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When can algorithms be trusted?

• Ex1: Data-driven dynamical systems
• Ex2: Trustworthiness in AI
• Data-driven scientific computation,
• Inverse problems,
• Computational physics,
• Solving PDEs with error control,
• Infinite-dimensional spectral computations,
• Computer-assisted proofs,
• …

Error control and verification?
Stability and accuracy guarantees?
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• Ex1: Data-driven dynamical systems
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Why is this question essential?
• Bedrock of numerical analysis.
• Reliable computations to back-up and test theories.
• Computed “solutions” meaningless without understanding error.
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When can algorithms be trusted?

• Ex1: Data-driven dynamical systems
• Ex2: Trustworthiness in AI

Why is this question essential?
• Bedrock of numerical analysis.
• Reliable computations to back-up and test theories.
• Computed “solutions” meaningless without understanding error.

Error control and verification?
Stability and accuracy guarantees?

Toolkit for classifying the difficulty of computational problems and 
proving the optimality of algorithms.
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• Example 1: Rigorous and verifiable data-driven dynamical systems
• Upper bounds (on difficulty): Positive results on what’s possible.

• A toolkit: Solvability Complexity Index Hierarchy
• Classification for infinite-dimensional spectral problems and beyond.

• Example 2: Smale's 18th problem, “What are the limits of AI?”
• Lower bounds (on difficulty): Use SCI techniques to prove impossibility results.

Talk outline

Toolkit for classifying the difficulty of computational problems and 
proving the optimality of algorithms.
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Example 1: Rigorous and verifiable 
data-driven dynamical systems

Upper bounds: Positive results on what’s possible.
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• State 𝑥𝑥 ∈ Ω ⊆ ℝ𝑑𝑑, unknown function 𝐹𝐹:Ω → Ω governs dynamics
𝑥𝑥𝑛𝑛+1 = 𝐹𝐹(𝑥𝑥𝑛𝑛)

• Goal: Learn about system from data 𝑥𝑥(𝑚𝑚),𝑦𝑦(𝑚𝑚) = 𝐹𝐹(𝑥𝑥(𝑚𝑚)) 𝑚𝑚=1
𝑀𝑀

• E.g., data from trajectories, experimental measurements, simulations, …
• E.g., used for forecasting, control, design, understanding, …

• Applications: chemistry, climatology, 
electronics, epidemiology, finance, 
fluids, molecular dynamics, 
neuroscience, plasmas, robotics, 
video processing, …

Can we develop verified methods?

Data-driven dynamical systems
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Operator viewpoint
• Koopman operator 𝒦𝒦 acts on functions 𝑔𝑔:Ω → ℂ

𝒦𝒦𝑔𝑔 𝑥𝑥 = 𝑔𝑔(𝐹𝐹(𝑥𝑥))
• 𝒦𝒦 is linear but acts on an infinite-dimensional space.

• Work in 𝐿𝐿2(Ω,𝜔𝜔) for positive measure 𝜔𝜔, with inner product �,� .

• Koopman, “Hamiltonian systems and transformation in Hilbert space,” PNAS, 1931.
• Koopman, v. Neumann, “Dynamical systems of continuous spectra,” PNAS, 1932.

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 … 𝑥𝑥𝑛𝑛

𝑔𝑔(𝑥𝑥1) 𝑔𝑔(𝑥𝑥2) 𝑔𝑔(𝑥𝑥3) … 𝑔𝑔(𝑥𝑥𝑛𝑛)

𝐹𝐹 𝐹𝐹 𝐹𝐹 𝐹𝐹

𝒦𝒦𝑔𝑔 𝒦𝒦𝑔𝑔 𝒦𝒦𝑔𝑔 𝒦𝒦𝑔𝑔

State

Functions
of state

Non-linear

Linear
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Koopman mode decomposition

𝑔𝑔(𝑥𝑥) = �
eigenvalues 𝜆𝜆𝑗𝑗

𝑐𝑐𝜆𝜆𝑗𝑗𝜑𝜑𝜆𝜆𝑗𝑗(𝑥𝑥) + �
−𝜋𝜋

𝜋𝜋

𝜙𝜙𝜃𝜃,𝑔𝑔 𝑥𝑥 d𝜃𝜃

𝑔𝑔 𝑥𝑥𝑛𝑛 = 𝒦𝒦𝑛𝑛𝑔𝑔 𝑥𝑥0 = �
eigenvalues 𝜆𝜆𝑗𝑗

𝑐𝑐𝜆𝜆𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛𝜑𝜑𝜆𝜆𝑗𝑗 𝑥𝑥0 + �

−𝜋𝜋

𝜋𝜋

𝑒𝑒𝑖𝑖𝑛𝑛𝜃𝜃𝜙𝜙𝜃𝜃,𝑔𝑔 𝑥𝑥0 d𝜃𝜃

Encodes: geometric features, invariant measures, transient behaviour, 
long-time behaviour, coherent structures, quasiperiodicity, etc.

