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Outline

GOAL: compute spectral properties of operators in infinite-dimensions

Many applications: quantum mechanics, chemistry, matter physics, stat.
mechanics, optics, number theory, PDEs, math. of info., quasicrystals,...

BUT: typically harder and more subtle than finite dimensions!

§ Problem Main References

I Spectra “How to compute spectra with error control”
C., Roman, Hansen, Physical Review Letters, 2019

II Discrete Spectra “FEAST for differential eigenvalue problems”
H., Townsend, SIAM J. on Num. Analysis. 2020

III Spectral Measures “Computing spectral measures of self-adjoint operators”
C., H., Townsend, SIAM Review, to appear
“Computing spectral measures and spectral types”
C., Communications in Mathematical Physics, to appear



Program on Infinite-Dimensional Spectral Computations

How: Deal with operator A directly, instead of ‘truncate-then-solve’

⇒ Compute many spectral properties for the first time.

Common tool: Compute properties of (A− z)−1

Finite-dimensional NLA  Infinite-dimensional NLA

Foundations: Classify problems in a computational hierarchy measuring
their intrinsic difficulty and the optimality of algorithms.

⇒ Optimal algorithms realising boundaries of what computers can achieve.



Part I:
How to compute spectra with error control

With a case study on quasicrystals



The infinite-dimensional spectral problem

In many applications, we are given an operator acting on `2(N)
(`2(N) = canonical inner product space in infinite dimensions):

A =


a11 a12 a13 . . .
a21 a22 a23 . . .
a31 a32 a33 . . .

...
...

...
. . .

 ,

A


x1

x2

x3
...



j

=
∑
k∈N

ajkxk .

Finite Case ⇒ Infinite Case
Eigenvalues ⇒ Spectrum, Sp(A)

{z ∈ C : det(A− zI ) = 0} ⇒ {z ∈ C : A− zI not invertible}

GOAL: compute spectrum of A from matrix elements



Things that typically go wrong

Fundamental challenges:

Miss parts of the spectrum.

Approximate false z /∈ Sp(A) - “spectral pollution”.

Open problem (even for Schrödinger operators) for > 50 years:
Can we overcome these issues in the general case?

Even if a method converges, still face:

How do we know what part of approximation to trust?

Methods can be inefficient and slow to converge.

Method of this talk:

Converges without missing parts of spectrum. 3
Avoids spectral pollution. 3
Provides error control (guaranteed certificate of accuracy)

⇒ computations reliable and useful in applications. 3
Computationally efficient. 3
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Case study: Quasicrystals

Quasicrystals: aperiodic structures with long-range order.

Left: D. Shechtman, Nobel Prize in Chem. 2011 for discovering quasicrystals.
Right: Penrose tile, canonical model used in physics.

Vertex model: site at each vertex and bonds along edges of tiles.



Case study: Quasicrystals

Motivation:

We understand periodic systems really well but not aperiodic.

Long range order & short range disorder everywhere in nature.

What’s the analogy of periodic physics for aperiodic systems?

Many exotic physical properties and beginning to be used in

heat insulation
LEDs, solar absorbers, and energy coatings
reinforcing materials, e.g. low-friction gears
bone repair (hardness, low friction, corrosion resistance)...

Understanding spectral properties key for physical insight.

BUT: Aperiodic nature of quasicrystals has made it a considerable
challenge to approximate spectrum of full infinite-dimensional operator.
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Case study: Quasicrystals

Vertex model: site at each vertex and bonds along edges of tiles.

Model 1: Perpendicular magnetic field (of strength B).

[Aψ]i = −
∑
i∼j

e iθij (B)ψj ,

Model 2: Graph Laplacian (electronic properties)

[Aψ]i =
∑
i∼j

(ψj − ψi ) ,

Very hard problems - no previous method even converges to spectrum.



Model 1: Magnetic field

Finite truncations
Spectral pollution.

Unreliable
Does not converge

No error control

New method
First convergent computation.

Reliable
Converges

Error control



Idea I: Rectangular truncations

A



Idea I: Rectangular truncations

PnAPn



Idea I: Rectangular truncations

Pf (n)APn



Locally compute distance function and minimisers

Rectangular truncation Pf (n)(A− zI )Pn

⇓ smallest singular values σ1(Pf (n)(A− zI )Pn)

Approximate distance dist(z ,Sp(A))

⇓ local minimisers

Output Γn(A)→ Sp(A) and error bound supz∈Γn(A) E (n, z)→ 0



Model 2: Graph Laplacian (electronic properties)



Model 2: Graph Laplacian (electronic properties)
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Advantages

First method that always converges to
correct solution.
(e.g. no spectral pollution)

Local and parallelisable ⇒ FAST!

Explicitly bounds the error:

Error ≤ En ↓ 0.

Can prove it is OPTIMAL (see paper).

Rigorously compute approximate states...

HYSICAL
EVIEW
ETTERS

P
R
L

American Physical Society

28 JUNE  2019

Volume 122, Number 25
Published by 

Articles published week ending

Made the frontcover of Physical Review Letters
- American Physical Society’s flagship publication



Background

Periodic systems have extended states (not localised), but add disorder...

Left: P. Anderson, Nobel Prize in Phys. 1977 for discovering Anderson
localisation. Right: Examples in 1D and 2D photonic lattices.

