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Interest in deep learning unprecedented and exponentially growing

Google search (7th Jan) “deep learning” or “machine learning” yields ≈2.5 billion hits
Contrast with “computational mathematics” which has <150 million hits

Figure: Source: ‘Deep Learning to Solve Challenging Problems’ (Google AI)

To keep up last year, you would need to continually read a paper every < 5 mins!



Why is AI suddenly such a big deal?
AI techniques are replacing humans in problem solving:

I Self-driving vehicles

I Automated diagnosis in medicine and automated decision processes

I Automated weapon systems

I Music composition

I Call centres

I Any security system based on face or voice recognition

I Mathematical proofs

AI techniques are replacing established algorithms in science:

I Medical imaging (MRI, CT, etc)

I Microscopy

I Imaging problems in general

I Radar, sonar, etc.

I Methods for solving PDEs



Will AI replace standard algorithms in medical imaging?
“superior immunity to noise and a reduction in reconstruction artefacts compared with
conventional handcrafted reconstruction methods”



A bold claim?



Very strong confidence in deep learning

The New Yorker quotes Geoffrey Hinton (April 2017):

“They should stop training radiologists now.”

BUT...



DANGER: AI generated hallucinations



The danger of false positives



Deep Fool



DL is also unstable in inverse problems!



Example

|x | |Ψ(Ax)|

Network (33% subsampling) from: J. Schlemper, J. Caballero, J. V. Hajnal, A. Price and D. Rueckert, ’A deep cascade of convolutional neural
networks for MR image reconstruction’, in International conference on information processing in medical imaging, Springer, 2017, pp. 647–658.
Figures from: Antun, V., Renna, F., Poon, C., Adcock, B., & Hansen, A. C., ’On instabilities of deep learning in image reconstruction and the
potential costs of AI ’. Proc. Natl. Acad. Sci. USA, 2020..



Example

|x + r1| |Ψ(A(x + r1))|

Network (33% subsampling) from: J. Schlemper, J. Caballero, J. V. Hajnal, A. Price and D. Rueckert, ’A deep cascade of convolutional neural
networks for MR image reconstruction’, in International conference on information processing in medical imaging, Springer, 2017, pp. 647–658.
Figures from: Antun, V., Renna, F., Poon, C., Adcock, B., & Hansen, A. C., ’On instabilities of deep learning in image reconstruction and the
potential costs of AI ’. Proc. Natl. Acad. Sci. USA, 2020..



Example

|x + r2| |Ψ(A(x + r2))|

Network (33% subsampling) from: J. Schlemper, J. Caballero, J. V. Hajnal, A. Price and D. Rueckert, ’A deep cascade of convolutional neural
networks for MR image reconstruction’, in International conference on information processing in medical imaging, Springer, 2017, pp. 647–658.
Figures from: Antun, V., Renna, F., Poon, C., Adcock, B., & Hansen, A. C., ’On instabilities of deep learning in image reconstruction and the
potential costs of AI ’. Proc. Natl. Acad. Sci. USA, 2020..



Example

|x + r3| |Ψ(A(x + r3))|

Network (33% subsampling) from: J. Schlemper, J. Caballero, J. V. Hajnal, A. Price and D. Rueckert, ’A deep cascade of convolutional neural
networks for MR image reconstruction’, in International conference on information processing in medical imaging, Springer, 2017, pp. 647–658.
Figures from: Antun, V., Renna, F., Poon, C., Adcock, B., & Hansen, A. C., ’On instabilities of deep learning in image reconstruction and the
potential costs of AI ’. Proc. Natl. Acad. Sci. USA, 2020..



Reconstruction using state-of-the-art standard methods

SoA from Ax SoA from A(x + r3)



AI generated hallucinations with random noise
|x + v1| Φ(A(x + v1)) Φ(A(x + v2)) Φ(A(x + v3))

(Full image) (Cropped) (Cropped) (Cropped)

|x + v1| Ψ(A(x + v1)) Ψ(A(x + v2)) Ψ(A(x + v3))
(Cropped) (Cropped) (Cropped) (Cropped)

Worst of 100 Worst of 20 Worst of 1



Facebook and NYU’s 2020 FastMRI challenge8
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Fig. 5. Scatter plot of mean radiologist rank across cases. The horizontal
axis has a separate tick for each case evaluated by the radiologist cohort. The
scatter plot markers indicate whether that method was from the team with the
highest, middle, or lowest SSIM scores. We generally observed radiologists
awarding the best ranks to models with the best SSIM score.

