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Is machine learning like alchemy?

Google’s Ali Rahimi, winner of the Test-of-Time award 2017
(NIPS), “Machine learning has become alchemy. ... I would like
to live in a society whose systems are built on top of verifiable,
rigorous, thorough knowledge, and not on alchemy.”



Is machine learning like alchemy?



Outline of talk

I Motivation I: Construction of neural networks.
I Motivation II: Stability of neural networks.
I Some precise notions.
I Theorem: Stable neural networks can (in some cases) be

constructed.
I Numerical example.
I Conclusion.



Motivation I: Construction of neural networks.



What is the key problem in machine learning?
Learning a function.



Setup
Image x ∈ CN , we are given access to measurements of the form

y = Ax+ e,

where A ∈ Cm×N represents the sampling modality.

Task is to reconstruct x from the noisy measurements y.

Without additional assumptions, such as sparsity of x, this
problem is highly ill-posed.

Might try to solve via a solution of

min
z∈CN

‖z‖1 s.t. ‖Az − y‖2 ≤ ε.
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Neural networks are FANTASTIC approximators!
Consider the following mapping ϕA,ε :M→ RN where

M = {yj}rj=1 ⊂ Rm, r <∞, m < N

given by

ϕA,ε(y) = w, w ∈ argmin
z
‖z‖1 subject to ‖Az − y‖2 ≤ ε.

Theorem ([Pinkus, 1999])
Let ε, δ ≥ 0. Given that the non-linearity ρ is not a polynomial,
there exists a neural network Φ, depending on A and M, such
that

‖Φ(y)− ϕA,ε(y)‖2 ≤ δ, ∀y ∈M.

But: need a constructive training model.
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Constructive?

In reality given approximations: {yj,n}rj=1, {φj,n}rj=1 and An
such that:

‖yj,n − yj‖, ‖φj,n − ϕAn,ε(yj,n)‖, ‖An −A‖ ≤ 2−n.

Training set must be

T := {(yj,n, φj,n, An) | j = 1, . . . , r, n ∈ N}.

Can we train a neural network that can approximate Φ based
on the training set T ?

Maybe we expect to be able to do this by unravelling standard
(iterative) optimisation algorithms? Like ISTA, FISTA,
NESTA,...
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Constructive?

Figure: Source: Deep convolutional neural network for inverse
problems in imaging [Jin et al., 2017].



What could go wrong?

(i) There does not exist a neural network that approximates
the function we are interested in.

(ii) There does exist a neural network that approximates the
function, however, there does not exist an algorithm that
can construct the neural network.

(iii) There does exist a neural network that approximates the
function, and an algorithm to construct it. However, the
algorithm will need prohibitively many samples.

Both of these last two can happen...
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Theorem (Impossible in general)
Let K > 2, L ∈ N and d be any metric on RN where N ≥ 6. Then
there exists a well conditioned class Ω of elements (A,M), such that
we have the following three conditions. Consider the neural network Φ
from Theorem 8.

(i) There does not exist any algorithm taking elements from T as
input and producing a neural network Ψ such that Ψ
approximates Φ on M to K correct digits in the metric d for all
(A,M) ∈ Ω.

(ii) There exists an algorithm taking elements from T as input that
produces a neural network Ψ that approximates Φ on M to
K − 1 correct digits in the metric d for all (A,M) ∈ Ω.
However, any algorithm producing such a network will need
arbitrary many samples of elements from T , where accessing
(yj,n, φj,n, An) for one j and n counts as one sample.

(iii) There exists an algorithm using L samples from T as input that
produces a neural network Ψ that approximates Φ on M to
K − 2 correct digits in the metric d for all (A,M) ∈ Ω.



Well conditioned

I Condition of a matrix Cond(A) = ‖A‖‖A−1‖.

I Condition of the mapping Ψ : Ω ⊂ Cn → Cm, linear or
non-linear, is often given by

Cond(Ψ) = sup
x∈Ω

lim
ε→0+

sup
x+z∈Ω

0<‖z‖≤ε

dist(Ψ(x+ z),Ψ(x))
‖z‖

,

where we allow for multivalued functions by defining
dist(Ψ(x),Ψ(z)) = minx̃∈Ψ(x),z̃∈Ψ(z) ‖x̃− z̃‖.
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Well conditioned

I If Ψ denotes the solution map to our problem (in this
example basis pursuit) with domain Ω, we define

ρ(A, y) = sup{δ | ‖Ã‖, ‖ỹ‖ ≤ δ ⇒ (A+ Ã, y + ỹ) ∈ Ω are feasible},

and this yields the Feasibility Primal (FP) condition
number

CFP(A, y) := max(‖A‖, ‖y‖)
ρ(A, y) .



Hence, it is not enough to use universal approximation. When
we seek to construct neural networks via an algorithm, we are
led to classification theory.

It is NOT enough to just “unravel” your favourite algorithm.

Question: Which functions can be approximated by a neural
network that can be computed by an algorithm?
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Motivation II: Stability of neural networks.



