Smale’s 18th Problem and
the Barriers of Deep Learning

Matthew Colbrook
University of Cambridge

Smale’s 18th problem®: What are the limits of artificial intelligence?

M. Colbrook, V. Antun, A. Hansen, “The difficulty of computing stable and accurate neural
networks: On the barriers of deep learning and Smale’s 18th problem” (PNAS, 2022)

*Steve Smale’s list of problems for the 21st century (requested by Vladimir Arnold), inspired by Hilbert's list.

http://www.damtp.cam.ac.uk/user/mjc249/home.html: slides, papers, and code
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A fun stat!

= ML Arxiv Papers = Moore's Law growth rate (2x/2 years)
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To keep up during first lockdown, would need to continually read a paper every 4 mins!
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Problem: hallucinations and instability

Hallucinations in image reconstruction Instabilities in medical diagnosis
Original image AT reconstruction Original Mole Perturbed Mole

| Benign
,l ,,,,, Malignant Malignant
Model confidence Model confidence
“Al generated hallucination”, from Facebook and NYU’s From Finlayson et al., “Adversarial attacks on
FastMRI challenge 2020 medical machine learning,” Science, 20109.

When can we make Al robust and trustworthy?



Smale's 18th problem:
“What are the limits of Al?”

“Very often, the creation of a technological artifact precedes the
science that goes with it. The steam engine was invented before
thermodynamics. Thermodynamics was invented to explain the steam
engine, essentially the limitations of it. What we are after is the
equivalent of thermodynamics for intelligence.” Yann LeCun

“2021 was the year in which the wonders of artificial intelligence
stopped being a story. Many of this year's top articles grappled with the
limits of deep learning (today's dominant strand of Al).”

IEEE Spectrum, 2021's Top Stories About Al (Dec. 2021)
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Example of the limits of deep learning

Paradox: “Nice” linear inverse problems where a stable and accurate neural
network for image reconstruction exists, but it can never be trained!

E.g., suppose we want to solve (holds for much more general problems)

min ||x||,1 + A||Ax — v||?
min|lxll; + 21l14x =yl

A € C"™*N (modality, m < N), S = {yx }E_,(samples)
Arises when given y = Ax + e.

Enforce condition numbers bounded by 1.
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Data

A € C™N (modality, m < N), S = {y}R_,(samples)

In practice, A is not known exactly or cannot be stored to infinite precision.

4 R p
Assume access to {y"»k}k=1 and A,, (rational approx, e.g., floats) such that

H)’n,k — Yk” <27 |4, — Al <277, n € N.
. y
Training set for (4,5) € (.

las = {(yn,k,An): k=1,..,Randn € N}.

In a nutshell: allow access to arbitrary precision training data.

‘Question: Given a collection Q of (4,S), does there exist a neural network )

approximating the solution map, and can it be trained by an algorithm?
. J
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What could go wrong?

min ||x|,1 + Al|Ax — v]||?
min|lxll; + Allax - Y2

What could go wrong?

1. Non-existence: No neural network approximates solution map.
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What could go wrong?

min ||x|,1 + Al|Ax — v]||?
min|lxll; + Allax - Y2

What could go wrong?

2. Non-trainable: 3 a neural network that approximates solution map, but
it cannot be trained.

3. Not practical: 3 a neural network that approximates solution map, and
an algorithm training it. However, the algorithm needs prohibitively
many samples.
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Example of the limits of deep learning

Paradox: “Nice” linear inverse problems where a stable and accurate neural
network for image reconstruction exists, but it can never be trained!

Theorem: Pick positive integers n = 3 and M. Class of problems such that:
* (Not trainable) No algorithm (even random) can train a neural network with n
digits of accuracy over the dataset with probability greater than 1/2.
* (Not practical) n — 1 digits of accuracy possible over the dataset, but any training
algorithm requires arbitrarily large training data.
e (Trainable and practical) n — 2 digits of accuracy possible over the dataset via
training algorithm using M training data.

Holds for any architecture, any precision of training data.

— Classification theory telling us what can and cannot be done

C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.
Antun, C., Hansen, “Proving Existence Is Not Enough: : Mlathematical Paradoxes Unravel the Limits of Neural Networks in Artificial Intelligence,” SIAM News, May 2022.
Choi, “Some Al Systems May Be Impossible to Compute,” IEEE Spectrum, March 2022.