0.781 for the 4X Transfer track (where 0 indicates complete
disagreement and 1 indicates complete agreement). In the 4X
and 8X tracks, discordance was primarily driven by two sub-
missions (Neurospin and ATB) that were very close in SSIM
score. For the Transfer track, separation among the teams
was more clear, and we observed corresponding increases in
concordance.

Radiologists did take note of hallucinatory effects intro-
duced by the submission models. Figure 6 shows hallucination
examples from all three tracks. In some cases methods created
artifact-mimics. In other examples, models morphed an abnor-
mality into a more normal brain structure, such as a sulcus or
vessel. Finally, we observed at least one example combining
these two where an artifact was created at some intermediate
layer of a model and then processed by the remaining portions
of the network into a normal structure mimic.

IV. DISCUSSION

A. Submission Overview

In the 2019 challenge all three tracks were very closely
contested, with little separation between teams either in the
quantitative or the radiologist evaluation phases. We observed
this pattern to be reversed in the 2020 challenge, with one
team assertively scoring the best in all evaluation phases. For
some images in the 4X track, multiple radiologists said that
they did not observe major differentiating aspects affecting
the depiction of pathology in the submissions. However, when
averaging the radiologists’ rankings, radiologists preferred the
method that had the highest-scoring on SSIM from AIRS
Medical. We further observed that the AIRS model scored
highest on Likert-type ratings of artifacts, sharpness, and
CNR. This model also provided improvement over the base-
line [14], which had previously been demonstrated for clinical
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Fig. 6. Examples of reconstruction hallucinations among challenge submis-
sions with SSIM scores over residual plots (residuals magnified by 5). (top)
A 4X submission from Neurospin generated a false vessel, possibly related
to susceptibilities introduced by surgical staples. (middle) An 8X submission
from ATB introduced a linear bright signal mimicking a cleft of cerebrospinal
fluid, as well as blurring of the boundaries of the extra-axial mass. (bottom) A
submission from ResoNNance introduced a false sulcus or prominent vessel.

interchangeability at 4X for knee imaging [48]. Outside of
the AIRS model, in the 4X and 8X tracks the second and
third-place models scored very close together in both the
quantitative and the qualitative evaluation phase. In some cases
the SSIM scores for these two models were identical out to
three decimal places.

We observed decreases in performance in the Transfer track.
Many participants struggled to adapt their models to the GE
data with its lack of disk-written frequency oversampling.
Although technically the GE scanner did not operate in any ma-
jorly different way than Philips and Siemens scanners (all use
frequency oversampling), this simple aspect rendered many
models useless in this track without modification. Another
factor was a divergence in FLAIR methodology: our Philips
and Siemens data used T2 FLAIR images, whereas the GE
data had T1 FLAIR images. Modifications for correcting
these effects seem not to be straightforward. We note that
as designed the Transfer track primarily evaluated one type
of transfer: generalization across vendors. This was the most
commonly-cited type of transfer in feedback from the 2019
challenge, but future challenges may investigate other types
of transfer.

In terms of radiologist evaluations, despite the drawbacks
of SSIM and RSS ground truths, we observed a correlation
between radiologist scores and SSIM scores for large SSIM
separations. Multiple radiologists found images at 4X to
be similar in terms of depiction of the pathology, although
artifacts tended to be more problematic in T1POST images.
When it came to the 8X and Transfer tracks, radiologist



Optimism: Echoes of an old story

Hilbert’s vision at start of 20th century: provide secure foundations for all mathematics.

I All mathematical statements should be written in a
precise formal language, and manipulated according
to well defined rules.

I Completeness: a proof that all true mathematical
statements can be proved in the formalism.

I Consistency: a proof that no contradiction can be
obtained in the formalism of mathematics.

I Decidability: an algorithm for deciding the truth or
falsity of any mathematical statement.

Hilbert’s 10th problem: Provide an algorithm which, for any given Diophantine
equation (polynomial equation with integer coefficients and finite number of unknowns),
can decide whether the equation has an integer-valued solution.