GOAL: Data-driven approximation of 𝒦𝒦 and its spectral properties. 

generalised
eigenfunction of 𝒦𝒦

eigenfunction of 𝒦𝒦

• Mezić, “Spectral properties of dynamical systems, model reduction and decompositions,” Nonlinear Dynamics, 2005.
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Koopmania*: a revolution in the big data era

≈35,000 papers over last decade!

Very little on convergence guarantees or verification.

Why is this lacking?

• K. operators have been distinct from NA community.

• Dealing with infinite dim. is notoriously hard … 
Source: https://www.dimensions.ai/

*Wikipedia: “its wild surge in popularity is sometimes jokingly called ‘Koopmania’”
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Spec 𝒦𝒦 = 𝜆𝜆 ∈ ℂ:𝒦𝒦 − 𝜆𝜆𝐼𝐼 is not invertible

“Operators that arise in practice are not diagonalized, and it is often very hard to locate 
the spectrum. Thus, one has to settle for numerical approximations. Unfortunately, there 
are no proven general techniques.” W. Arveson, Berkeley (1994)

Naïve:     𝒦𝒦 𝕂𝕂 ∈ ℂ𝑁𝑁×𝑁𝑁 + compute e-values, problems:

1) “Too much”: Approximate spurious modes 𝜆𝜆 ∉ Spec(𝒦𝒦) - “spectral pollution”
2) “Too little”: Miss parts of Spec(𝒦𝒦)
3) Continuous spectra
4) Verification: Which part of an approximation can we trust?

Can we compute spectral properties in inf. dim.?
9/31

• Arveson, “The role of 𝐶𝐶∗-algebras in infinite dimensional numerical linear algebra,” Contemp. Math., 1994.
• Davies, “Linear operators and their spectra,” CUP, 2007.
• Brunton, Kutz, “Data-driven Science and Engineering: Machine learning, Dynamical systems, and Control,” CUP, 2019.



Given dictionary 𝜓𝜓1, … ,𝜓𝜓𝑁𝑁 of functions 𝜓𝜓𝑗𝑗:Ω → ℂ

𝒦𝒦 𝕂𝕂 = Ψ𝑋𝑋∗𝑊𝑊Ψ𝑋𝑋 −1Ψ𝑋𝑋∗𝑊𝑊Ψ𝑌𝑌 ∈ ℂ𝑁𝑁×𝑁𝑁

𝜓𝜓𝑘𝑘 ,𝜓𝜓𝑗𝑗 ≈ ∑𝑚𝑚=1
𝑀𝑀 𝑤𝑤𝑚𝑚𝜓𝜓𝑗𝑗 𝑥𝑥 𝑚𝑚 𝜓𝜓𝑘𝑘 𝑥𝑥 𝑚𝑚 =

𝜓𝜓1(𝑥𝑥(1)) ⋯ 𝜓𝜓𝑁𝑁(𝑥𝑥(1))
⋮ ⋱ ⋮

𝜓𝜓1(𝑥𝑥(𝑀𝑀)) ⋯ 𝜓𝜓𝑁𝑁(𝑥𝑥(𝑀𝑀))
Ψ𝑋𝑋

∗
𝑤𝑤1

⋱
𝑤𝑤𝑀𝑀

𝑊𝑊

𝜓𝜓1(𝑥𝑥(1)) ⋯ 𝜓𝜓𝑁𝑁(𝑥𝑥(1))
⋮ ⋱ ⋮

𝜓𝜓1(𝑥𝑥(𝑀𝑀)) ⋯ 𝜓𝜓𝑁𝑁(𝑥𝑥(𝑀𝑀))
Ψ𝑋𝑋 𝑗𝑗𝑘𝑘

Dynamic Mode Decomposition (DMD)

• Schmid, “Dynamic mode decomposition of numerical and experimental data,” Journal of fluid mechanics, 2010.
• Kutz, Brunton, Brunton, Proctor, “Dynamic mode decomposition: data-driven modeling of complex systems,” SIAM, 2016.
• Williams, Kevrekidis, Rowley “A data-driven approximation of the Koopman operator: Extending dynamic mode 

decomposition,” Journal of Nonlinear Science, 2015.

