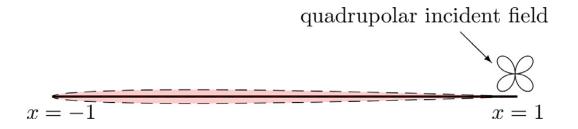
Non-linear Forchheimer corrections in acoustic scattering

Matthew Colbrook (joint work with Lorna Ayton)
University of Cambridge

2021 AIAA AVIATION Forum and Exposition

Copyright © by Matthew Colbrook


Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

Related paper: M. Colbrook, L. Ayton, "Do we need non-linear corrections? On the boundary Forchheimer equation in acoustic scattering", JSV (2021)

The Problem

Modeling of porosity for materials (e.g. metal foams) with microscopic void spaces.

Low Reynolds number:
$$K\frac{[p]}{h} = -\mu\nu$$

High Reynolds number:
$$K\frac{[p]}{h} = -\mu \nu - \beta \rho \sqrt{K} \nu |\nu|$$

Darcy's law

Forchheimer inertial correction

Mathematical Model

scattered field pressure

2D Helmholtz:
$$\left(\frac{\partial}{\partial x^2} + \frac{\partial}{\partial y^2} + k_0^2\right) p = 0$$
, incident field positive incident field positive for the property of the proper

2D Helmholtz:
$$\left(\frac{\partial}{\partial x^2} + \frac{\partial}{\partial y^2} + k_0^2\right)p = 0$$
, incident field pressure Kinematic condition: $\left.\frac{\partial p}{\partial y}\right|_{y=0} + \left.\frac{\partial p_{\rm I}}{\partial y}\right|_{y=0} = C_0(x)\eta_a|_{y=0}, \qquad |x|<1$

 η_a = average fluid displacement normal to the plate

Forchheimer condition:
$$[p] = C_1(x)\eta_a + C_2(x)\eta_a|\eta_a|, \qquad |x| < 1$$

Numerical Method

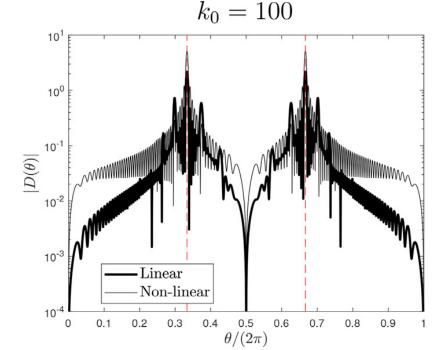
Goal: A fast, semi-analytical model that incorporates such non-linear effects

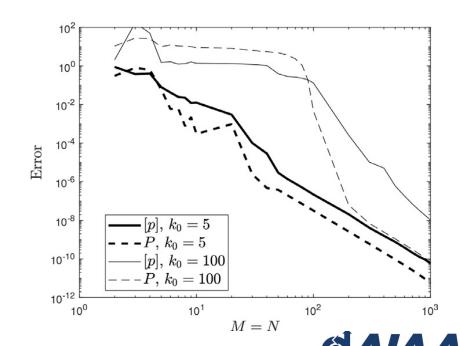
without requiring a full turbulent simulation.

Idea: Separation of variables in elliptic coordinates:

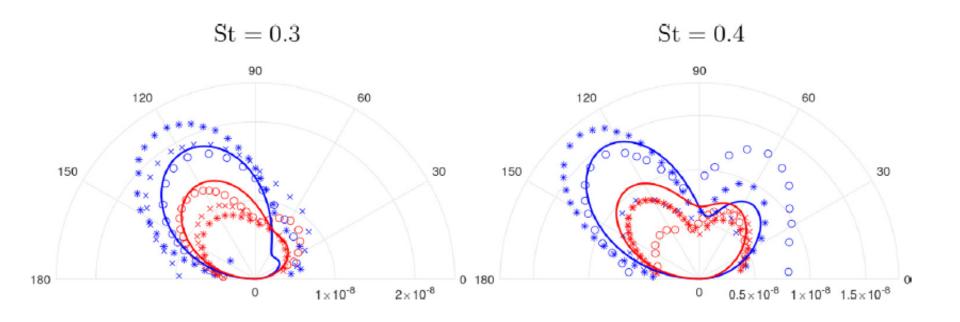
$$x = \cosh(\nu)\cos(\tau), y = \sinh(\nu)\sin(\tau)$$
$$p(\nu, \tau) = \sum_{m=1}^{\infty} a_m \operatorname{se}_m(\tau) \operatorname{Hse}_m(\nu)$$

Expand η_a in a Chebyshev series.