Numerical example: fails with training methods

| _ . _ A, —A[ <27 K
dist(Wa,(yn), =(A,y)) | dist(Pa,(yn), =(A, y)) lyn — ylle < 27" 10
0.2999690 0.2597827 n=10 101
0.3000000 0.2598050 n =20 101
0.3000000 0.2598052 n = 30 101
0.0030000 0.0025980 n=10 103
0.0030000 0.0025980 n =20 103
0.0030000 0.0025980 n = 30 103
0.0000030 0.0000015 n=10 10—
0.0000030 0.0000015 n =20 10~
0.0000030 0.0000015 n = 30 10°°

A € C19%20 from discrete cosine transform, R = 8000, solutions 6-sparse.
LISTA (learned iterative shrinkage thresholding algorithm) ¥, and
FIRENETs @4 . The table shows the shortest [, distance between the
output and the true minimizer of the problem for different values of n, K.
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A paradox relevant to applications
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The world of neural networks

Existence of NNs
& training algorithms

B trainable w/ 1 datum

O trainable w/ 2 data

arb. large training data

[] NN exists ~—

Given a problem and conditions, where does it sit in this diagram?



The world of neural networks

Existence of NNs Achievable accuracy
& training algorithms of computation

B trainable w/ 1 datum arbitrary accuracy

[ trainable w/ 2 data

3 digits of accuracy

arb. large training data 2 digits of accuracy

NN exists ~_ 1 digit of accuracy

Given a problem and conditions, where does it sit in this diagram?

10/16
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Example counterpart theorem

Certain conditions: stable neural networks trained with exponential accuracy.
E.g., approximate tojasiewicz-type inequality:

(D min f(x) st |Ax —yll < €
dist(x, solution) < a([f(x) — f*] + [l|Ax — y|| — €] + 9)

Fast Iterative REstarted NETworks (FIRENETS)
(unrolled primal-dual with novel restart scheme)

Theorem: Training algorithm that, under above assumption, produces stable neural
networks ¢,, of width O(N), depth O(n), guaranteed worst bound

dist(¢,(v),solution) S e ™™+ 4§

e C,, Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.
* C, “WARPd: A linearly convergent first-order method for inverse problems with approximate sharpness conditions,” SIIMS, 2022.
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Demonstration of convergence

Fourier Sampling Walsh Sampling

Image
‘ e {

Figure: Images corrupted with 2% Gaussian noise and reconstructed using 15% sampling.



Relative Error
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Demonstration of convergence

Convergence, Fourier Sampling

reconstruction error

10 20 30 40 50

Number of Hidden Layers

60

Relative Error

1071 F

102 |

1073 |

Convergence, Walsh Sampling

reconstruction error

10 20 30 40 50 60

Number of Hidden Layers
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VIRIsdiscrete 20 Example of severe instability

Fourier transform, |  Original « |z + 71| |z + 7o)
60% subsampling.

Perturbations
computed in real
space, mapped to
measurement space.

* Zhu et al., “Image reconstruction by domain-transform manifold learning,” Nature, 2018.
* Antun et al., “On instabilities of deep learning in image reconstruction and the potential costs of Al,” PNAS, 2020.
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FIRENET: provably stable (even to adversarial examples) and accurate

Original x |z + v3]

Assumptions on sampling
and approximate sparseness
give approximate tojasiewicz

e C,, Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.
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Stabilising unstable neural networks

AUTOMAP+FIRENET rec. from
Yy = Ax + é3

D (g,¥(g)) FIRENET rec. fromy = Ax + é3
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Key pillars: stability and accuracy

Original « Original Original + detail (x + h1)

(full size) (cropped, red frame) (cropped, blue frame)

MRI: discrete 2D
Fourier transform,
15% subsampling.

All networks
trained on 5000
images of ellipses

C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.



U-Net with no noise: accurate but unstable ~ *"¢

Original « Original Original + detail (x + h1)
(full size) (cropped, red frame) (cropped, blue frame)

U-Net: standard
neural network
architecture for
imaging. Approx 4
million parameters.

e C,, Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.



U-Net with noise: stable but inaccurate 13/16

Original « Original Original + detail (x + h1)
(full size) (cropped, red frame) (cropped, blue frame)

C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.



FIRENET: balances stability and accuracy?  */*

Original « Original Original + detail (x + h1)
(full size) (cropped, red frame) (cropped, blue frame)

Can u
see 1t?

e C,, Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.



FIRENET: balances stability and accuracy?  **

Original « Original Original + detail (x + h1)
(full size) (cropped, red frame) (cropped, blue frame)

Open problem: use the toolkit to precisely prove theorems
about optimal trade-offs.

Can u
see 1t?

e C,, Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.
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Summary

Need for foundations in Al/deep learning!

e Paradox: Nice linear inverse problems where stable and accurate
neural network exists but cannot be trained!

* Trainability depends on
e Accuracy desired.
 Amount of training data.

 Specific conditions = FIRENETs exp. convergence
+ withstand adversarial attacks.

* Trade-off between stability and accuracy in deep learning.
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