𝒦𝒦𝜓𝜓𝑘𝑘,𝜓𝜓𝑗𝑗 ≈ ∑𝑚𝑚=1
𝑀𝑀 𝑤𝑤𝑚𝑚𝜓𝜓𝑗𝑗 𝑥𝑥 𝑚𝑚 𝜓𝜓𝑘𝑘 𝑦𝑦 𝑚𝑚

[𝒦𝒦𝒦𝒦𝑘𝑘] 𝑥𝑥 𝑚𝑚

=
𝜓𝜓1(𝑥𝑥(1)) ⋯ 𝜓𝜓𝑁𝑁(𝑥𝑥(1))

⋮ ⋱ ⋮
𝜓𝜓1(𝑥𝑥(𝑀𝑀)) ⋯ 𝜓𝜓𝑁𝑁(𝑥𝑥(𝑀𝑀))

Ψ𝑋𝑋

∗
𝑤𝑤1

⋱
𝑤𝑤𝑀𝑀

𝑊𝑊

𝜓𝜓1(𝑦𝑦(1)) ⋯ 𝜓𝜓𝑁𝑁(𝑦𝑦(1))
⋮ ⋱ ⋮

𝜓𝜓1(𝑦𝑦(𝑀𝑀)) ⋯ 𝜓𝜓𝑁𝑁(𝑦𝑦(𝑀𝑀))
Ψ𝑌𝑌 𝑗𝑗𝑘𝑘
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Residuals: 𝑔𝑔 = ∑𝑗𝑗=1𝑁𝑁 𝐠𝐠𝑗𝑗𝜓𝜓𝑗𝑗 , 𝒦𝒦𝑔𝑔 − 𝜆𝜆𝑔𝑔 2 ≈ 𝐠𝐠∗ 𝐾𝐾2 − 𝜆𝜆𝐾𝐾1∗ − ̅𝜆𝜆𝐾𝐾1 + 𝜆𝜆 2𝐺𝐺 𝐠𝐠

Residual DMD (ResDMD): Approx. 𝒦𝒦 and𝒦𝒦∗𝒦𝒦

𝜓𝜓𝑘𝑘,𝜓𝜓𝑗𝑗 ≈ �
𝑚𝑚=1

𝑀𝑀

𝑤𝑤𝑚𝑚𝜓𝜓𝑗𝑗 𝑥𝑥 𝑚𝑚 𝜓𝜓𝑘𝑘 𝑥𝑥 𝑚𝑚 = Ψ𝑋𝑋∗𝑊𝑊Ψ𝑋𝑋
𝐺𝐺 𝑗𝑗𝑘𝑘

𝒦𝒦𝜓𝜓𝑘𝑘,𝜓𝜓𝑗𝑗 ≈ �
𝑚𝑚=1

𝑀𝑀

𝑤𝑤𝑚𝑚𝜓𝜓𝑗𝑗 𝑥𝑥 𝑚𝑚 𝜓𝜓𝑘𝑘 𝑦𝑦 𝑚𝑚

[𝒦𝒦𝒦𝒦𝑘𝑘] 𝑥𝑥 𝑚𝑚

= Ψ𝑋𝑋∗𝑊𝑊Ψ𝑌𝑌
𝐾𝐾1 𝑗𝑗𝑘𝑘

𝒦𝒦𝜓𝜓𝑘𝑘 ,𝒦𝒦𝜓𝜓𝑗𝑗 ≈ �
𝑚𝑚=1

𝑀𝑀

𝑤𝑤𝑚𝑚𝜓𝜓𝑗𝑗 𝑦𝑦 𝑚𝑚 𝜓𝜓𝑘𝑘 𝑦𝑦 𝑚𝑚 = Ψ𝑌𝑌∗𝑊𝑊Ψ𝑌𝑌
𝐾𝐾2 𝑗𝑗𝑘𝑘

Error control

• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” 
Communications on Pure and Applied Mathematics, under review.

• C., Ayton, Szőke, “Residual Dynamic Mode Decomposition,” Journal of Fluid Mechanics, under review.
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Example of an upper bound

res(𝜆𝜆, 𝐠𝐠) = 𝐠𝐠∗ 𝐾𝐾2−𝜆𝜆𝐾𝐾1∗−�𝜆𝜆𝐾𝐾1+ 𝜆𝜆 2𝐺𝐺 𝐠𝐠
𝐠𝐠∗𝐺𝐺𝐠𝐠

, Spec𝜀𝜀 𝒦𝒦 = ⋃ ℬ ≤𝜀𝜀 Spec 𝒦𝒦 + ℬ

1. Compute 𝐺𝐺,𝐾𝐾1,𝐾𝐾2 ∈ ℂ𝑁𝑁×𝑁𝑁.
2. For 𝑧𝑧𝑘𝑘 in comp. grid, compute 𝜏𝜏𝑘𝑘 = min

𝑔𝑔=∑𝑗𝑗=1
𝑁𝑁 𝐠𝐠𝑗𝑗𝒦𝒦𝑗𝑗

res(𝑧𝑧𝑘𝑘 ,𝑔𝑔), corresponding 𝑔𝑔𝑘𝑘 (gen. SVD).

3. Output: 𝑧𝑧𝑘𝑘: 𝜏𝜏𝑘𝑘 < 𝜀𝜀 (approx. of Spec𝜀𝜀(𝒦𝒦)), 𝑔𝑔𝑘𝑘: 𝜏𝜏𝑘𝑘 < 𝜀𝜀 (𝜀𝜀-pseudo-eigenfunctions).

Theorem: Suppose the quadrature rule converges. 
• Error control: 𝑧𝑧𝑘𝑘: 𝜏𝜏𝑘𝑘 < 𝜀𝜀 ⊆ Spec𝜀𝜀(𝒦𝒦) (as 𝑀𝑀 → ∞)
• Convergence: Converges locally uniformly to Spec𝜀𝜀 𝒦𝒦 (as 𝑁𝑁 → ∞)

First convergent method for general 𝒦𝒦

Similarly, overcome: 1) “too much”, 2) “too little”, 3) cts spectra, 4) verification.

Paves the way for rigorous data-driven Koopmania!
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Example: pressure field of turbulent flow

𝜆𝜆 = 𝑒𝑒0.11𝑖𝑖 𝜆𝜆 = 𝑒𝑒0.51𝑖𝑖 𝜆𝜆 = 𝑒𝑒0.71𝑖𝑖
?

• Reynolds number ≈ 3.9 × 105
• Ambient dimension ≈ 300,000

(number of measurement points)

Rel. Res. = ? Rel. Res. = ? Rel. Res. = ?
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𝜆𝜆 = 𝑒𝑒0.11𝑖𝑖 𝜆𝜆 = 𝑒𝑒0.51𝑖𝑖 𝜆𝜆 = 𝑒𝑒0.71𝑖𝑖
Rel. Res. ≤ 0.0054 Rel. Res. ≤ 0.0128 Rel. Res. ≤ 0.0196

Example: pressure field of turbulent flow
• Reynolds number ≈ 3.9 × 105
• Ambient dimension ≈ 300,000

(number of measurement points)
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Previous algorithm Γ𝑀𝑀 (with adaptive 𝑁𝑁 = 𝑁𝑁(𝑀𝑀)):

lim
𝜀𝜀↓0

lim
𝑀𝑀→∞

Γ𝑀𝑀 𝑥𝑥(𝑚𝑚),𝑦𝑦(𝑚𝑚) = 𝐹𝐹(𝑥𝑥(𝑚𝑚)) 𝑚𝑚=1
𝑀𝑀 , 𝜀𝜀 = Spec 𝒦𝒦

Phenomena of “successive limits” widespread…
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A toolkit: Solvability Complexity 
Index Hierarchy
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For 𝐴𝐴 ∈ Ω, want to compute Ξ:Ω → (ℳ,𝑑𝑑)
• ∆0: Problems solved in finite time (v. rare).
• ∆1: Problems solved in “one limit” with full error control:

𝑑𝑑(Γ𝑛𝑛 𝐴𝐴 ,Ξ(𝐴𝐴)) ≤ 2−𝑛𝑛

• ∆2: Problems solved in “one limit” (SCI=1):
lim
𝑛𝑛→∞

Γ𝑛𝑛(𝐴𝐴) = Ξ(𝐴𝐴)

• ∆3: Problems solved in “two successive limits” (SCI=2):
lim
𝑛𝑛→∞

lim
𝑚𝑚→∞

Γ𝑛𝑛,𝑚𝑚(𝐴𝐴) = Ξ(𝐴𝐴)

and so on…   
• C., “The Foundations of Infinite-Dimensional Spectral Computations,” Cambridge, PhD thesis.
• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms.”
• Hansen, “On the solvability complexity index, the 𝑛𝑛-pseudospectrum and approximations of spectra of operators,” JAMS, 2011.
• McMullen, “Families of rational maps and iterative root-finding algorithms,” Annals of Mathematics, 1987.
• Smale, “The fundamental theorem of algebra and complexity theory,” Bulletin of the AMS, 1981.

Solvability Complexity Index Hierarchy
metric space
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Error control for spectral problems

• Σ1 ⊊ Δ2: lim
𝑛𝑛→∞

Γ𝑛𝑛 𝐴𝐴 = Ξ 𝐴𝐴 , max𝑧𝑧∈Γ𝑛𝑛 𝐴𝐴 dist 𝑧𝑧,Ξ 𝐴𝐴 ≤ 2−𝑛𝑛

• Π1 ⊊ Δ2: lim
𝑛𝑛→∞

Γ𝑛𝑛 𝐴𝐴 = Ξ 𝐴𝐴 , max𝑧𝑧∈Ξ(𝐴𝐴)dist(𝑧𝑧, Γ𝑛𝑛 𝐴𝐴 ) ≤ 2−𝑛𝑛

NB: Typically, eigensolvers for PDEs prove ∆2, not optimal 𝛴𝛴1…
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Σ1 example: e-values with guaranteed error bounds

𝑉𝑉 cos(𝑥𝑥) tanh(𝑥𝑥) exp(−𝑥𝑥2) 𝟏𝟏/(1 + 𝑥𝑥2)
𝐸𝐸0 1.7561051579 0.8703478514 1.6882809272 1.7468178026