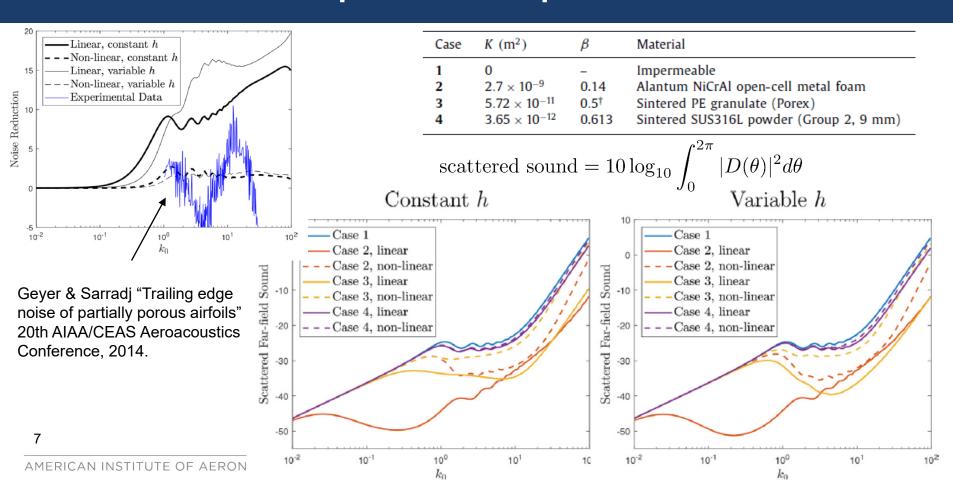

Collocation yields a nonlinear system


Solve with Newton's method

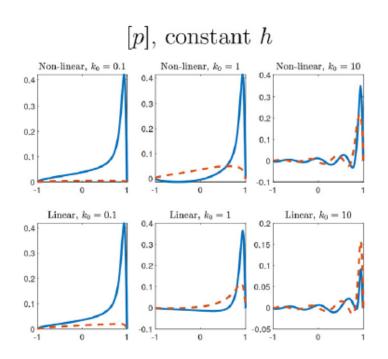
unknown coefficients $A\mathbf{v} + (B\mathbf{v}) \circ |C\mathbf{v}| = \mathbf{c}$ component-wise multiplication

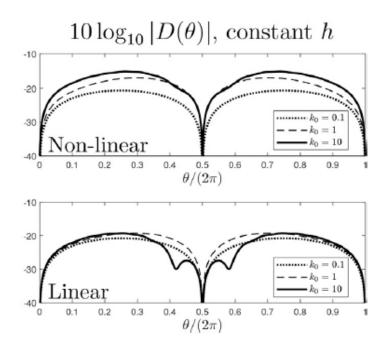

Convergence

$$C_0(x) = k_0^2$$
, $C_1(x) = ik_0(1.2 + \sin(20x))$, $C_2(x) = i20k_0^2(x^2 + 1)$



Comparison to LES [S. Koh, M. Meinke, W. Schröder (2018)]





Comparison to Experiments

Far-field Directivity and Surface Pressure Distribution

Conclusion

- Developed a fast numerical method that can account for variable thickness.
- Linear model at high frequencies can hugely over-predict noise reduction.
- Saw good agreement with experiments when supplemented with a non-linear Forchheimer correction.
- For mid/high frequencies and typical high permeability materials, local inertial effects at trailing edge can dominate overall acoustic scattering behaviour.
- Thus accurate modelling of aft of aerofoil is unnecessary in comparison to the importance of including inertial effects local to the source (boundary layer).
- Future directions: multiple aerofoils, non-constant inertial coefficient, surface roughness.

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS