterministic systems, this approach
can significantly increase convergence rates in (9)
[23]. In stochastic systems, high-order quadra-
ture applies primarily to batched snapshot data.
We may select {xxx ( j)}M1

j=1 based on an M1-point

quadrature rule with associated weights {w j }M1
j=1.

Convergence is achieved as M2 → ∞, effec-
tively applying Monte Carlo integration of the
random variable τ over �s for each fixed xxx ( j).

The convergence described in (9) implies that the
eigenvalues obtained through EDMD converge to the
spectrum of PVNK P∗

VN
as M → ∞. Therefore,

approximating the spectrumofK , denoted Sp(K ), by
the eigenvalues of K̃ is closely related to the so-called
finite sectionmethod [7].However, just as the finite sec-
tion method can be prone to spectral pollution, which
refers to the appearance of spurious modes that accu-
mulate even as the size of the dictionary increases, this
is also a concern for EDMD [84]. Consequently, hav-
ing a method to validate the accuracy of the proposed
eigenvalue-eigenvector pairs becomes crucial, which is
one of the key functions of ResDMD.

2.3 Residual dynamic mode decomposition
(ResDMD)

Accurately estimating the spectrum of K is criti-
cal for analyzing dynamical systems. For determin-
istic systems, ResDMD achieves this goal, provid-
ing robust spectral estimates [20,23]. Unlike classi-
cal DMD methods, ResDMD introduces an additional
matrix specifically designed to approximate K ∗K .
This enhancement not only offers rigorous error guar-
antees for the spectral approximation but also enables a
posteriori assessment of the reliability of the computed
spectra and Koopman modes. This capability is par-
ticularly valuable in addressing issues such as spectral
pollution, which are common challenges in DMD-type
methods.

ResDMD is built around the approximation of resid-
uals associated withK , providing an error bound. For
any given candidate eigenvalue-eigenvector pair (λ, g),
with λ ∈ C and g = � ggg ∈ VN , one can consider the
relative squared residual as follows:

∫
�

|K [g](xxx) − λg(xxx)|2 dω(xxx)∫
�

|g(xxx)|2 dω(xxx)

= 〈K [g],K [g]〉 − λ〈g,K [g]〉 − λ〈K [g], g〉 + |λ|2〈g, g〉
〈g, g〉 .

(10)

This pair (λ, g) can be computed either from K or other
methods. A small residual means that λ can be approx-
imately considered as an eigenvalue of K , with g as
the corresponding eigenfunction. The relative residual
in (10) serves as a measure of the coherency of observ-
ables, indicating that observableswith smaller residuals
play a significant role in the dynamics of the system.
If the relative (non-squared) residual is bounded by ε,
then K ng = λng + O(nε). In other words, λ charac-
terizes the coherent oscillation and the decay/growth in
the observable g with time.

The residual is closely related to the notion of pseu-
dospectra [78].

Definition 1 For any λ ∈ C, define:

σinf (λ) = inf
{
‖K [g] − λg‖ : g∈L2(�, ω), ‖g‖ = 1

}
.
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For ε > 0, the approximate point5 ε-pseudospectrum
is

Spε(K ) = Cl ({λ ∈ C : σinf(λ) < ε}) ,

where Cl denotes closure of a set. Furthermore, we say
that g is a ε-pseudoeigenfunction if there exists λ ∈ C

such that the relative squared residual in (10) is bounded
by ε2.

To compute (10), notice that three of the four inner
products appearing in the numerator are:

〈K [g], g〉 = ggg∗Aggg, 〈g,K [g]〉 = ggg∗A∗ggg, 〈g, g〉 = ggg∗Gggg,

(11)

with A,G numerically approximated by EDMD (8).
Hence, the success of the computation relies on find-
ing a numerical approximation to 〈K [g],K [g]〉. To
that end, we deploy the same quadrature rule discussed
in (5)-(6) and set

L = [Li, j ] , Li, j = 〈K [ψ j ],K [ψi ]〉, L̃ = �∗
Y W�Y ,

(12)

then 〈K [g],K [g]〉 ≈ ggg∗�∗
YW�Yggg = ggg∗ L̃ggg. We

obtain a numerical approximation of (10) as

[res(λ, g)]2 =
ggg∗

[
L̃ − λ Ã∗ − λ Ã + |λ|2G̃

]
ggg

ggg∗G̃ggg
.

(13)

The matrix L introduced by ResDMD formally corre-
sponds to an approximation of K ∗K . The computa-
tion utilizes the same dataset as that employed for G̃
and Ã and is computationally efficient to construct. The
work presented in [23] demonstrates that the approxi-
mation outlined in (13) can be effectively used in var-
ious algorithms for rigorously computing the spectra
and pseudospectra of K for deterministic systems.
However, these results from [23] are not directly appli-
cable to stochastic systems.

5 In the presence of residual spectrum, the full pseudospectrum
requires the injection modulus of complex shifts of the adjoint
of K . We have refrained from this discussion for the sake of
simplicity.

3 Variance from the Koopman perspective

When analyzing a system with inherent stochasticity,
basing conclusions only on themean trajectory can lead
to misleading interpretations, as illustrated in Fig. 1.
To achieve a more accurate statistical understanding of
such systems, it is crucial to quantify how much and in
what ways the trajectory deviates from this mean. This
need for a more comprehensive analysis underpins our
exploration into quantifying the variance.

3.1 Variance via Koopman operators

For any observable g ∈ L2(�,ω) and xxx ∈ �, g(Fτ (xxx))
is a random variable. One can define its moments:

Eτ [(g(Fτ (xxx)))
r ] =

∫

�s

[g(Fτ (xxx))]r dρ(τ), r ∈ N.

Recalling the definitions in (4), this becomes:

Eτ [(g(Fτ (xxx)))
r ] = K(r)[g ⊗ · · · ⊗ g](xxx, . . . , xxx).

This means that the r -th order Koopman operator
directly computes the moments of the trajectory. In
particular, the combination of the first and the second
moment provides the following variance term:

Varτ [g(Fτ (xxx))] = Eτ

[|g(Fτ (xxx))|2
] − |Eτ [g(Fτ (xxx))]|2

= K(2)[g ⊗ g](xxx, xxx) − |K(1)[g](xxx)|2 .

We integrate the local definition of variance over the
entire domain to define:

Varτ [g(Fτ )] =
∫

�

Varτ [g(Fτ (xxx)] dω(xxx). (14)

The following proposition provides aKoopman ana-
log of decomposing an integrated mean squared error
(IMSE).

Proposition 2 Let g, h ∈ L2(�,ω), then

Eτ

[
‖g ◦ Fτ + h‖2

]

= ‖K(1)[g] + h‖2 +
∫

�

Varτ [(g ◦ Fτ ) (xxx)] dω(xxx).