Foundations ⇒ better understanding, discover feasible directions for
techniques, discover new methods,...

Gödel (arguably father of modern logic) and Turing (arguably father of modern
computer science) turned Hilbert’s optimism upside down:

I True statements in mathematics that cannot be proven.
I Problems that cannot be computed by an algorithm.

Hilbert’s 10th problem (Solution in 1970, Matiyasevich): No such algorithm exists.



A program for the foundations of DL and AI

Smale’s 18th problem*: What are the limits of artificial intelligence?

A program determining the foundations/limitations of deep learning and AI is needed:

I Boundaries of methodologies.

I Universal/intrinsic boundaries (e.g. no algorithm can do it).

There is a key difference between existence and construction here.

Need to also incorporate two pillars of numerical analysis:

I Stability

I Accuracy

GOAL for rest of talk: Develop some results in this direction for inverse problems.

*Steve Smale composed a list of problems for the 21st century in reply to a request of Vladimir Arnold
inspired by Hilbert’s list.



Mathematical setup

Given measurements y = Ax + e recover x ∈ CN .

I x ∈ CN be an unknown vector,

I A ∈ Cm×N be a matrix (m < N) describing modality (e.g. MRI), and

I y = Ax + e the noisy measurements of x .

Outline:

I Fundamental barriers

I Sufficient conditions and Fast Iterative REstarted NETworks (FIRENETs)

I Balancing stability and accuracy



Sparse linear systems

m

N

=

Ax = y

We say that a vector x ∈ CN is s-sparse, if it has at most s non-zero components.



Sparse solutions of underdetermined systems have many applications!

I Linear regression in statistics – The LASSO

I Medical imaging - MRI, CT, microscopy . . .

I Non-linear function approximation

I Error correction

I Explainable AI - LIME

I Dictionary learning and sparse coding

I Classification



Can we compute neural networks that solve (Pj)?

Sparse regularisation (benchmark method):

min
x∈CN

‖x‖l1 subject to ‖Ax − y‖l2 ≤ η (P1)

min
x∈CN

λ‖x‖l1 + ‖Ax − y‖2
l2 (P2)

min
x∈CN

λ‖x‖l1 + ‖Ax − y‖l2 (P3)

Denote the minimising vectors by Ξ.

I Avoid bizarre, unnatural & pathological mappings: (Pj) well-understood & well-used!

I Simpler solution map than inverse problem ⇒ stronger impossibility results.

I DL has also been used to speed up sparse regularisation and tackle (Pj).



Approximation qualities of neural nets

Theorem (Universal Approximation Theorem)
Let ρ ∈ C (R) (activation function) and assume that ρ is not a polynomial. Let K ⊂ Rd be
compact, f ∈ C (K ) and ε > 0. Then there exists a neural network (with one hidden layer) φ
such that

sup
x∈K
|φ(x)− f (x)| ≤ ε.

Theorem (Universal Interpolation Theorem)
Let ρ ∈ C (R) and assume that ρ is not a polynomial. For any k distinct points {xj}kj=1 ⊂ Rd

and associated data {αj}kj=1 ⊂ R. Then there exists a neural network (with on hidden layer) φ
such that

φ(xj) = αj , j = 1, . . . , k.



Approximation qualities of neural nets

A zoo of so-called “universal approximation” theorems. However, this is not enough:

(a) Other methods (e.g. polynomials, splines, wavelets, etc.) have universal
approximation theorems. Why are NNs so effective? E.g., are there useful classes of
functions that are efficiently approximated by NNs but not classical methods?

(b) We want to construct or compute a good neural network. There is a subtle
difference between existence and computability (more on this later).

We will focus on point (b). For point (a) (which is largely open) see, for example:

DeVore, R., Hanin, B. and Petrova, G., 2020. Neural Network Approximation. arXiv preprint
arXiv:2012.14501.



What could go wrong?

min
x∈CN

‖x‖l1 subject to ‖Ax − y‖l2 ≤ η (P1)

min
x∈CN

λ‖x‖l1 + ‖Ax − y‖2
l2 (P2)

min
x∈CN

λ‖x‖l1 + ‖Ax − y‖l2 (P3)

(i) There does not exist a neural network that approximates the function we are
interested in.