A growing problem

Most “state-of-the-art” neural networks are unstable. Now
well-known for image classification:

I Universal small perturbations
[Moosavi-Dezfooli et al., 2017]

I Across different networks [Szegedy et al., 2013]
I Unrecognisable images confidently classified

[Nguyen et al., 2015]
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A growing problem

Figure: Source: Explaining and harnessing adversarial examples
[Goodfellow et al., 2014].

BUT can also happen with image denoising/reconstruction...
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A stability test
Consider a neural network φ : Cm → CN which aims to
reconstruct the image φ(y) ≈ x from the (noisy) measurements
y = Ax+ e.

Algorithm seeks a vector r ∈ RN such that

‖φ(y +Ar)− φ(y)‖2 is large, while ‖r‖2 is small.

Consider the optimisation problem

r∗(y) ∈ argmax
r

1
2‖φ(y +Ar)− x‖22 −

λ

2 ‖r‖
2
2.

Test aims to locate local maxima by using a gradient ascent
with momentum on

Qφy (r) = 1
2‖φ(y +Ar)− x‖22 −

λ

2 ‖r‖
2
2
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Example
Simple example for the AUTOMAP network, reported in
Nature as a “state-of-the-art” network!

“Furthermore, AUTOMAP reconstructions exhibit superior
noise immunity compared to those from conventional methods,
as quantified by image signal-to-noise ratio and
root-mean-squared error (RMSE) metrics.”

Not so state-of-the-art in terms of stability...

Figure: Stability test for AUTOMAP taken from [Antun et al., 2019],
and where A is a subsampled Fourier transform. Top row: original
image with perturbations. Bottom row: reconstructions using
AUTOMAP.
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Hence, I would not want my doctor to test for cancer using
neural networks (at least not yet) - we need stability
guarantees. Can this be hard-wired into the networks?



Some precise notions.



What is a neural network?

φ : Cm → CN such that

φ(y) = WL(ρL−1(...ρ1(W1(y)))).

I Affine map Wj(z) = Ajz + bj(y) where Aj ∈ CNj×Nj−1 and
bj(y) = Bjy + cj ∈ CNj (affine function of input y).

I Each ρj is a non-linear function and is one of two forms:
1. Index set Ij ⊂ {1, ..., Nj} such that ρj applies a non-linear

function fj element-wise on the input vector’s components
with indices in Ij .

2. Non-linear function fj such that, after decomposing the
input vector x as (x0, X, Y )T for scalar x0 and X ∈ Cmj , we
have

ρj :

x0
X
Y

→
 0
fj(x0)X

Y

 .
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What do we mean by computable?

I Affine maps (matrix and bias) have rational entries - we
can store this on our computer (in practice use floats).

I Non-linear map constructed using sqrtθ with

|sqrtθ(x)−
√
x| ≤ θ, for all x ∈ R≥0

We can access this for rational input.
I Architecture (including affine maps etc.) constructed

explicitly from the An’s.
In other words, we can build these in real life - note that the
above theorem does NOT depend on this particular choice of
non-linear function, architecture etc.
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What do we mean by stable?

Definition (Framework for stability)
Let Φ = {φn, θn}n∈N be a computable sequence of neural networks
such that each φn has ln layers and ln →∞. Given ε ≥ 0, γ > 0, and
a subset S ⊂ CN , we say that Φ is stably (ε, γ)−accurate over S if
the following holds:

1. (Linear growth in size) There exists a constant C > 1
independent of A such that C−1n ≤ ln ≤ Cn and Nj,n ≤ Cn.

2. (Algebraic rate of accuracy) There exists a polynomial P1
independent of A and a constant C1 (possibly dependent on A)
such that θ−1

n ≤ C1(A)P1(n).

3. (Stable recovery to error ε) There exists constants C2, C3
(possibly dependent on A, x) such that for any x ∈ S

‖φn(y)− x‖2 ≤ ε+ C2(A,x)
nγ + C3(A, x)‖Ax− y‖2.

In the case that C2, C3 can be taken to be independent of x for x ∈ S,
we say that Φ is strongly stably (ε, γ)−accurate over S.
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Goal: Explicitly construct stably (ε, γ)−accurate networks for
typical problems with ε small and γ as large as possible.

PΩ : CN → Cm projection onto canonical basis ej indexed by Ω.

A = PΩUW
−1

where W is sparsifying transform and U measurement matrix.
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Some ideas from compressed sensing

Figure: An image and its wavelet coefficients, where a brighter colour
corresponds to a larger value.

Idea: Fully sample rows that correspond to the coarser wavelet
levels and subsample the rows that correspond to the finer
wavelet levels.



Definition (Sparsity in levels)
For r ∈ N, let M = (M1, ...,Mr), where
1 ≤M1 < ... < Mr = N , and s = (s1, ..., sr), where
sk ≤Mk −Mk−1 for k = 1, ..., r and M0 = 0. A vector x ∈ CN
is (s,M)-sparse in levels if

|supp(x) ∩ {Mk−1 + 1, ...,Mk}| ≤ sk, k = 1, ..., r.