(15)
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Proof We expand |g(Fτ (xxx))+h(xxx)|2 for a fixed xxx ∈ �

and take expectations to find that

Eτ

[
|g(Fτ (xxx)) + h(xxx)|2

]

= Eτ

[
|g(Fτ (xxx))|2

]
+K(1)[g](xxx)h(xxx)

+h(xxx)K(1)[g](xxx)+|h(xxx)|2

= |K(1)[g](xxx) + h(xxx)|2 + Eτ

[
|g(Fτ (xxx))|2

]

− |Eτ [g(Fτ (xxx))]|2 .

The result now follows by integrating over xxx with
respect to the measure ω. �

Similarly, for any two functions g, h ∈ L2(�,ω),
we define the covariance:

C (g, h) =
∫

�

Eτ [(g ◦ Fτ −K(1)[g])(h ◦ Fτ −K(1)[h])] dω(xxx)

(16)

and obtain the following similar result using covari-
ance:
∫

�

Eτ [g(Fτ (xxx))h(Fτ (xxx))] dω(xxx)

= 〈K [g],K [h]〉 + C (g, h) .

Proposition 2 is analogous to the decomposition of an
IMSE and is practically useful. Suppose we use an
observation h to approximate −g ◦ Fτ , in an attempt
to minimize ‖g ◦ Fτ + h‖2. An unbiased estimator
is −K(1)[g]; however, this approximation will not
be perfect due to the variance term in (15). There-
fore, there is a variance-residual tradeoff for stochastic
Koopman operators. Depending on the type of trajec-
tory data collected, one can approximate the quantities
Eτ

[‖g ◦ Fτ + h‖2] and ‖K(1)[g] + h‖2 in (15) and
hence, estimate the third variance term.

Example 1 [Circle map] Let � = [0, 1]per be the peri-
odic interval and consider

F(xxx, τ ) = xxx + c + f (xxx) + τ mod(1),

where �s = [0, 1]per, ρ is absolutely continuous, and
c is a constant. Let ψ j (xxx) = e2π i jxxx for j ∈ Z. Then

K(1)[ψ j ](xxx) = ψ j (xxx)e
2π i j f (xxx)e2π i jc

∫

�s

e2π i jτ dρ(τ).

(17)

Define the constants

α j = e2π i jc
∫

�s

e2π i jτ dρ(τ).

Let D be the operator that multiplies each ψ j by α j .
Then K(1) = T D, where T is the Koopman oper-
ator corresponding to xxx �→ xxx + f (xxx). Since ρ is
absolutely continuous, the Riemann–Lebesgue lemma
implies that lim| j |→∞ α j = 0 and hence D is a com-
pact operator. It follows that if T is bounded, thenK(1)

is a compact operator. A straightforward computation
using (14) shows that

∫

�

Varτ [ψ j (Fτ (xxx))] dω(xxx) = 1 − |α j |2. (18)

For example, if f = 0, K(1) has pure point spectrum
with eigenfunctions ψ j . However, as | j | → ∞, the
variance converges to one and ψ j become less statis-
tically coherent. This example is explored further in
Sect. 5.1. �

Another immediate application of the variance term
is in providing an estimated bound for the Koopman
operator prediction of trajectories.

Proposition 3 We have

P
(∣∣g ◦ Fτn ◦ · · · ◦ Fτ1(xxx) − K n[g](xxx)∣∣ ≥ a

)

≤ 1

a2
Varτ1,...,τn

[
g ◦ Fτn ◦ · · · ◦ Fτ1(xxx)

]

= 1

a2

(
K n

(2)[g ⊗ g](xxx, xxx) − |K n
(1)[g](xxx)|2

)
(19)

for any a > 0.

Proof the result follows from combining Proposition 1
and (14) with Chernoff’s bound. �

The bound can be combined with concentration
bounds for � K̃ n − K n (see Sect. 4.2).

3.2 ResDMD in stochastic systems

In the deterministic setting, ResDMD provides an effi-
cient way to evaluate the accuracy of candidate eigen-
pairs through the computation of an additional matrix
L in (12). However, what happens in the stochastic set-
ting?
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Suppose that (λ, g) is a candidate eigenpair ofK(1)

with g ∈ VN . Resembling (10), we consider

Eτ

[‖g ◦ Fτ − λg‖2]
‖g‖2 . (20)

We can write the numerator in terms of A, G, and L ,
i.e.,

Eτ

[
‖g ◦ Fτ − λg‖2

]
= ggg∗(L − λA∗ − λA + |λ|2G)ggg

= lim
M→∞ggg∗(L̃ − λ Ã∗ − λ Ã + |λ|2G̃)ggg.

Hence, we define

[resvar(λ, g)]2 =
ggg∗

[
L̃ − λ Ã∗ − λ Ã + |λ|2G̃

]
ggg

ggg∗G̃ggg
,

(21)

which furnishes an approximation of (20). Setting h =
−λg in Proposition 2, we see that

Eτ

[
‖g ◦ Fτ − λg‖2

]

= Eτ

[∫

�

|g(Fτ (xxx)) − λg(xxx)|2 dω(xxx)

]

= ‖K(1)[g] − λg‖2︸ ︷︷ ︸
squared residual

+
∫

�

Varτ [g(Fτ (xxx))] dω(xxx)
︸ ︷︷ ︸

integrated variance of g◦Fτ

.

(22)

Thus, resvar(λ, g) approximates the sum of the squared
residual ‖K [g] − λg‖2 and the integrated variance of
g ◦ Fτ . For stochastic systems, the integrated variance
of g ◦ Fτ is usually nonzero so that

lim
M→∞ resvar(λ, g) > ‖K(1)[g] − λg‖‖g‖. (23)

Based on this notion and drawing an analogy with
Definition 1, we make the following definition.

Definition 2 For any λ ∈ C, define:

σ var
inf (λ) = inf

{√
Eτ

[‖g ◦ Fτ −λg‖2] : g∈L2(�,ω), ‖g‖ = 1

}
.

For ε > 0,wedefine thevariance-ε-pseudospectrum
as

Spvarε (K(1)) = Cl
({

λ ∈ C : σ var
inf (λ) < ε

})
,

where Cl denotes the closure of a set. Furthermore, we
say that g is a variance-ε-pseudoeigenfunction if there

exists λ ∈ C such that
√
Eτ

[‖g ◦ Fτ−λg‖2] ≤ ε.

Superficially, this definition is a straightforward
extension of Definition 1. However, there are some
essential differences. Both the conceptual understand-
ing and the computation methods need to be modified.

First, the relation (22) shows that Spvarε (K(1)) takes
into account uncertainty through the variance term.
Hence, the variance-pseudospectrum provides a notion
of statistical coherency. Furthermore, comparing Def-
initions 1 and 2, we have

Spvarε (K(1)) ⊂ Spε(K(1)).

If the dynamical system is deterministic, then Spvarε

(K(1)) is equal to the approximate point ε-
pseudospectrum. However, in the presence of variance,
they are no longer equal.