(ii)

(iii)



What could go wrong?
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What could go wrong?

min
x∈CN

‖x‖l1 subject to ‖Ax − y‖l2 ≤ η (P1)
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l2 (P2)

min
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(i) There does not exist a neural network that approximates the function we are
interested in.

(ii) There does exist a neural network that approximates the function, however, there
does not exist an algorithm that can construct the neural network.

(iii)



What could go wrong?

min
x∈CN

‖x‖l1 subject to ‖Ax − y‖l2 ≤ η (P1)

min
x∈CN

λ‖x‖l1 + ‖Ax − y‖2
l2 (P2)

min
x∈CN

λ‖x‖l1 + ‖Ax − y‖l2 (P3)

(i) There does not exist a neural network that approximates the function we are
interested in.

(ii) There does exist a neural network that approximates the function, however, there
does not exist an algorithm that can construct the neural network.

(iii) There does exist a neural network that approximates the function, and an algorithm
to construct it. However, the algorithm will need prohibitively many samples.



The set-up

A ∈ Cm×N (modality), S = {yk}Rk=1 ⊂ Cm (samples), R <∞
Question: Given a collection Ω of (A,S), does there exist a neural network
approximating Ξ (solution map of (Pj)), and can it be trained by an algorithm?

In practice, the matrix A is not known exactly or cannot be stored to infinite precision.

Assume access to: {yk,n}Rk=1 and An (rational approximations, e.g. floats) such that

‖yk,n − yk‖ ≤ 2−n, ‖An − A‖ ≤ 2−n, ∀n ∈ N.

And {xk,n}Rk=1 such that infx∗∈Ξ(An,yk,n) ‖xk,n − x∗‖ ≤ 2−n, ∀n ∈ N.

Training set associated with (A,S) ∈ Ω is

ιA,S := {(yk,n,An, xk,n) | k = 1, . . . ,R, and n ∈ N} .



Good news - a good neural network exists

Theorem (Neural networks exist for Ξ)

For (Pj) and any family Ω of (A,S), there exists a mapping

K : ιA,S → ϕA,S (a neural network)

such that ϕA,S(y) solves (Pj) for each y ∈ S. In other words, K maps the training
data to NNs that solve the optimisation problem (Pj) for each (A,S) ∈ Ω.

Proof.
Easy - apply universal approximation/interpolation theorems.



Bad news - can’t necessarily approximate such a neural network

Theorem
For (Pj), N ≥ 2 and m < N. Let K > 2 be a positive integer, L ∈ N. Then there exists a
well-conditioned class (condition numbers ≤ 1) Ω of elements (A,S) s.t. (Ω fixed in what follows):

(i) There does not exist any algorithm that, given a training set ιA,S , produces a neural network
φA,S with

min
y∈S

inf
x∗∈Ξ(A,y)

‖φA,S(y)− x∗‖l2 ≤ 10−K , ∀ (A,S) ∈ Ω. (1)

Furthermore, for any p > 1/2, no probabilistic algorithm can produce a neural network φA,S
such that (1) holds with probability at least p.

(ii) There exists an algorithm that produces a neural network φA,S such that

max
y∈S

inf
x∗∈Ξ(A,y)

‖φA,S(y)− x∗‖l2 ≤ 10−(K−1), ∀ (A,S) ∈ Ω.

However, for any such algorithm (even probabilistic), M ∈ N and p ∈
[
0, N−m

N+1−m

)
, there exists a

training set ιA,S such that for all y ∈ S,
P
(

inf
x∗∈Ξ(A,y)

‖φA,S(y)− x∗‖l2 > 101−K or size of training data needed > M
)
> p.

(iii) There exists an algorithm using only L training data from each ιA,S that produces a neural
network φA,S(y) such that

max
y∈S

inf
x∗∈Ξ(A,y)

‖φA,S(y)− x∗‖l2 ≤ 10−(K−2), ∀ (A,S) ∈ Ω.



In words...

Nice classes Ω where one can prove NNs with great approximation qualities exist. But:

I No algorithm, even randomised can train (or compute) such a NN accurate to K
digits with probability greater than 1/2.

I There exists a deterministic algorithm that computes a NN with K −1 correct digits,
but any such (even randomised) algorithm needs arbitrarily many training data.

I There exists a deterministic algorithm that computes a NN with K − 2 correct
digits using no more than L training samples.