We denote the set of (s,M)-sparse vectors by Σs,M.

‖x‖l1w =
N∑
i=1

wi |xi| ,

σs,M(x)l1w = inf{‖x− z‖l1w : z ∈ Σs,M}.

In practice, expect σs,M(Wx)l1w to be small if we use
wavelet levels.



Definition (Multilevel random sampling)
Let l ∈ N,N = (N1, . . . , Nl) ∈ Nl with 1 ≤ N1 < . . . < Nl,
m = (m1, . . . ,ml) ∈ Nl, with mk ≤ Nk −Nk−1, k = 1, . . . , l, and
suppose that

Ωk ⊂ {Nk−1 + 1, . . . , Nk} , |Ωk| = mk, k = 1, . . . , l,

are chosen uniformly at random, where N0 = 0. We refer to the
set Ω = ΩN,m = Ω1 ∪ . . . ∪Ωl as an (N,m)- multilevel sampling
scheme.



Positive Results

(sparsifying transform: Haar wavelets with matrix W , others
possible)



Case 1: Fourier measurements

U corresponds to the d-dimensional discrete Fourier transform.

We divide the different frequencies into dyadic bands Bk, where
B1 = {0, 1} and for k = 2, ..., r

Bk = {−2k−1 + 1, ...,−2k−2} ∪ {2k−2 + 1, ..., 2k−1}.

In d dimensions set

B
(d)
k = Bk1 × ...×Bkd

, k = (k1, ..., kd) ∈ Nd.

Multilevel random sampling with (mk=(k1,...,kd))rk1,...,kd=1,
|mk| ≤

∣∣∣B(d)
k

∣∣∣.
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Some final quantities...

Assume that if Mj−1 + 1 ≤ i ≤Mj then wi = w(j) (i.e. constant
in each level).

λ(w, s) =
∑r
j=1 sjw

2
(j)

minj=1,...,r sjw2
(j)
,

η(w, s) =
r∑
j=1

sjw
2
(j),

MF (s,k) =
‖k‖∞∑
l=1

sl

d∏
i=1

2−|ki−l| +
r∑

l=‖k‖∞+1
sl2−2(l−‖k‖∞)

d∏
i=1

2−|ki−l|.



Theorem (Stable Neural Networks Exist)
Let εP ∈ (0, 1), r, d ∈ N, N = 2r·d and M = (M1, ...,Mr),
s = (s1, ..., sr) describe (s,M)-sparse vectors corresponding to the
scales in a d-dimensional wavelet basis. Suppose

mk & λ(w, s) · MF (s,k) · L,
L = d · r2 · log(m) · log2(sλ(w, s)) + log(ε−1

P ).

Then, for each n ∈ N, there exists a computable neural network φA
n

with 3n layers such that with probability at least 1− εP, the following
uniform recovery guarantee holds. For any x ∈ CN with ‖x‖l2 . 1,

‖φA
n (y)− x‖l2 .

λ(w, s) 1
4√

η(w, s)
σs,M(Wx)l1

w
+ λ(w, s) 1

4 ‖A‖
n

+ λ(w, s) 1
4 ‖Ax− y‖l2 .

Stably (ε, 1)−accurate, ε = λ(w,s)
1
4√

η(w,s)
σs,M(Wx)l1w .
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How to interpret?

I Choose w(j) =
√
s/sj , λ(w, s) = r and η(w, s) = rs. Up to

log-factors, becomes equivalent to that for the oracle estimator.
I ∑

‖k‖=k

mk &

(
sk +

k−1∑
l=1

sl2−(k−l) +
r∑

l=k+1
sl2−3(l−k)

)
rL.

Number of samples required in each annular region is (up to
logarithmic factors) proportional to sk + exponentially decaying
terms.



Remarks

I Proof uses state-of-the-art compressed sensing techniques.
I Care must be taken (especially given previous negative

result) - not just a question of picking your favourite
optimisation problem/solver.

I Unknown whether γ can be made larger. Would expect
this given universal approximation theorem, but then
might become unstable.



Case 2: Binary measurements

U corresponds to Walsh-Hadamard transform with tensor
product basis.

MB(s,k) = s‖k‖∞

d∏
i=1

2−|ki−‖k‖∞|

Theorem then the same but now∑
‖k‖=k

mk & 2ddskrL,

and there are no terms from the sparsity levels sl, l 6= k.
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Numerical Example

Figure: Stability test for new networks. Top row: original image with
perturbations. Bottom row: reconstructions.

STABLE!
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Conclusions

I The ridiculously impressive performance of neural networks
may come at a high price in terms of stability. Given the
last fifty years of the studying stability via inverse
problems, this is an important issue that should not be
overlooked.

I There is likely a rich classification theory, stating limits on
the performance of stable methods - trade-off.

I One such example was presented with explicitly
constructed stable neural networks.

I Next step: assessing the performance of these new neural
networks. Initial tests are promising...

This talk was somewhat a test: please ask lots of questions (am
very interested in feedback) and feel free to disagree - this issue
is likely to be an ongoing debate in the community.
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