Second, the relation (22) gives a computational sur-
prise. Following the same derivation between (10)–
(13), with L , A, and G accordingly adjusted through
replacing K by K(1) in (11)–(12), we can still com-
pute the variance-residual term. However, the original
residual itself, res(λ, g), needs a modification. Recall-
ing (10), in the same spirit of EDMD, if g ∈ VN , we
write

‖K(1)[g] − λg‖2
= 〈K(1)[g] ,K(1)[g]〉 − λ〈g,K(1)[g]〉

− λ̄〈K(1)[g], g〉 + |λ|2〈g, g〉
= ggg∗(H − λA∗ − λA + |λ|2G)ggg,

where H is a newly introduced matrix with

Hi, j = 〈K(1)[ψ j ],K(1)[ψi ]〉. (24)

We employ the quadrature rule for the xxx-domain to
approximate this new term. If S is batched with M2 =
2, then we can form the matrix
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H̃i, j =
M1∑
l=1

wlψ j (yyy
(l,1))ψi (yyy(l,2)).

Since τl,1 and τl,2 are independent, we have

lim
M1→∞ H̃i, j = Hi, j = 〈K [ψ j ],K [ψi ]〉. (25)

We stress that K(1) is applied separately to ψi and ψ j

and thus τl,1 and τl,2 need to be independent realiza-
tions.

The convergence in (25) allows us to compute the
spectral properties of K(1) directly (see Sect. 3.3). In
particular, instead of (13), we now have

[res(λ, g)]2 =
ggg∗

[
H̃ − λ Ã∗ − λ Ã + |λ|2G̃

]
ggg

ggg∗G̃ggg
(26)

and the approximate decomposition

∫

�
Varτ [g(Fτ (xxx))] dω(xxx) = ggg∗ (L − H)ggg

≈ ggg∗ (L̃−H̃
)
ggg = ‖g‖2

(
[resvar(λ, g)]2−[res(λ, g)]2

)
,

(27)

which becomes exact in the large data limit.

3.3 Algorithms

In the derivations above, we noticed that one-batched
data permits computation only of resvar(λ, g), while
two-batched data also permits the computation of
res(λ, g). Algorithms 1 and 2 approximate the rel-
ative residuals of EDMD eigenpairs in the scenario
of unbatched and batched data, respectively. In Algo-
rithm 2, we have taken an average when computing
Ã and L̃ to reduce quadrature error, and an average
when computing H̃ to ensure that it is self-adjoint
(and positive semi-definite). Algorithm 3 approximates
the pseudospectrum and corresponding pseudoeigen-
functions, given batched snapshot data. Algorithm 4
approximates the variance-pseudospectrum and corre-
sponding variance-pseudoeigenfunctions, and does not
need batched data. Note that the computational com-
plexity of all of these algorithms scales the same as
those for ResDMD, which is discussed in [20,23]. In
particular,Algorithms1 and2 scale the sameasEDMD.

Algorithm 1 : Eigenpairs and residuals.
Input: Snapshot data {xxx (m)}Mm=1, {yyy(m)}Mm=1 (yyy(m) =
F(xxx (m), τm)), quadrature weights {wm}Mm=1, and dictionary
of observables {ψ j }Nj=1.
1: Compute

G̃ = �∗
XW�X , Ã = �∗

XW�Y , L̃ = �∗
Y W�Y ,

where �X and �Y are given in (7).
2: Solve Ãggg = λG̃ggg for eigenpairs {(λ j , g( j) = �ggg j )}.
3: Compute resvar(λ j , g( j)) for all j (see (21)).
Output: Eigenpairs {(λ j ,ggg j )} and variance residuals
{resvar(λ j , g( j))}.

Algorithm 2 : Eigenpairs and residuals (batched
data).
Input: Snapshot data {xxx (m)}Mm=1, {yyy(m,1), yyy(m,2)}Mm=1 (batched),
quadratureweights {wm}Mm=1, dictionary of observables {ψ j }Nj=1.
1: Compute

G̃ = �∗
XW�X ,

Ã =
[
�∗

XW�
(1)
Y + �∗

XW�
(2)
Y

]
/2,

L̃ =
[
�

(1)
Y

∗
W�

(1)
Y + �

(2)
Y

∗
W�

(2)
Y

]
/2,

H̃ =
[
�

(1)
Y

∗
W�

(2)
Y + �

(2)
Y

∗
W�

(1)
Y

]
/2,

where �X and �
(i)
Y are given in (7) and the superscript for

�Y corresponds to each batch of snapshot data.
2: Solve Ãggg = λG̃ggg for eigenpairs {(λ j , g( j) = �ggg j )}.
3: Compute resvar(λ j , g( j)) and res(λ j , g( j)) for all j (see (21)

and (26)).
Output: Eigenpairs {(λ j ,ggg j )} and residuals
{resvar(λ j , g( j)), res(λ j , g( j))}.

4 Theoretical guarantees

We now prove the correctness of the algorithms men-
tioned above. Specifically, through a series of theorems,
we demonstrate that the computations of Ã, G̃, L̃ , and
H̃ are accurate and that the spectral estimates can be
trusted. To achieve this, we divide the section into three
subsections, each focusing on demonstrating the accu-
racy of the spectrum, the predictive power, and the
matrices, respectively. Theuniversal assumptionsmade
in this section are as follows:

– K(1) is bounded.
– {ψ j }Nj=1 are linearly independent for any finite N .
– VN ⊂ VN+1 and the union, ∪NVN , is dense in

L2(�,ω).

The algorithms and proofs can be readily adapted for an
unbounded K(1). The latter two assumptions can also
be relaxed with minor modifications.
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Algorithm 3 : Pseudospectra (batched data).
Input: Snapshot data {xxx (m)}Mm=1, {yyy(m,1), yyy(m,2)}Mm=1 (batched),
quadratureweights {wm}Mm=1, dictionary of observables {ψ j }Nj=1,
an accuracy goal ε > 0, and a grid z1, . . . , zk ∈ C (e.g., see (28)).
1: Compute

G̃ = �∗
XW�X ,

Ã =
[
�∗

XW�
(1)
Y + �∗

XW�
(2)
Y

]
/2,

L̃ =
[
�

(1)
Y

∗
W�

(1)
Y + �

(2)
Y

∗
W�

(2)
Y

]
/2,

H̃ =
[
�

(1)
Y

∗
W�

(2)
Y + �

(2)
Y

∗
W�

(1)
Y

]
/2,

where �X and �
(i)
Y are given in (7) and the superscript for

�Y corresponds to each batch of snapshot data.
2: For each z j , compute r j = minggg∈CN res(z j , �ggg) (see (26))

and the corresponding singular vectors ggg j . This step is a gen-
eralized SVD problem.

Output: {z j : r j < ε}, an estimate of Spε(K(1)), and pseu-
doeigenfunctions {ggg j : r j < ε}.