Result independent of neural network architecture - a universal barrier.

Existence vs computation (universal approximation/interpolation theorems not enough).

Conclusion: Theorems on existence of neural networks may have little to do with the
neural networks produced in practice.



Numerical example: fails with training methods

dist(ΨAn(yn),Ξ3(A, y)) dist(ΦAn(yn),Ξ3(A, y))
‖An − A‖ ≤ 2−n

‖yn − y‖l2 ≤ 2−n
10−K ΩK

0.2999690 0.2597827 n = 10 10−1 K = 1
0.3000000 0.2598050 n = 20 10−1 K = 1
0.3000000 0.2598052 n = 30 10−1 K = 1
0.0030000 0.0025980 n = 10 10−3 K = 3
0.0030000 0.0025980 n = 20 10−3 K = 3
0.0030000 0.0025980 n = 30 10−3 K = 3
0.0000030 0.0000015 n = 10 10−6 K = 6
0.0000030 0.0000015 n = 20 10−6 K = 6
0.0000030 0.0000015 n = 30 10−6 K = 6

Table: (Impossibility of computing the existing neural network to arbitary accuracy). A
constructed from discrete cosine transform, R = 8000, N = 20, m = 19, solutions are 6-sparse.
We demonstrate the impossibility statement (i) on FIRENETs ΦAn , and LISTA (learned iterative
shrinkage thresholding algorithm) networks ΨAn . The table shows the shortest l2 distance
between the output from the networks, and the true minimizer of the problem (P3), with wl = 1
and λ = 1, for different values of n and K .



The basic mechanism

Similar phase transitions can be built for (Pj) in arbitrary dimensions.



Can we avoid this?

x̂ = argmin f (x), f ∗ = min f (x)

Question: Can we find ‘good’ input classes where

f (x) < f ∗ + ε =⇒ ‖x − x̂‖ . ε

We shall see that the answer is yes!



State-of-the-art model for sparse regularisation

Definition [Sparsity in levels]: Let M = (M1, . . . ,Mr ) ∈ Nr , where 1 ≤ M1 < · · · <
Mr = N, and s = (s1, . . . , sr ) ∈ Nr

0, where sk ≤ Mk − Mk−1 for k = 1, . . . , r and
M0 = 0. A vector x ∈ CN is (s,M)-sparse in levels if

|supp(x) ∩ {Mk−1 + 1, ...,Mk}| ≤ sk , k = 1, ..., r .

The total sparsity is s = s1 + ...+ sr . We denote the set of (s,M)-sparse vectors by
Σs,M. We also define the following measure of distance of a vector x to Σs,M by

σs,M(x)l1w = inf{‖x − z‖l1w : z ∈ Σs,M}.



The robust nullspace property

Definition [weighted rNSP in levels]: Let (s,M) be local sparsities and sparsity
levels respectively. For weights {wi}Ni=1 (wi > 0), we say that A ∈ Cm×N satisfies the
weighted robust null space property in levels (weighted rNSPL) of order (s,M) with
constants 0 < ρ < 1 and γ > 0 if for any (s,M) support set ∆,

‖x∆‖l2 ≤
ρ‖x∆c‖l1w√

ξ
+ γ‖Ax‖l2 , for all x ∈ CN .

ξ :=
r∑

k=1

w2
(k)sk , ζ := min

k=1,...,r
w2

(k)sk , κ :=
ξ

ζ
.

rNSPL⇒ ‖z1 − z2‖l2 . σs,M(z2)l1w + ‖Az2 − y‖l2︸ ︷︷ ︸
“small”

+
(
λ‖z1‖l1w + ‖Az1 − y‖l2 − λ‖z2‖l1w − ‖Az2 − y‖l2

)︸ ︷︷ ︸
FA

3 (z1,y ,λ)−FA
3 (z2,y ,λ)

,



Main result

Simplified version of Theorem: We provide an algorithm such that:

Input: Sparsity parameters (s,M), weights {wi}Ni=1, A ∈ Cm×N (with the input A
given by {Al}) satisfying the rNSPL with constants 0 < ρ < 1 and γ > 0,
n ∈ N and positive {δ, b1, b2}.

Output: A neural network φn with O(n) layers and the following property.