𝐸𝐸1 3.3447026910 2.9666370800 3.3395578680 3.4757613534

𝐸𝐸2 5.0606547136 4.9825969775 5.2703748823 5.4115076464

𝐸𝐸3 6.8649969390 6.9898951678 7.2225903394 7.3503220313

𝐸𝐸4 8.7353069954 8.9931317537 9.1953373991 9.3168983920

𝐴𝐴 = −∇2 + 𝑥𝑥2 + 𝑉𝑉(𝑥𝑥) on ℝ1

Can deal with mix of cts and discrete spectra, other domains, other PDEs etc.
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Π0

Σ0

Δ0

=
=

⊊ Δ1 ⊊

Π1

Σ1 ∪ Π1 ⊊ Δ2 ⊊

Π2

Σ2

Σ2 ∪ Π2 ⊊ Δ3 ⊊

Π3

Σ3

Σ3 ∪ Π3 ⋯

Error control

Increasing difficulty

Σ1

Small sample of classification theorems
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Spectra of 𝒦𝒦 Continuous spectra of 𝒦𝒦 (different regularity assumptions)

Small sample of classification theorems
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Σ0

Δ0

=
=

⊊ Δ1 ⊊

Π1
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Π3
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Spectra of 𝒦𝒦 Continuous spectra of 𝒦𝒦 (different regularity assumptions)

Spectra of
compact operators

Error control

Increasing difficulty

Σ1

Spectra of Schrödinger*
(different potential classes)

*Open problem of Schwinger: “The special canonical group,” “Unitary operator bases,” PNAS, 1960.

Small sample of classification theorems
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Error control

Increasing difficulty
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Spectra of Schrödinger*
(different potential classes)

Spectra of 𝒦𝒦 Continuous spectra of 𝒦𝒦 (different regularity assumptions)

*Open problem of Schwinger: “The special canonical group,” “Unitary operator bases,” PNAS, 1960.
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Π0

Σ0

Δ0

=
=

⊊ Δ1 ⊊

Π1

Σ1 ∪ Π1 ⊊ Δ2 ⊊

Π2

Σ2

Σ2 ∪ Π2 ⊊ Δ3 ⊊

Π3

Σ3

Σ3 ∪ Π3 ⋯

Spectra of
compact operators

Error control

Increasing difficulty

Spectral gap problem

Spectral stability

Σ1

Spectra of Schrödinger*
(different potential classes)

Spectra of 𝒦𝒦 Continuous spectra of 𝒦𝒦 (different regularity assumptions)

*Open problem of Schwinger: “The special canonical group,” “Unitary operator bases,” PNAS, 1960.

Small sample of classification theorems
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• Spectra with Σ1 error control (v. large class of disc. ops and PDEs)
• C., Roman, Hansen, “How to compute spectra with error control,” PRL, 2019.
• C., Hansen, “The foundations of spectral computations via the solvability complexity index 

hierarchy,” JEMS, under revisions.

• Spectral measures and type (classification varies from ∆1 to Σ3)
• Webb, Olver, “Spectra of Jacobi operators via connection coefficient matrices,” CIMP, 2021.
• C., “Computing spectral measures and spectral types,” CIMP, 2021.
• C., Horning, Townsend, “Computing spectral measures of self-adjoint operators,” SIAM Rev, 2021.

• Resonances (∆2\Σ1 ∪ Π1)
• Ben-Artzi, Marletta, Rösler, “Computing scattering resonances,” JEMS, 2022.
• Ben-Artzi, Marletta, Rösler, “Computing the sound of the sea in a seashell,” FOCM, 2022.

• Zoo of problems (e.g., fractal dims, capacity, radii etc.) – up to Σ6‼‼
• C., “On the computation of geometric features of spectra of linear operators on Hilbert 

spaces,” FOCM, under revisions.

Some success stories in inf. dim. spec. comp.
20/31

General technique for lower bounds by 
embedding combinatorial problems.

E.g., ground state of 
quasicrystal

E.g., continuous 
spectra of graphene



• Any model of computation. 
(lower bds universal, upper bds can be realized via interval arith.)

• Practical: “Spot” info or subclass needed to lower difficulty.
• Tells us what we can or cannot do.
• Existing hierarchies become special cases.
• Extends beyond spectral problems: Foundations of AI, PDEs (e.g., 

time-dep. Schrödinger eq. on 𝐿𝐿2(ℝ𝑑𝑑) with error control), 
optimisation (e.g., guarantees), computer-assisted proofs, …

Remarks
21/31



Example 2: Smale's 18th problem
“What are the limits of AI?”

*S. Smale’s list of problems for the 21st century (requested by V. Arnold), inspired by Hilbert’s list

Lower bounds: Use SCI techniques to prove impossibility results.
(Different techniques needed for training problems.)