Algorithm 4 : Variance-pseudospectra.
Input: Snapshot data {xxx (m)}Mm=1, {yyy(m)}Mm=1 (yyy(m) =
F(xxx (m), τm)), quadrature weights {wm}Mm=1, dictionary of
observables {ψ j }Nj=1, an accuracy goal ε > 0, and a grid
z1, . . . , zk ∈ C (e.g., see (28)).
1: Compute

G̃ = �∗
XW�X ,

Ã = �∗
XW�Y ,

L̃ = �∗
Y W�Y ,

where �X and �Y are given in (7).
2: For each z j , compute r j = minggg∈CN resvar(z j , �ggg) (see (21))

and the corresponding singular vectors ggg j . This step is a gen-
eralized SVD problem.

Output: {z j : r j < ε}, an estimate of Spvarε (K(1)), and variance-
pseudoeigenfunctions {ggg j : r j < ε}.

4.1 Accuracy in finding spectral quantities

In this subsection, we prove the convergence of our
algorithms.We have already discussed the convergence
of residuals in Algorithms 1 and 2, under the assump-
tion of convergence of the finite matrices G̃, Ã, L̃ , and
H̃ in the large data limit. Hence, we focus on Algo-
rithm 4. We first define the functions

fM,N (λ) = min
ggg∈CN

resvar(λ,�ggg),

and note that r j = fM,N (z j ) in Algorithm 4. Our first
lemma describes the limit of these functions as M →
∞ and N → ∞.

Lemma 1 Suppose that

lim
M→∞ G̃ = G, lim

M→∞ Ã = A, lim
M→∞ L̃ = L ,

then fN (λ) = limM→∞ fM,N (λ) exists. Moreover, fN
is a nonincreasing function of N and converges to σ var

inf
from above and uniformly on compact subsets of C as
a function of the spectral parameter λ.

Proof The limit fN (λ) = limM→∞ fM,N (λ) follows
trivially from the convergence of matrices. Moreover,
we have

fN (λ) = min
ggg∈CN

√
ggg∗(L − λA∗ − λA + |λ|2G)ggg

ggg∗Gggg

= inf

{√
Eτ

[‖g ◦ Fτ − λg‖2] : g ∈ VN , ‖g‖ = 1

}
.

Since VN ⊂ VN+1, fN (λ) is nonincreasing in N . By
definition, we also have

fN (λ) ≥ σ var
inf (λ).

Let δ > 0 and choose g ∈ L2(�,ω) such that ‖g‖ = 1
and√
Eτ

[‖g ◦ Fτ − λg‖2] ≤ σ var
inf (λ) + δ.

Since ∪NVN is dense in L2(�,ω), there exists some n
and gn ∈ Vn such that ‖gn‖ = 1 and

√
Eτ

[‖gn ◦ Fτ − λgn‖2
] ≤

√
Eτ

[‖g ◦ Fτ − λg‖2] + δ.

It follows that fn(λ) ≤ σ var
inf (λ) + 2δ. Since this holds

for any δ > 0, limN→∞ fN (λ) = σ var
inf (λ). Since

σ var
inf (λ) is continuous in λ, fN converges uniformly

down to σ var
inf on compact subsets of C by Dini’s theo-

rem. �
Let {Grid(N ) = {z1,N , z2,N , . . . , zk(N ),N }} be a

sequence of grids, each finite, such that for any λ ∈ C,

lim
N→∞ dist(λ,Grid(N )) = 0.

For example, we could take

Grid(N ) = 1

N
[Z + iZ] ∩ {z ∈ C : |z| ≤ N }. (28)

In practice, one considers a grid of points over the
region of interest in the complex plane. Lemma 1 tells
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us that to study Algorithm 4 in the large data limit, we
must analyze

�ε
N (K(1)) = {λ ∈ Grid(N ) : fN (λ) < ε} .

To make the convergence of Algorithm 4 precise, we
use the Attouch–Wets metric defined by [5]:

dAW(C1,C2) =
∞∑
n=1

2−n min
{
1, sup

|x |≤n
|dist(x,C1) − dist(x,C2)|

}
,

where C1,C2 are closed nonempty subsets of C. This
metric corresponds to local uniform converge on com-
pact subsets of C. For any closed nonempty sets C and
Cn , dAW(Cn,C) → 0 if and only if for any δ > 0
and Bm(0) (closed ball of radius m ∈ N about 0),
there exists N such that if n > N then Cn ∩ Bm(0) ⊂
C + Bδ(0) and C ∩ Bm(0) ⊂ Cn + Bδ(0). The follow-
ing theorem contains our convergence result.

Theorem 1 (Convergence to variance-
pseudospectrum) Let ε > 0. Then, �ε

N (K(1)) ⊂
Spvarε (K(1)) and

lim
N→∞ dAW

(
�ε
N (K(1)),Sp

var
ε (K(1))

) = 0.

Proof Lemma 1 shows that �ε
N (K(1)) ⊂ Spvarε (K(1)).

To prove convergence, we use the characterization of
the Attouch–Wets topology. Suppose that m is large
such that Bm(0)∩Spvarε (K(1)) �= ∅. Since�ε

N (K(1)) ⊂
Spvarε (K(1)), we clearly have �ε

N (K(1)) ∩ Bm(0) ⊂
Spvarε (K(1)). Hence, we must show that given δ > 0,
there exists n0 such that if N > n0 then Spvarε (K(1)) ∩
Bm(0) ⊂ �ε

N (K(1)) + Bδ(0). Suppose for a contradic-
tion that this statement is false. Then, there exists δ > 0,
λn j ∈ Spvarε (K(1)) ∩ Bm(0), and n j → ∞ such that

dist(λn j , �
ε
n j

(K(1))) ≥ δ.

Without loss of generality, we can assume that λn j →
λ ∈ Spvarε (K(1)) ∩ Bm(0). There exists some z with
σ var
inf (z) < ε and |λ − z| ≤ δ/2. Let zn j ∈ Grid(n j )

such that |z − zn j | ≤ dist(z,Grid(n j )) + n j
−1. Since

σ var
inf is continuous and fN converges locally uniformly

to σ var
inf , we must have fn j (zn j ) < ε for large n j so

that zn j ∈ �ε
n j

(K(1)). But
∣∣zn j − λ

∣∣ ≤ |z − λ| +∣∣zn j − z
∣∣ ≤ δ/2 + |z − zn j |, which is smaller than

δ for large n j , and we reach the desired contradiction.
�

4.2 Error bounds for iterations

We now aim to bound the difference between K̃ n and
K n , a step crucial for measuring the accuracy of our

approximation of the mean trajectories in L2(�,ω).
This effort, in conjunctionwith theChernoff-like bound
presented in (19), enables us to compute the statistical
properties of the trajectories and their forecasts. Our
approach to establishing these bounds is twofold. First,
we consider the difference between K̃ n andK n , taking
into account both the estimation errors and the errors
intrinsic to the subspace. Subsequently, we establish
concentration bounds for the estimation errors of G̃,
Ã, and L̃ .

Theorem 2 (Error bound for forecasts) Define the
quantities

IG = G
1
2 G̃− 1

2 ,

�G = ‖IG‖‖(I − I−1
G )‖ + ‖(I − IG)‖,

�A = ‖K ‖(1 + ‖IG‖)‖IG − I‖ + ‖IG‖2‖G− 1
2 (A − Ã)G− 1

2 ‖.