For any x ∈ CN and y ∈ Cm with

σs,M(x)l1w︸ ︷︷ ︸
distance to sparse in levels vectors

+ ‖Ax − y‖l2︸ ︷︷ ︸
noise of measurements

. δ, ‖x‖l2 . b1, ‖y‖l2 . b2,

we have the following stable and exponential convergence guarantee in n

‖φn(y)− x‖l2 . δ + e−n.



Comments

I Architecture inspired by restarted & reweighted unrolling of primal-dual algorithm
for:

(P3) argminx∈CN FA
3 (x , y , λ) := λ‖x‖l1w + ‖Ax − y‖l2 .

I As well as stability, rNSPL allows exponential convergence.

I Even ignoring stability, naive unrolling of iterative methods only gives slow
convergence O(δ + n−1) (and in certain regimes O(δ + n−2)).

I If we do not know ρ or γ (constants for rNSPL), can perform log-scale grid search
for suitable parameters (increase width of layers by a factor of log(n)). Sometimes
(see below) we know ρ and γ with probabilistic bounds.

I Also bound error when approximately applying the nonlinear maps of the NNs, we
show these errors can only accumulate slowly as n increases ⇒ numerical stability.



Examples in image recovery (Ψ = Haar Wavelet transform)

Theorem
Consider recovering wavelet coeffs. x = Ψc of c ∈ CKd

from subsampled noisy Fourier
or Walsh measurements y = DPIVc + e. Let A = DPIVΨ∗, m = |I|, εP ∈ (0, 1).

(i) If I is a random sampling pattern drawn according to strategy in paper, and

m & (s1 + · · ·+ sr ) · L.
Then with prob. 1− εP, A satisfies wrNSPL of order (s,M), (ρ, γ) = (1/2,

√
2).

(ii) For any δ ∈ (0, 1), let J (δ, s,M,w) be the set of all y =Ax+e∈ Cm where

‖x‖l2 ≤ 1, max
{
σs,M(x)l1w , ‖e‖l2

}
≤ δ. (2)

We provide an algorithm that constructs a NN φ with O(log(δ−1)) hidden layers
(width bounded by 2(N + m)) s.t. with probability at least 1− εP,

‖φ(y)− c‖l2 . δ, ∀y = Ax + e ∈ J (δ, s,M,w).



Fourier sampling patterns
15% 25% 40%

Walsh sampling patterns
15% 25% 40%



Demonstration of convergence24 THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM

Image Fourier Sampling Walsh Sampling

FIGURE 7. Left: The true image. Middle: Reconstruction from noisy Fourier measure-
ments. Right: Reconstruction from noisy Walsh measurements. Both images were recon-
structed using only a 15% sampling rate according to the sampling patterns in Figure 6 and
n = p = 5. The top row shows the full image and the bottom row shows a zoomed in section
(corresponding to the red boxes in the top row).
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FIGURE 8. The convergence of the algorithm in the number of inner iterations. The dashed
line shows the relative error for the solution set of (P3). In both cases, the error between
the reconstruction and the image decreases exponentially until this bound is reached. The
objective function gap decreases exponentially slightly beyond this point, demonstrating that
the robust null space property (in levels) controls the l2-norm difference between vectors
(locally around c∗) down to the error ‖c− c∗‖l2 (see the bound (9.18) in our proof).

Figure: Images corrupted with 2% Gaussian noise and reconstructed using 15% sampling.
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(locally around c∗) down to the error ‖c− c∗‖l2 (see the bound (9.18) in our proof).

Number of Hidden Layers Number of Hidden Layers
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Original x |x+ r1| |x+ r2| |x+ r3|

Ψ(A(x)) Ψ(A(x+ r1)) Ψ(A(x+ r2)) Ψ(A(x+ r3))

FIGURE 1. (Unstable neural network in image reconstruction). The neural network AU-
TOMAP (Nature (2018) [153]) represents the tip if the iceberg of DL in inverse problems.
The paper promises that one can “... observe superior immunity to noise...”. Moreover,
the follow-up announcement (Nature Methods “AI transforms image reconstruction,” [136])
proclaims: “A deep-learning-based approach improves speed, accuracy and robustness of
biomedical image reconstruction”. However, the figure shows |x+ rj |, where x is the origi-
nal image and the rjs are perturbations meant to simulate worst-case effect, as well as the that
AUTOMAP reconstruction Ψ(A(x+ rj)) from the subsampled Fourier MRI data A(x+ rj)

(here A ∈ Cm×N is a subsampled Fourier transform, see §4 for details) concluding that this
network is completely unstable. Note that the condition number cond(AA∗) = 1, so the
instabilities are not caused by poor condition. As demonstrated in [14], this is a universal
phenomenon in DL for inverse problems. Experimental details are given in §4.

a program on the foundations on AI, similar to Hilbert’s program, is needed, where impossibility results are
provided in order to establish the boundaries of DL and AI.

