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To keep up during first lockdown, would need to continually read a paper every 4 mins!

A fun stat!
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When can we make AI robust and trustworthy?

“AI generated hallucination”, from Facebook and NYU’s
FastMRI challenge 2020

From Finlayson et al., “Adversarial attacks on
medical machine learning,” Science, 2019.

Problem: hallucinations and instability 
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Smale's 18th problem:
“What are the limits of AI?”

Foundations ⟹ understanding, feasible directions, new methods, …

“Very often, the creation of a technological artifact precedes the
science that goes with it. The steam engine was invented before
thermodynamics. Thermodynamics was invented to explain the steam
engine, essentially the limitations of it. What we are after is the
equivalent of thermodynamics for intelligence.” Yann LeCun

“2021 was the year in which the wonders of artificial intelligence
stopped being a story. Many of this year's top articles grappled with the
limits of deep learning (today's dominant strand of AI).”

IEEE Spectrum, 2021's Top Stories About AI (Dec. 2021)
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Example of the limits of deep learning

Paradox: “Nice” linear inverse problems where a stable and accurate neural 
network for image reconstruction exists, but it can never be trained!

E.g., suppose we want to solve (holds for much more general problems)

min
𝑥∈ℂ𝑁

𝑥 𝑙1 + 𝜆 𝐴𝑥 − 𝑦 𝑙2
2

𝐴 ∈ ℂ𝑚×𝑁 modality,𝑚 < 𝑁 , 𝑆 = 𝑦𝐾 𝐾=1
𝑅 samples

Arises when given 𝑦 ≈ 𝐴𝑥 + 𝑒.

Enforce condition numbers bounded by 1.
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𝐴 ∈ ℂ𝑚×𝑁 modality,𝑚 < 𝑁 , 𝑆 = 𝑦𝑘 𝑘=1
𝑅 samples

In practice, 𝐴 is not known exactly or cannot be stored to infinite precision.

Assume access to 𝑦𝑛,𝑘 𝑘=1

𝑅
and 𝐴𝑛 (rational approx, e.g., floats) such that

𝑦𝑛,𝑘 − 𝑦𝑘 ≤ 2−𝑛, 𝐴𝑛 − 𝐴 ≤ 2−𝑛, 𝑛 ∈ ℕ.

Training set for (𝐴, 𝑆) ∈ Ω:
𝜄𝐴,𝑆 = 𝑦𝑛,𝑘, 𝐴𝑛 : 𝑘 = 1,… , 𝑅 and 𝑛 ∈ ℕ .

In a nutshell: allow access to arbitrary precision training data.

Question: Given a collection Ω of (𝐴, 𝑆), does there exist a neural network

approximating the solution map, and can it be trained by an algorithm?

Data
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What could go wrong?

min
𝑥∈ℂ𝑁

𝑥 𝑙1 + 𝜆 𝐴𝑥 − 𝑦 𝑙2
2

What could go wrong?

1. Non-existence: No neural network approximates solution map.

2. Non-trainable: ∃ a neural network that approximates solution map, but 
it cannot be trained.

3. Not practical: ∃ a neural network that approximates solution map, and 
an algorithm training it. However, the algorithm needs prohibitively 
many samples.
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Example of the limits of deep learning

Paradox: “Nice” linear inverse problems where a stable and accurate neural 
network for image reconstruction exists, but it can never be trained!

• Pick positive integers 𝑛 ≥ 3 and 𝑀. Class of problems such that:
• (Not trainable) No algorithm, even randomised, can produce a neural network with 𝑛 digits 

of accuracy for any member of the dataset with probability greater than 1/2.

• (Not practical) 𝑛 − 1 digits of accuracy is possible over the whole dataset, but any 
algorithm that trains such a neural network requires arbitrarily large training data.

• (Trainable and practical) 𝑛 − 2 digits of accuracy is possible over the whole dataset via an 
algorithm using only 𝑀 training data, regardless of all parameters (e.g., dimension).

Holds for any architecture, any precision of training data.