Let g = ∑N
j=1 ggg jψ j ∈ VN and suppose that

‖K n
(1)g − P∗

VN
(PVNK(1)P

∗
VN

)ng‖ ≤ δn(g)‖g‖.
Then

‖� K̃ nggg − K n
(1)g‖ ≤ Cn‖g‖,

where

Cn =
[‖K ‖n − �n

A

‖K ‖ − �A
�A(�G + 1) + ‖K ‖n�G + δn(g)

]
.

Proof We introduce the two matrices

T = G−1/2AG−1/2, T̃ = G̃−1/2 ÃG̃−1/2.

Note that

‖T ‖ = sup
x∈CN

‖TG1/2x‖
‖G1/2x‖ = sup

x∈CN

‖G1/2Kx‖
‖G1/2x‖

= ‖PVNK P∗
VN

‖ ≤ ‖K ‖.

We can re-write T̃ as

T̃ = I ∗
GG

−1/2 ÃG−1/2 IG

= I ∗
GT IG + I ∗

GG
−1/2( Ã − A)G−1/2 IG

= T + (IG − I )∗T IG + T (IG − I )

+ I ∗
GG

−1/2( Ã − A)G−1/2 IG .

It follows that

‖T − T̃ ‖ ≤ ‖K ‖(1 + ‖IG‖)‖IG − I‖
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+ ‖IG‖2‖G−1/2(A − Ã)G−1/2‖
= �A.

We have that

T n − T̃ n = T (T n−1 − T̃ n−1) + (T − T̃ )T̃ n−1.

A simple proof by induction now shows that

‖T n − T̃ n‖ ≤ ‖T − T̃ ‖
n−1∑
j=0

‖T ‖ j‖T̃ ‖n−1− j

≤ �A

n−1∑
j=0

‖K ‖ j (‖K ‖ + �A)n−1− j

= �A
‖K ‖n − �n

A

‖K ‖ − �A
.

We wish to bound the quantity

‖�Knggg − � K̃ nggg‖ = ‖T nG1/2ggg − IG T̃
nG̃1/2ggg‖

≤ ‖T n − T̃ n‖‖g‖ + ‖T̃ nG1/2ggg − IG T̃
nG̃1/2ggg‖.

We can express the final term on the right-hand side as

T̃ nG1/2ggg − IG T̃
nG̃1/2ggg = IG T̃

n(I − I−1
G )G1/2ggg

+ (I − IG)T̃ nG1/2ggg.

It follows that

‖T̃ nG1/2ggg − IG T̃
nG̃1/2ggg‖ ≤ ‖T̃ n‖‖G1/2ggg‖�G

≤
(
‖K ‖n + ‖T n − T̃ n‖

)
�G‖g‖

and hence that

‖�Knggg−� K̃ nggg‖≤
[
‖T n−T̃ n‖(�G+1)+‖K ‖n�G

]
‖g‖

≤
[‖K ‖n − �n

A
‖K ‖ − �A

�A(�G + 1) + ‖K ‖n�G

]
‖g‖.

The theorem now follows from the triangle inequality
�

This theorem explicitly tells us how much to trust
the prediction using the computed Koopman matrix,
compared with the true Koopman operator. The quan-
tities �G and �A represent errors due to estimation or
quadrature. They are both expected to be small. The

quantity δn(g) is an intrinsic invariant subspace error
that depends on the dictionary and observable g. To
approximate δn(g), note that

K n[g]−�Knggg=
n∑
j=1

K n− j [K [�K j−1ggg]−�K jggg]

and hence

‖K n[g]−�Knggg‖≤
n∑
j=1

‖K ‖n− j‖K [�K j−1ggg]−�K jggg‖.

(29)

To bound the term on the right-hand side, we can use
the matrix H in (24) and the fact that

‖K �vvv−�Kv‖ = √
vvv∗Hvvv−2Re(vvv∗K ∗Avvv)+vvv∗K ∗GKvvv

(30)

for any vvv ∈ C
N .

4.3 Estimation error for computation of A, G, and L

Toeffectively estimateK(1)g andSpvarε (K(1)) in practi-
cal applications, it is imperative to have reliable approx-
imations of A, G, and L . We provide a justification
for our ability to construct such approximations from
trajectory data with high probability, employing con-
centration bounds. The subsequent result delineates the
requisite number of samples and basis functions needed
to achieve a desired level of accuracy with high proba-
bility. To ensure this level of accuracy, several reason-
able assumptions about the stochastic dynamical sys-
tem are necessary.

Assumption 1 We suppose that xxx (m) in the snapshot
data are sampled at random according to ω, indepen-
dent of τ , and for simplicity, assume that ω is a prob-
ability measure.6 We assume that τ : �s → H for
some Hilbert space H and let κ = (xxx, τ ). In this sec-
tion, E and P are with respect to the joint distribution
of κ . We assume that

6 Similar types of bounds to Theorem 3 can be derived for
ergodic sampling and high-order quadrature sampling.
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– The random variable κ is sub-Gaussian, meaning
that there exists some a > 0 such that

E

[
e‖κ−E(κ)‖2/a2] < ∞.

This allows us to define the following finite quan-
tity:

ϒ = inf

{
s > 0 : e

E[‖κ−E(κ)‖2]
s2 E

[
e

1
s2

‖κ−E(κ)‖2
]

≤ 2

}
.

– The dictionary functions are uniformly bounded
and satisfy the following Lipschitz condition:

|ψk(xxx) − ψk(xxx
′)| ≤ ck‖xxx − xxx ′‖.

– The function F is Lipschitz with

‖F(κ) − F(κ ′)‖ ≤ c‖κ − κ ′‖.
With these assumptions, we can show that our

approximations of A, G, and L are good with high
probability.

Theorem 3 (Concentrationboundonestimation errors)
Under Assumption 1 we have, for any t > 0,

P

(
‖ Ã−A‖Fr < t

)
≥1− exp

(
2 log(2N )− Mt2

24ϒ2(c2+1)α2β2

)

P

(
‖G̃−G‖Fr < t

)
≥1− exp

(
2 log(2N )− Mt2

48ϒ2α2β2

)

P

(
‖L̃−L‖Fr < t

)
≥1− exp

(
2 log(2N )− Mt2

48ϒ2c2α2β2

)
,

where ‖ · ‖Fr denotes the Frobenius norm, and α and β

are given by

α =
√√√√ N∑

k=1

c2k , β =
√√√√ N∑

k=1

‖ψk‖2L∞ .

Proof We first argue for ‖ Ã − A‖Fr. Fix j, k ∈
{1, . . . , N } and define the random variable

X = ψk(F(xxx, τ ))ψ j (xxx).

Then

∣∣X (κ) − X (κ ′)
∣∣ ≤ (ckc‖ψ j‖L∞ + c j‖ψk‖L∞)‖κ − κ ′‖.