Note that such a program is already suggested in Smale’s 18th problem, from the list of mathematical
problems for the 21st century [132], which echoes Turing’s paper from 1950 [145] on the question: what is
AI? Turing asks if a computer can think, and suggests the imitation game as a test for his question about AI.
Smale takes the question even further and asks in his 18th problem:

“What are the limits of intelligence, both artificial and human?”
— Smale’s 18th problem (from the list of mathematical problems for the 21st century [132])

The question is followed by a discussion on the problem that ends as follows: “Learning is a part of human
intelligent activity. The corresponding mathematics is suggested by the theory of repeated games, neural
nets and genetic algorithms.” Given the recent unprecedented developments in DL and NNs [98], and the
impact these developments may have on AI, it is timely to consider Smale’s 18th problem. We interpret the
words “artificial intelligence” as the current state-of-the-art AI for which DL is essential. Our results provide
foundations for Smale’s 18th problem as they imply a potentially vast classification theory for determining the
limits of what DL can achieve. Importantly, this classification theory cannot be determined by the extensive
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Original x |x+ v1| |x+ v2| |x+ v3|

Φ(A(x)) Φ(A(x+ v1)) Φ(A(x+ v2)) Φ(A(x+ v3))

FIGURE 2. (The FIRENET is stable to worst-case perturbations). Using the same
method as in Figure 1, we compute perturbations vj in the image domain, to simulate worst-
case effect for the FIRENET Φ: Cm → CN . Here x and A ∈ Cm×N are the same image
and sampling matrix as in Figure 1. Moreover, for each j = 1, 2, 3 we have ensured that
‖vj‖l2 ≥ ‖rj‖l2 , where the rj’s are the perturbations from Figure 1 (we have denoted the
perturbations for FIRENET by vj to emphasise the fact that these adversarial perturbations
are sought for the new NNs and have nothing to do with the perturbations in Figure 1). In
the top row, we see the perturbed images |x + vj |, j = 0, 1, 2, 3 (assuming v0 = 0), and
in the bottom row, we see the network’s reconstruction from the perturbed measurements
A(x+ vj). Experimental details are given in §4.

collection of non-constructive existence theorems (à la universal approximation theorems) for NNs that have
flourished over the last decades.

1.2. Summary of the main results. Our main results demonstrate that there are fundamental barriers prevent-
ing NNs, despite their existence, from being computed by algorithms. This helps shed light on the intricate
question on why current algorithms in DL produce unstable networks despite the fact that stable NNs often ex-
ist in the particular application. Indeed, our results demonstrate that there is a rich and unknown classification
theory on which types of stable NNs can be computed by algorithms. The techniques for proving the barri-
ers below stem from the Solvability Complexity Index (SCI) hierarchy – that has recently been used to settle
longstanding questions in scientific computing [21, 25–27, 51–53, 82] – and that generalises the fundamental
problems of S. Smale on existence of algorithms [31,32,129–131] and the work by C. McMullen [108,109,133]
and P. Doyle & C. McMullen [63].

(I) (Neural networks may exist, but cannot be computed, even for well-conditioned problems). The answer
to the above Question I is, in general, ‘no’, even for well-conditioned problems. Mappings that take training
data to NNs may exist, however, no algorithm that computes the NN from the training data exists. This
statement is made precise in Theorems 2.1 and 2.2, and is valid for any model of computation.