Foundations ⟹ understanding, feasible directions, new methods, …

22/31

“Very often, the creation of a technological artifact precedes the
science that goes with it. The steam engine was invented before
thermodynamics. Thermodynamics was invented to explain the steam
engine, essentially the limitations of it. What we are after is the
equivalent of thermodynamics for intelligence.” Yann LeCun



When can we make AI robust and trustworthy?

“AI generated hallucination”, from Facebook and NYU’s
FastMRI challenge 2020

From Finlayson et al., “Adversarial attacks on
medical machine learning,” Science, 2019.

Problem: hallucinations and instability 
23/31



Example of the limits of deep learning
Paradox: “Nice” linear inverse problems where a stable and accurate neural 

network for image reconstruction exists, but it can never be trained!

E.g., suppose we want to solve (holds for much more general problems)

min
𝑥𝑥∈ℂ𝑁𝑁

𝑥𝑥 𝑙𝑙1 + 𝜆𝜆 𝐴𝐴𝑥𝑥 − 𝑦𝑦 𝑙𝑙2
2

𝐴𝐴 ∈ ℂ𝑚𝑚×𝑁𝑁 modality,𝑚𝑚 < 𝑁𝑁 , 𝑆𝑆 = 𝑦𝑦𝑗𝑗 𝑗𝑗=1
𝑅𝑅 samples

Arises when given 𝑦𝑦 ≈ 𝐴𝐴𝑥𝑥 + 𝑒𝑒.
Allow arbitrary precision of training data.
Enforce condition numbers bounded by 1.
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Example of the limits of deep learning
Paradox: “Nice” linear inverse problems where a stable and accurate neural 

network for image reconstruction exists, but it can never be trained!
• Pick positive integers 𝑛𝑛 ≥ 3 and 𝑀𝑀. Class of problems such that:

• (Not trainable) No algorithm, even randomised, can produce a neural network with 𝑛𝑛 digits 
of accuracy for any member of the dataset with probability greater than 1/2.

• (Not practical) 𝑛𝑛 − 1 digits of accuracy is possible over the whole dataset, but any 
algorithm that trains such a neural network requires arbitrarily large training data.

• (Trainable and practical) 𝑛𝑛 − 2 digits of accuracy is possible over the whole dataset via an 
algorithm using only 𝑀𝑀 training data, regardless of all parameters (e.g., dimension).

Holds for any architecture, any precision of training data.
⟹ Classification theory telling us what can and cannot be done

• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.
• Antun, C., Hansen,“Proving Existence Is Not Enough: : Mathematical Paradoxes Unravel the Limits of Neural Networks in Artificial Intelligence,”SIAM News, May 2022.
• Choi, “Some AI Systems May Be Impossible to Compute,” IEEE Spectrum, March 2022.

Theorem: Pick positive integers 𝑛𝑛 ≥ 3 and 𝑀𝑀. Class of problems such that:
• (Not trainable) No algorithm (even random) can train a neural network with 𝒏𝒏

digits of accuracy over the dataset with probability greater than 1/2.
• (Not practical) 𝒏𝒏 − 𝟏𝟏 digits of accuracy possible over the dataset, but any training 

algorithm requires arbitrarily large training data.
• (Trainable and practical) 𝒏𝒏 − 𝟐𝟐 digits of accuracy possible over the dataset via 

training algorithm using 𝑴𝑴 training data.
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Idea of mechanism

SCI machinery for embedding into
well-conditioned problems

General lemma
(works in other scenarios)

Paradox

Phase transitions
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The world of neural networks

Given a problem and conditions, where does it sit in this diagram?
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The world of neural networks

Given a problem and conditions, where does it sit in this diagram?
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Example counterpart theorem
Certain conditions: stable neural networks trained with exponential accuracy. 
E.g., approximate Łojasiewicz-type inequality:

1 min
𝑥𝑥∈ℂ𝑁𝑁

𝑓𝑓(𝑥𝑥) s. t. 𝐴𝐴𝑥𝑥 − 𝑦𝑦 ≤ ε

dist 𝑥𝑥, solution ≤ 𝛼𝛼([𝑓𝑓 𝑥𝑥 − 𝑓𝑓∗] + [ 𝐴𝐴𝑥𝑥 − 𝑦𝑦 − 𝜀𝜀] + 𝛿𝛿)
Fast Iterative REstarted NETworks (FIRENETs)

(unrolled primal-dual with novel restart scheme)
Theorem: Training algorithm that, under above assumption, produces stable neural 
networks 𝜑𝜑𝑛𝑛 of width 𝑂𝑂(𝑁𝑁), depth 𝑂𝑂(𝑛𝑛), guaranteed worst bound

dist 𝜑𝜑𝑛𝑛(𝑦𝑦), solution ≲ 𝑒𝑒−𝑛𝑛 + 𝛿𝛿

• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.
• C., “WARPd: A linearly convergent first-order method for inverse problems with approximate sharpness conditions,” SIIMS, to appear.
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Example of severe instability

• Zhu et al., “Image reconstruction by domain-transform manifold learning,” Nature, 2018.
• Antun et al., “On instabilities of deep learning in image reconstruction and the potential costs of AI,” PNAS, 2020.