Let c j,k = ckc‖ψ j‖L∞ + c j‖ψk‖L∞ . The above Lips-
chitz bound for X implies that

∣∣E[X ] − X (κ ′)
∣∣ ≤ c j,k

∫

�×�s

‖κ − κ ′‖ dP(κ)

≤ c j,k

√
‖κ − E(κ)‖2 + E(‖κ − E(κ)‖2),

where we have used Hölder’s inequality to derive the
last line. It follows that

E

[
exp

(
|E[X ] − X |2

ϒ2c2j,k

)]
≤ 2.

Let Y = Re (E [X ] − X) and λ ≥ 0. Since E[Y ] = 0,
we have

E
[
exp (λY )

] = 1 +
∞∑
l=2

λlE[Y l ]
l!

≤ 1 + λ2

2
E

[
Y 2 exp(λ|Y |)

]
.

For any b > 0, we have λ|Y | ≤ λ2/(2b) + b|Y |2/2.
We also have bY 2 ≤ exp(bY 2/2). It follows that

E
[
exp (λY )

] ≤ 1 + λ2

2b
eλ2/(2b)

E

[
exp(bY 2)

]
.

We select b = 1/(ϒ2c2j,k) and use the fact that

E
[
exp(bY 2)

] ≤ E
[
exp(b|E[X ] − X |2)] ≤ 2 to obtain

E
[
exp (λY )

] ≤ 1 + λ2

b
e

λ2
2b ≤

(
1 + λ2

b

)
e

λ2
2b ≤ e

3λ2
2b .

Now let {Y (m)}Mm=1 independent copies of Y , then

P

(
1

M

M∑
m=1

Y (m) ≥ t

)

= P

(
exp(λ

M∑
m=1

Y (m)) ≥ exp(λMt)

)

≤ e−λMt
E

[
exp

(
λ

M∑
m=1

Y (m)

)]

= e−λMt
M∏

m=1

E
[
exp (λY )

]

≤ exp
(
3Mλ2/(2b) − λMt

)
,

whereweuseMarkov’s inequality in thefirst inequality.
Minimizing over λ, we obtain

P

(
1

M

M∑
m=1

Y (m) ≥ t

)
≤ exp

(
−Mbt2/6

)
.
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We can argue in the same manner for −Y and deduce
that

P

(
1

M

∣∣∣∣∣
M∑

m=1

Y (m)

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−Mbt2/6

)
.

Similarly, we can argue for the imaginary part of
E[X ] − X .

We now allow j, k to vary and let X j,k

= ψk(F(xxx, τ ))ψ j (xxx). For t > 0, consider the events

S j,k,1 : 1

M

∣∣∣∣∣
M∑

m=1

Re
(
E[X j,k] − X j,k(κm)

)
∣∣∣∣∣

<
tϒc j,k√

2ϒ2
∑N

l,p=1 c
2
l,p

,

S j,k,2 : 1

M

∣∣∣∣∣
M∑

m=1

Im
(
E[X j,k] − X j,k(κm)

)
∣∣∣∣∣

<
tϒc j,k√

2ϒ2
∑N

l,p=1 c
2
l,p

.

Then

P(∩ j,k,i S j,k,i ) ≥ 1 −
N∑

j,k=1

(P(Scj,k,1) + P(Scj,k,2))

≥ 1 − 4N 2 exp

(
− Mt2

12ϒ2
∑N

l,p=1 c
2
l,p

)
.

Moreover, the AM-GM inequality implies that

c2l,p ≤ 2c2c2k‖ψ j‖2L∞ + 2c2j‖ψk‖2L∞

and hence

N∑
l,p=1

c2l,p ≤ 2(c2 + 1)α2β2.

It follows that

P(∩ j,k,i S j,k,i ) ≥ 1 − exp

(
2 log(2N ) − Mt2

24ϒ2(c2 + 1)α2β2

)
.

If∩ j,k,i S j,k,i , then ‖ Ã− A‖Fr < t . We can argue in the
same manner, without the function F , to deduce that

P(‖G̃ − G‖Fr < t) ≥ 1 − exp

(
2 log(2N ) − Mt2

48ϒ2α2β2

)
.

Finally, for the matrix L and its estimate L̃ , we
derive similar concentration bounds for ψk(F(xxx, τ ))

ψ j (F(xxx, τ )) to see that

P(‖L̃ − L‖Fr < t) ≥ 1 − exp

(
2 log(2N ) − Mt2

48ϒ2c2α2β2

)
.

The statement of the theorem now follows. �
This theorem explicitly spells out the number of

basis functions and samples required to approximate
the three matrices appearing in Theorem 2. Roughly
speaking, if we set

exp
(
2 log(2N ) − Mt2

)
∼ N 2 exp

(
−Mt2

)
≤ δ,

then

M ∼ | ln δ − 2 ln N |/t2.
For any fixed tolerance t , the confidence exponen-

tially tightens up when M , the number of samples,
increases. The idea is similar to other concentration
inequality type bounds: if one samples from the same
distribution many times, the sample mean becomes
closer and closer to the true mean, and this bound gives
the confidence interval for the tail bound. On the other
hand, when N increases, more entries in the matrices
need to be approximated, so it brings a logarithmically
negative effect. More samples are needed to balance
out the increase of N .

5 Examples

We now present three examples. The first two are based
on numerically sampled trajectory data, while the final
example utilizes collected experimental data.

5.1 Arnold’s circle map

For our first example, we revisit the circle map dis-
cussed in Example 1, setting c = 1/5, ρ as the uniform
distribution on [0, 1], and defining

f (xxx) = 1

4π
sin(2πxxx).

Our dictionary consists of Fourier modes {exp(i jxxx) :
j = −n, . . . , n} with n = 20 (yielding N = 41), and
we use batched trajectory data with M1 = 100 equally
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Fig. 2 Estimation error for the matrices Ã, L̃ and H̃ for the
circle map. The solid line shows the expected Monte-Carlo con-
vergence rate

spaced {xxx ( j)}, andM2 = 2×104. Figure2 illustrates the
convergence of the matrices Ã, L̃ , and H̃ . We do not
display the convergence of G̃ as its error was on the
order of machine precision, a result of the exponen-
tial convergence achieved by the trapezoidal quadra-
ture rule across different batches. Figure3 shows the
residuals computed using Algorithm 2. The quantity
resvar(λ, g) deviates from (18) (the formula for f = 0),
particularly when |λ| is small. As n increases, the resid-
uals res(λ, g) converge to zero, indicating more accu-
rate computation of the spectral content ofK(1). How-
ever, the residuals resvar(λ, g) converge to finite pos-
itive values, except for the trivial eigenvalue 1, which
satisfies limM→∞ resvar(λ, g) = 0.

To underscore the significance of variance in our
analysis, Fig. 4 displays the absolute value of thematrix
L̃ − H̃ , which approximates the covariance matrix
defined in (16). Notably, the covariance disappears for
the constant function exp(i jxxx) with j = 0, and the
matrix is diagonally dominated. Figure5 presents the
results obtained from applying Algorithms 3 and 4.
These results align in areas where the variance is mini-
mal (large |λ|). However, in regions where |λ| is small,
the variance component in (27) becomes significant.
This observation leads us to infer that only about seven
eigenpairs are of meaningful significance in a statisti-
cally coherent framework.