⟹ Classification theory telling us what can and cannot be done

• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.
• Antun, C., Hansen,“Proving Existence Is Not Enough: : Mathematical Paradoxes Unravel the Limits of Neural Networks in Artificial Intelligence,”SIAM News, May 2022.
• Choi, “Some AI Systems May Be Impossible to Compute,” IEEE Spectrum, March 2022.

Theorem: Pick positive integers 𝑛 ≥ 3 and 𝑀. Class of problems such that:
• (Not trainable) No algorithm (even random) can train a neural network with 𝒏

digits of accuracy over the dataset with probability greater than 1/2.
• (Not practical) 𝒏 − 𝟏 digits of accuracy possible over the dataset, but any training 

algorithm requires arbitrarily large training data.
• (Trainable and practical) 𝒏 − 𝟐 digits of accuracy possible over the dataset via 

training algorithm using 𝑴 training data.
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Numerical example: fails with training methods

𝐴 ∈ ℂ19×20 from discrete cosine transform, 𝑅 = 8000, solutions 6-sparse.
LISTA (learned iterative shrinkage thresholding algorithm) Ψ𝐴𝑛 and
FIRENETs Φ𝐴𝑛 . The table shows the shortest 𝑙2 distance between the
output and the true minimizer of the problem for different values of 𝑛, 𝐾.
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A paradox relevant to applications
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The world of neural networks

Given a problem and conditions, where does it sit in this diagram?
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The world of neural networks

Given a problem and conditions, where does it sit in this diagram?
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Example counterpart theorem
Certain conditions: stable neural networks trained with exponential accuracy. 
E.g., approximate Łojasiewicz-type inequality:

1 min
𝑥∈ℂ𝑁

𝑓(𝑥) s. t. 𝐴𝑥 − 𝑦 ≤ ε

dist 𝑥, solution ≤ 𝛼([𝑓 𝑥 − 𝑓∗] + [ 𝐴𝑥 − 𝑦 − 𝜀] + 𝛿)

Fast Iterative REstarted NETworks (FIRENETs)
(unrolled primal-dual with novel restart scheme)

Theorem: Training algorithm that, under above assumption, produces stable neural
networks 𝜑𝑛 of width 𝑂(𝑁), depth 𝑂(𝑛), guaranteed worst bound

dist 𝜑𝑛(𝑦), solution ≲ 𝑒−𝑛 + 𝛿

• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.
• C., “WARPd: A linearly convergent first-order method for inverse problems with approximate sharpness conditions,” SIIMS, 2022.
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Demonstration of convergence
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Demonstration of convergence
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Example of severe instability

• Zhu et al., “Image reconstruction by domain-transform manifold learning,” Nature, 2018.
• Antun et al., “On instabilities of deep learning in image reconstruction and the potential costs of AI,” PNAS, 2020.

MRI: discrete 2D 
Fourier transform, 
60% subsampling.

Perturbations 
computed in real 
space, mapped to 
measurement space.
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FIRENET: provably stable (even to adversarial examples) and accurate

• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.

Assumptions on sampling 
and approximate sparseness 
give approximate Łojasiewicz
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Stabilising unstable neural networks
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MRI: discrete 2D 
Fourier transform, 
15% subsampling.

All networks 
trained on 5000 
images of ellipses

Key pillars: stability and accuracy

• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.
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U-Net with no noise: accurate but unstable

U-Net: standard 
neural network 
architecture for 
imaging. Approx 4 
million parameters.

• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.
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U-Net with noise: stable but inaccurate

• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.
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FIRENET: balances stability and accuracy?

• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.
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FIRENET: balances stability and accuracy?

• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.

Open problem: use the toolkit to precisely prove theorems 
about optimal trade-offs.
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Summary

Need for foundations in AI/deep learning!

• Paradox: Nice linear inverse problems where stable and accurate 
neural network exists but cannot be trained!

• Trainability depends on
• Accuracy desired.

• Amount of training data.

• Specific conditions ⇒ FIRENETs exp. convergence
+ withstand adversarial attacks.

• Trade-off between stability and accuracy in deep learning.
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