MRI: discrete 2D 
Fourier transform, 
60% subsampling.

Perturbations 
computed in real 
space, mapped to 
measurement space.
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FIRENET: provably stable (even to adversarial examples) and accurate

• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.

Assumptions on sampling 
and approximate sparseness 
give approximate Łojasiewicz
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MRI: discrete 2D 
Fourier transform, 
15% subsampling.

All networks 
trained on 5000 
images of ellipses

Key pillars: stability and accuracy 30/31

• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.



U-Net with no noise: accurate but unstable

U-Net: standard 
neural network 
architecture for 
imaging. Approx 4 
million parameters.

30/31

• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.



U-Net with noise: stable but inaccurate 30/31

• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.



FIRENET: balances stability and accuracy? 30/31

• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.



FIRENET: balances stability and accuracy? 30/31

• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.

Open problem: use the toolkit to precisely prove theorems 
about optimal trade-offs.



Summary: When can algorithms be trusted?

Toolkit + programme:

• Classifying the difficulty of computational problems

• Proving the optimality of algorithms.

Two examples:

• Rigorous and verifiable data-driven dynamical systems: use the residual!

• Computational boundaries in AI: we need foundations!

Building blocks for further problems in data analysis and beyond …
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Additional slides



Example of “too much” (spectral pollution)
perpendicular
magnetic field

𝑥𝑥

𝑦𝑦
𝑧𝑧

𝐵𝐵:

quasicrystal

“Infinite-dimensional” method

Convergent computation
Error control

Naïve method

Spectral pollution
No error control

M
ag

ne
tic

 fi
el

d 
st

re
ng

th
 𝐵𝐵

Approx. of spectrum (energy)

Infinite matrix: discrete
Schrödinger operator Approx. of spectrum (energy)

Spectral
pollution

• C., Roman, Hansen, “How to compute spectra with error control,” Physical Review Letters, 2019.



Convergence of quadrature

E.g.,    𝒦𝒦𝜓𝜓𝑘𝑘 ,𝜓𝜓𝑗𝑗 = lim
𝑀𝑀→∞

∑𝑚𝑚=1
𝑀𝑀 𝑤𝑤𝑚𝑚𝜓𝜓𝑗𝑗 𝑥𝑥 𝑚𝑚 𝜓𝜓𝑘𝑘 𝑦𝑦 𝑚𝑚

[𝒦𝒦𝒦𝒦𝑘𝑘] 𝑥𝑥 𝑚𝑚

Three examples:

• High-order quadrature: 𝑥𝑥(𝑚𝑚),𝑤𝑤𝑚𝑚 𝑚𝑚=1
𝑀𝑀 𝑀𝑀-point quadrature rule.  

Rapid convergence. Requires free choice of 𝑥𝑥(𝑚𝑚)
𝑚𝑚=1
𝑀𝑀

and small 𝑑𝑑.

• Random sampling: 𝑥𝑥(𝑚𝑚)
𝑚𝑚=1
𝑀𝑀

selected at random.
Large 𝑑𝑑. Slow Monte Carlo 𝑂𝑂(𝑀𝑀−1/2) rate of convergence.

• Ergodic sampling: 𝑥𝑥(𝑚𝑚+1) = 𝐹𝐹(𝑥𝑥(𝑚𝑚)). 
Single trajectory, large 𝑑𝑑. Requires ergodicity, convergence can be slow.

Most common



Example: pendulum

• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” 
Communications on Pure and Applied Mathematics, under review.



Transient modes

𝜆𝜆 = 0.9439 + 0.2458𝑖𝑖, error ≤ 0.0765 𝜆𝜆 = 0.8948 + 0.1065𝑖𝑖, error ≤ 0.1105

• 12,000 snapshots over 1s
• Reynolds number ≈ 6.4 × 104
• Ambient dimension ≈ 100,000

(velocity at measurement points)
*Raw measurements provided by Máté Szőke (Virginia Tech)

Spectral pollution

Example: wall-jet boundary layer



Koopman mode decomposition (𝕂𝕂𝑉𝑉 = 𝑉𝑉Λ)