Fig. 3 Residuals for the circle map computed using Algorithm 2

Fig. 4 Absolute values of the matrix L̃ − H̃ for the circle map.
This difference corresponds to the covariance matrix in (16)

5.2 Stochastic Van der Pol oscillator

We now consider the stochastic differential equation

dX1 = X2dt

dX2 =
[
μ(1 − X2

1)X2 − X1

]
dt + √

2δdBt ,

where Bt denotes standard one-dimensional Brownian
motion, δ > 0, and μ > 0.7 This equation represents

7 The inclusion of Brownian motion only in the dX2 term is
motivated by the physical interpretation of the random driving
force. However, adding a similar term to the dX1 equation would
only affect the Kolmogorov operator by altering the parameter δ.
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Fig. 5 Pseudospectra versus variance pseudospectra. Left: Out-
put of Algorithm 3 for the circle map. Right: Output of Algo-
rithm 4 for the circle map.We have shown the minimized residu-

als over a contour plot of ε in both cases. The red dots correspond
to the EDMD eigenvalues

a noisy version of the Van der Pol oscillator. In the
absence of noise, the Van der Pol oscillator exhibits
a limit cycle to which all initial conditions converge,
except for the unstable fixed point at the origin. The
introduction of noise transforms the system, resulting
in a global attractor that forms a band around the deter-
ministic system’s limit cycle.

The generator of the stochastic solutions, known as
the backwardKolmogorov operator, is described in [25,
Section 9.3]. It is a second-order elliptic type differen-
tial operator L , defined by

[L g](X1, X2) =
(

xxx2
μ(1 − X2

1)X2 − X1

)
· ∇g(X1, X2)

+ δ∇2g(X1, X2).

For a discrete times step �t , the Koopman operator is
given by exp(�tL ). In the absence of noise (δ = 0),
theKoopmanoperator has eigenvalues forming a lattice
[53, Theorem 13]:
{
λ̂m,k = exp([−mμ + ikω0]�t ) : k ∈ Z,m ∈ N ∪ {0}

}
,

whereω0 ≈ 1−μ2/16 is the base frequency of the limit
cycle [74]. When δ is moderate, the base frequency of
the averaged limit cycle remains similar to that in the
deterministic case [45].

We simulate the dynamics using the Euler–
Maruyama method [65] with a time step of 3 × 10−3.
Data are collected along a single trajectory of length
M1 = 106 with M2 = 2, starting the sampling after
the trajectory reaches the global attractor. We employ
318 Laplacian radial basis functions with centers on
the attractor as our dictionary. The parameters are set
to μ = 0.5, δ = 0.02, and �t = 0.3.

Figure 6 displays the results obtained using Algo-
rithms 3 and 4. Similar to observations from the cir-
cle map example, Spε(K(1)) and Spvarε (K(1)) exhibit
greater similarity near the unit circle. The lattice-like
structure in the eigenvalues is also evident, with the
EDMD-computed eigenvalues appearing as perturba-
tions of the set {λ̂m,k}. Table 1 lists some of these eigen-
values alongside the residuals calculated using Algo-
rithm 2. We observe that as |k| increases, res(λ, g)
also increases, and similarly, resvar(λ, g) increaseswith
m. For any given eigenvalue, res(λ, g) decreases to
zero with larger dictionaries. In contrast, resvar(λ, g)
approaches a finite nonzero value, except for the trivial
eigenvalue, which has a constant eigenfunction exhibit-
ing zero variance. Figure7 illustrates the corresponding
eigenfunctions on the attractor, showcasing their beau-
tiful modal structure.

In this example, the norm of the Koopman operator
‖K ‖ is approximately 1, and the subspace error δn(g)
predominantly contributes to the bound established in
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Fig. 6 Pseudospectra versus variance pseudospectra. Left: Out-
put ofAlgorithm3 for the stochasticVan der Pol oscillator. Right:
Output of Algorithm 4 for the stochastic Van der Pol oscillator.

We have shown the minimized residuals over a contour plot of ε

in both cases. The red dots correspond to the EDMD eigenvalues

Theorem 2. We analyze the two observables X1 and
X2, each starting from a point randomly selected on
the attractor. Figure8 presents the calculated values of
δn(X1) and δn(X2) as per (29) and (30), along with the
variance of the trajectory.Additionally, Fig. 9 compares
the values computed using KnXi with the actual values
of K n Xi , obtained by integrating the generator L .
Together, these figures demonstrate the convergence of
the mean trajectories toward the dominant subspace of
K .

5.3 Neuronal population dynamics

As a final example, we apply our approach to experi-
mental neuroscience data. Recent technological
advancements in this field now allow for the simul-
taneous monitoring of large neuronal populations in
the brains of awake, behaving animals. This devel-
opment has spurred significant interest in employing
data-driven methods to derive physically meaningful
insights from high-dimensional neural measurements
[62].

To analyze complex neural data, researchers have
employed a variety of analytical tools to uncover fea-
tures like low-dimensionalmanifolds, latent population
dynamics, within-trial variance, and trial-to-trial vari-
ability. However, existingmethods often examine these

features in isolation [16,29,61,73]. From a dynami-
cal systems perspective, a unified model that captures
these distinct aspects of neural data would be highly
advantageous. In this context, the Koopman operator
framework offers a compelling approach to analyzing
high-dimensional neural observables [47]. DMD has
emerged as a prominent method for the spatiotempo-
ral decomposition of diverse datasets [9,14]. Neverthe-
less, a limitation of DMD is its lack of explicit uncer-
tainty quantification regarding the modes and forecasts
it uncovers. This aspect is particularly vital in neural
time series analysis, where it is challenging to identify
physically meaningful spectral components [28].

Our framework offers a unified, data-driven solution
to uncover validated latent dynamical modes and their
associated variance in neural data. To demonstrate its
efficacy, we applied it to high-dimensional neuronal
recordings from the visual cortex of awake mice, as
publicly shared by the Allen Brain Observatory [71],
involving 400–800 neurons per mouse. Our focus was
on the “Drifting Gratings” task epoch, wherein mice
were presented with gratings drifting in one of eight
directions (0◦, 45◦, etc.), modulated sinusoidally at one
of five temporal frequencies. We specifically analyzed
responses to gratings modulated at 15 Hz across all
eight directions, as these stimuli consistently elicited an
identifiable eigenvalue in the neural data corresponding
to the expected frequency. This analysis encompassed
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Table 1 Computed eigenvalues of the stochastic Van der Pol
oscillator, and the residuals computed using Algorithm 2. We
have ordered them according to perturbations of λ̂m,k . Due to
conjugate symmetry, we have only shown eigenvalues with non-
negative imaginary parts