(II) (Randomised algorithms do not help in solving the issue). The answer to Question I is still ‘no’ for any
randomised algorithm. That is, as Theorem 2.2 reveals, replacing a deterministic algorithm with a randomised
algorithm will not yield the desired error with probability better than coin-flipping.
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|x+ r3| Ψ(ỹ), ỹ = A(x+ r3) Φ (ỹ,Ψ(ỹ))

FIGURE 3. (Adding a few FIRENET layers at the end of AUTOMAP makes it stable).
The FIRENET Φ: Cm × CN → CN takes as input measurements y ∈ Cm and an initial
guess for x, which we call x0 ∈ CN . We now concatenate a 25-layer (p = 5, n = 5)
FIRENET Φ and the AUTOMAP network Ψ: Cm → CN , by using the output from AU-
TOMAP as initial guess x0, i.e., we consider the neural network mapping y 7→ Φ(y,Ψ(y)).
In this experiment we consider the perturbed image x+ r3 from Figure 1 and the perturbed
measurements ỹ = A(x + r3) (here A is as in Figure 1). As can be seen from the figure,
the new network is stable with respect to AUTOMAP’s worst-case perturbation r3. Note
that in all other experiments we use the initial guess x0 = 0, and consider Φ as a mapping
Φ: Cm → CN .

The problem (4.1) seeks perturbations in the image domain since this provides an easy way to compare the
original image and deduce whether the reconstruction of the perturbed image is acceptable/unacceptable. Of
course, we could have just as easily considered perturbations in the sampling domain instead.

The non-concavity of the objective function in (4.1) means that finding a global maximiser of (4.1) is
very difficult (if not impossible), even for small values of m and N . The test aims to locate local maxima
of (4.1) by using a gradient search method. A natural method to find local maxima is gradient ascent with
momentum. This uses the gradient of Qφy (which can easily be written down) along with two parameters
γ > 0 (the momentum) and η > 0 (the learning rate) in each step towards a local maximum. Namely, r(0) is
initialised randomly and then we update the perturbation at the jth step via v(j + 1) = γv(j) + η∇rQφy (r(j))

and r(j + 1) = r(j) + v(j + 1). The final perturbation is taken after M steps, where typically we run 10-
100 steps, seeking the perturbation which causes the worst reconstructed image. Just as in the case when
training NNs using stochastic gradient descent with momentum, choosing the parameters γ and η is an art of
engineering, and the optimal choices of γ, η are based on empirical testing.

Worst-case (adversarial) perturbations for AUTOMAP and FIRENETs – Figure 1 in the introduction
shows the algorithm applied to the AUTOMAP [153] network used for MRI reconstruction with 60% subsam-
pling. The network weights are provided by the authors of [153] and had been trained on de-identified brain
images from the MGH–USC HCP dataset [65], where the image measurements y = Ax+ewere contaminated
with small Gaussian noise e. The image x seen in Figure 1 is taken from the mentioned dataset, the algorithm
is run on the AUTOMAP network to find a sequence of perturbations |r1| < |r2| < |r3|. In order to illustrate
the smallness of the perturbations, we have visualised |x+ rj | in the first row of Figure 1. As can be seen from
the second row in the figure, the network reconstruction completely deforms the image and the reconstruction
is severely unstable (similar results for other networks are demonstrated in [14]).

In contrast, we have applied the same algorithm, but now for the new NNs (FIRENETs) reported in this
paper. Figure 2 shows the algorithm applied to the constructed FIRENETs described by Theorems 5.5 and
5.10 (we have renamed the perturbations vj to emphasise the fact that these perturbations are sought for the
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Concluding remarks

There is a need for foundations in AI/deep learning. Our results:

I There are well-conditioned problems where mappings from training data to suitable
NNs exist, but no training algorithm (even randomised) can approximate them.

I Existence of algorithms depends on desired accuracy. ∀K ∈ Z≥3, ∃ well-conditioned
problems where simultaneously:

(i) Algorithms may compute NNs to K − 1 digits of accuracy, but not K .
(ii) Achieving K − 1 digits of accuracy requires arbitrarily many training data.
(iii) Achieving K − 2 correct digits requires only one training datum.

I Under specific conditions, there are algorithms that compute stable NNs. E.g., Fast
Iterative REstarted NETworks (FIRENETs) converge exponentially in the number
of hidden layers. We prove FIRENETs withstand adversarial attacks.

I There is a trade-off between stability and accuracy in deep learning.

Question: How do we optimally traverse the stability & accuracy trade-off? FIRENETs
provide a balance but are likely not the end of the story.

Hopefully this talk has inspired you to build on these results and take up the challenge!