Standard Koopman mode decomposition (order modes by Λ ):
𝑔𝑔(𝑥𝑥) ≈ 𝜓𝜓1(𝑥𝑥) ⋯ 𝜓𝜓𝑁𝑁𝐾𝐾(𝑥𝑥) 𝑉𝑉

approx Koopman e−functions

𝑉𝑉 𝑊𝑊Ψ𝑋𝑋
†
𝑊𝑊 𝑔𝑔(𝑥𝑥(1)) ⋯ 𝑔𝑔(𝑥𝑥(𝑀𝑀)) T

Koopmanmodes

⇒
?
𝑔𝑔(𝑥𝑥𝑛𝑛) ≈ 𝜓𝜓1(𝑥𝑥) ⋯ 𝜓𝜓𝑁𝑁𝐾𝐾(𝑥𝑥) 𝑉𝑉

approx Koopman e−functions

Λ𝑛𝑛 𝑉𝑉 𝑊𝑊Ψ𝑋𝑋
†
𝑊𝑊 𝑔𝑔(𝑥𝑥(1)) ⋯ 𝑔𝑔(𝑥𝑥(𝑀𝑀)) T

Koopmanmodes

Residual Koopman mode decomposition (order modes by res 𝜆𝜆, 𝐯𝐯 ):
𝑔𝑔 𝑥𝑥 ≈ 𝜓𝜓1(𝑥𝑥) ⋯ 𝜓𝜓𝑁𝑁𝐾𝐾(𝑥𝑥) 𝑉𝑉(𝜀𝜀)

approx Koopman e−functions

𝑉𝑉(𝜀𝜀) 𝑊𝑊Ψ𝑋𝑋
†
𝑊𝑊 𝑔𝑔(𝑥𝑥(1)) ⋯ 𝑔𝑔(𝑥𝑥(𝑀𝑀)) T

Koopmanmodes

𝑔𝑔 𝑥𝑥𝑛𝑛 ≈ 𝜓𝜓1(𝑥𝑥0) ⋯ 𝜓𝜓𝑁𝑁𝐾𝐾(𝑥𝑥0) 𝑉𝑉(𝜀𝜀)
approx Koopman e−functions

Λ(𝜀𝜀)
𝑛𝑛 𝑉𝑉(𝜀𝜀) 𝑊𝑊Ψ𝑋𝑋

†
𝑊𝑊 𝑔𝑔(𝑥𝑥(1)) ⋯ 𝑔𝑔(𝑥𝑥(𝑀𝑀)) T

Koopmanmodes



extremely efficient
compression

Number of modes
Re

la
tiv

e 
M

SE

unseen shockwave
prediction
from 40 modes

Example: laser-induced plasma

Time(10−5s)

Pr
es

su
re
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𝐴𝐴𝐴𝐴 𝑟𝑟 = −
𝑑𝑑2𝐴𝐴
𝑑𝑑𝑟𝑟2

𝑟𝑟 +
𝑙𝑙 𝑙𝑙 + 1
𝑟𝑟2

+
𝑒𝑒−𝑟𝑟 − 1

𝑟𝑟
𝐴𝐴 𝑟𝑟 , 𝑟𝑟 > 0

Hellman potential

Example: ionization probabilities in < 1 second



𝐴𝐴𝐴𝐴 𝑟𝑟 = −
𝑑𝑑2𝐴𝐴
𝑑𝑑𝑟𝑟2

𝑟𝑟 +
𝑙𝑙 𝑙𝑙 + 1
𝑟𝑟2

+
𝑒𝑒−𝑟𝑟 − 1

𝑟𝑟
𝐴𝐴 𝑟𝑟 , 𝑟𝑟 > 0

ErrorSpectral Density
Hellman potential

Example: ionization probabilities in < 1 second



Extensions to PDEs

• Operator A on ℝ𝑑𝑑 of form

[𝐴𝐴𝐴𝐴] = �
𝑘𝑘∈ℤ≥0𝑑𝑑 , 𝑘𝑘 ≤𝑁𝑁

𝑐𝑐𝑘𝑘 𝑥𝑥 [𝜕𝜕𝑘𝑘𝐴𝐴](𝑥𝑥)

• Assume coefficients are
• Polynomially bounded
• Locally bounded total variation

• Build matrix representation using quasi-Monte Carlo integration.
→ Sample coefficients to compute Spec(𝐴𝐴) with error control!
NB: works for spectral methods, FEM, etc.



Eigenvalues of Dirac operator



Impossibility of computing approximations of the neural network to arbitrary accuracy. We demonstrate the impossibility
statement on fast iterative restarted networks Φ𝑛𝑛 and learned iterative shrinkage thresholding algorithm networks Ψ𝑛𝑛.
The table reveals the shortest 𝑙𝑙2 distance between the networks’ output and the problem’s true solution for different
values of 𝑚𝑚 (precision of training data is 2−𝑚𝑚). Neither of the trained neural networks can compute the existing correct
neural network to accuracy 10−𝑛𝑛, but both compute approximations that are accurate to 10−𝑛𝑛+1.

Example of impossibility theorem for 
subsampled discrete cosine transform

𝑚𝑚
𝑚𝑚
𝑚𝑚
𝑚𝑚
𝑚𝑚
𝑚𝑚
𝑚𝑚
𝑚𝑚
𝑚𝑚

10−𝑛𝑛



Stabilising unstable neural networks
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