λ ≈ λ̂m,k m k resvar res

1.000 + 0.000i 0 0 0.001 0.001

0.956 + 0.290i 0 1 0.040 0.001

0.829 + 0.554i 0 2 0.080 0.002

0.630 + 0.767i 0 3 0.120 0.005

0.378 + 0.912i 0 4 0.159 0.008

0.096 + 0.975i 0 5 0.198 0.012

−0.190 + 0.953i 0 6 0.237 0.016

−0.454 + 0.848i 0 7 0.275 0.022

−0.672 + 0.671i 0 8 0.313 0.029

0.864 + 0.000i 1 0 0.504 0.017

0.825 + 0.250i 1 1 0.506 0.009

0.715 + 0.477i 1 2 0.511 0.013

0.543 + 0.661i 1 3 0.518 0.024

0.325 + 0.784i 1 4 0.528 0.033

0.083 + 0.838i 1 5 0.541 0.041

−0.163 + 0.816i 1 6 0.555 0.051

−0.388 + 0.724i 1 7 0.571 0.062

−0.572 + 0.571i 1 8 0.589 0.074

0.751 + 0.000i 2 0 0.661 0.057

0.714 + 0.218i 2 1 0.665 0.066

0.614 + 0.415i 2 2 0.671 0.075

0.461 + 0.571i 2 3 0.679 0.084

0.271 + 0.673i 2 4 0.689 0.094

0.061 + 0.712i 2 5 0.700 0.104

−0.149 + 0.685i 2 6 0.713 0.117

−0.336 + 0.597i 2 7 0.729 0.131

−0.550 + 0.463i 2 8 0.696 0.144

120 trials permouse (stimulus duration of 2 s) for a total
of 20 mice, as detailed in [71]. We computed distinct
stochastic Koopman operators for 15 different arousal
levels, categorized by the average pupil diameter mea-
sured during the 500ms before each stimulus [49]. For
this analysis, DMD was employed to identify 100 dic-
tionary functions.

Our data-driven approach was effective in identify-
ing an isolated, population-level coherent mode at the
stimulus frequency. As illustrated in Fig. 10, this is evi-
denced by a distinct eigenvalue, highlighted in green,
which consistently appears as a clear local minimum

in the variance pseudospectra contour plots across var-
ious arousal states. Without the variance pseudospec-
tra, discerning which DMD eigenvalues are reliable
and indicative of coherence can be challenging. We
observed that individual neurons displayed a variety
of waveforms, all linked to this single linear dynamic
mode. Demonstrating the diversity of these responses,
Fig. 11 showcases five randomly chosen sample trajec-
tories from the KMD. These trajectories highlight the
distinct spike counts and/or timings of different neu-
rons, all parsimoniously represented by a single latent
mode.

Importantly, neuronal responses demonstrate signif-
icant trial-to-trial variability, a phenomenon of con-
siderable physiological interest due to its close rela-
tionship with ongoing fluctuations in an animal’s inter-
nal state. Dynamical systems approaches are adept at
modeling this type of variability, which often stems
from changes in the neural population’s pre-stimulus
state [61]. Furthermore, the extent of this variability is
heavily influenced by internal states like arousal and
attention, as detailed in [50]. Our stochastic model-
ing approach enables us to additionally estimate this
second source of trial-to-trial variability in neuronal
responses.

To validate the physiological significance of our
variance estimates, we analyzed the variance linked to
the Koopman operators computed across each of 15
levels of pupil diameter, effectively using pupil diame-
ter as a parameter for the Koopman operator in relation
to arousal. Our hypothesis was that this analysis would
reflect the well-known “U-shape” pattern described by
the Yerkes–Dodson law [86], with variance minimized
at intermediate arousal levels [49]. Figure10 indicates
that the eigenvalue or expectation derived from 10
remains consistent across various arousal states. How-
ever, from Fig. 12, a notable modulation in variance
residuals is observed in accordance with arousal lev-
els, aligning with our predictions: the variance associ-
ated with the leading mode is specifically reduced at
intermediate arousal levels. This pattern underscores
the physiological relevance of the variance estimates
yielded by our modeling approach. Consequently, our
findings suggest that arousal systematically influences
dynamical variance, providing both practical and phys-
iological rationales for employing dynamical models
that explicitly estimate variance. Overall, our data-
driven framework offers a unified and formal repre-
sentation of neural dynamics, parsimoniously captur-
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Fig. 7 Computed eigenfunctions (real part shown) of the stochastic Van der Pol oscillator. Due to conjugate symmetry, we have only
shown eigenfunctions corresponding to eigenvalues with non-negative imaginary parts
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Fig. 8 Left: Subspace
errors δn(X1) and δn(X2)

for the stochastic Van der
Pol oscillator, computed
using (29) and (30). Right:
Variance of trajectory. We
have rescaled the horizontal
axis in both plots to
correspond to time

Fig. 9 Comparison of computed KnXi , where K ∈ C
N×N is the EDMD matrix, and the true values of K n Xi

Fig. 10 Variance pseudospectra for a single mouse in the neu-
ronal population dynamics example. Each case corresponds to
a pupil diameter of 8% (left), 28% (middle), and 43% (right).
The identified mode is shown in green, and the red dots show the

other DMD eigenvalues. The variance pseudospectra changes
considerably as the arousal state changes, but the green eigen-
value shows little variability

ing multiple physiologically significant features in the
data.

6 Conclusion

Wehave demonstrated the role of variance in the Koop-
mananalysis of stochastic dynamical systems.Toeffec-

tively study projection errors in data-driven approaches
for these systems, it is crucial to move beyond expec-
tations and study more than just the stochastic Koop-
man operator. Incorporating variance into the Koop-
man framework enhances our understanding of spectral
properties and the related projection errors. By analyz-
ing various types of residuals, we have developed data-
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Fig. 11 Randomly selected sample trajectories from the Koop-
man mode corresponding to the eigenvalue shown in green in
Fig. 10. The reference gray region in the left region shows the
wavelength predicted by the eigenvalue

Fig. 12 The variance relative squared residual as a function of
the arousal state. The red lines show the average across the mice,
and the green error bounds correspond to the standard error of the
mean. The “U-shape” is characteristic of the so-called Yerkes–
Dodson law, which we produce in a data-driven fashion from the
dynamics

driven algorithms capable of computing the spectral
properties of infinite-dimensional stochastic Koopman
operators. Furthermore, we introduced the concept of
variance pseudospectra, a tool designed to assess sta-
tistical coherency. From a computational perspective,
our work includes several convergence theorems per-
tinent to the spectral properties of these operators. In
the realmof experimental neural recordings, our frame-

work has proven effective in extracting and compactly
representing multiple data features with known physi-
ological significance.

There are several avenues of future work related to
this paper. One such direction involves an analysis of
the algorithms and theorems presented in Sect. 4 in sce-
narios involving noisy snapshot data. Another avenue
explores the trade-offs between computing the squared
residual and variance terms, as outlined in (15), poten-
tially reflecting variance-bias trade-offs in statistical
analysis. Additionally, we aim to assess the robustness
and generalizability of the proposed framework across
further stochastic dynamical systems.
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