What happens in aperiodic systems? Do we need disorder?



Bulk Localised States: A new state for quasicrystals

Bulk Localised States (BLSs): New states for magnetic quasicrystals

localised
“in-gap” (confirmed via comp. of inf-dim (topological) Chern numbers)
support transport

Cause (also confirmed with toy models): Interplay of magnetic field
with incommensurate areas of building blocks of quasicrystal.

Not due to an internal edge, impurity or defect in the system.

 NEW EXCITING PHYSICS!



Transport: Error control allows us to be certain of this phenomenon.



Conclusion of Part I

Can now compute spectra of large class of operators.

Computation has explicit error control.

New method does not suffer from spectral pollution.

New algorithm is fast, local and parallelisable.

Extensions: non-Hermitian operators, general infinite matrices, PDEs, etc.

New type of Bulk Localised State (BLS) for magnetic quasicrystals that
support localised transport within the bulk.



Part II: Discrete Spectrum

H. and Townsend, FEAST for differential eigenvalue problems, 
SIAM Journal on Numerical Analysis, 2020.



The infinite-dimensional eigenvalue problem (IDEP)

For example…

Integral operator

Ordinary differential 
operator

Partial differential 
operator

*Domain               usually encodes smoothness, integrability, and/or boundary conditions



Droplet formation
Linear

stability

Laugesen and Pugh (2000), H. and Townsend (2019)



contFEAST() – a computational framework for IDEP

target 
eigenvalues

GOAL: Given a search region Ω, compute all
eigenvalues of L in Ω, and associated eigenfunctions.

Key ingredients:

1) Solve shifted linear equations

2) Compute inner products



target 
eigenvalues

GOAL: Given a search region Ω, compute all
eigenvalues of L in Ω, and associated eigenfunctions.

Key results:

1) If solutions to linear systems and inner products 
are computed with accuracy                      , then*

2) Constant      depends only on      and        , but is 
independent of underlying discretization or 
approximation scheme

contFEAST() – a computational framework for IDEP

*See [H. and Townsend, 2020] 



How it works: a continuous analogue of FEAST

contFEAST() – Compute eigenvalues of operator in target region.

Spectral Projection Range Sketching Rayleigh—Ritz Step

Build basis for target eigenspace Small eigenvalue problem for target 
eigenvalues and eigenvectors 



How it works: a continuous analogue of FEAST

Spectral Projection Range Sketching Rayleigh—Ritz Step

target 
eigenvalues

contFEAST() – Compute eigenvalues of operator in target region.



How it works: a continuous analogue of FEAST

Spectral Projection Range Sketching Rayleigh—Ritz Step

scalar filter

op. filter

contFEAST() – Compute eigenvalues of operator in target region.



How it works: a continuous analogue of FEAST

Spectral Projection Range Sketching Rayleigh—Ritz Step

Filters out unwanted 
eigencomponents

approximates a basis for the target eigenspace

contFEAST() – Compute eigenvalues of operator in target region.



How it works: a continuous analogue of FEAST

Spectral Projection Range Sketching Rayleigh—Ritz Step

Orthonormalize basis                         using

New orthonormal basis

Eigenvector 
coordinates 

satisfy

contFEAST() – Compute eigenvalues of operator in target region.



Target regions and rational filters

Use any closed, piecewise-
smooth curve. For example…



Leveraging adaptive spectral methods

ultraSEM (Matlab)ApproxFun (Julia) Chebfun (Matlab)



Part III: Spectral Measures

Colbrook, H., and Townsend, Computing spectral measures of 
self-adjoint operators, SIAM Review (to appear).



centrifugal term

Hellman potentialSpectral measures in QM

Wave function

Specsolve code

continuous spectral measures



Diagonalizing an operator

Switch to eigenvector 
coordinates



Diagonalizing an operator

Switch to eigenvector 
coordinates



Spectral measures

self-adjoint operator projection-valued measure
Spectral Theorem

discrete spectrum

continuous spectrum



Spectral measures

discrete spectrum

spectral measure w.r.t.

continuous spectrum

discrete spectral measure

continuous spectral measure



Smoothed spectral measures: Stone’s theorem

Spectral identity for resolvent

Poisson kernel (shifted and scaled)

Look at “jump” across real axis 



A simple framework



Convergence of smoothed measures

singular in the limit

Integral operator
Relative error



Convergence of smoothed measures

singular in the limit

Differential operator
Relative error



Rational kernels

Stone’s theorem

“Generalized” Stone’s theorem



Rational kernels

Stone’s theorem

“Generalized” Stone’s theorem



Rational kernels
L1 relative errorSmoothed spectral measures

Theorem [Colbrook, H., and Townsend, 2020]



Example I: Magnetic graphene
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Example I: Magnetic graphene
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Spectral measure of magnetic graphene, computed to high precision (see log

scale) using m = 4 kernel.



Example I: Add a defect

Add potential V (x) = cos(‖x‖2π)
(‖x‖2+1)2 . Slice at Φ = 0.25, ε = 0.01:
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Example II: Eigenvalue hunting

Example: Dirac operator.

Describes the motion of a relativistic electron.

Essential spectrum given by R\(−1, 1)⇒ spectral pollution!

Consider radially symmetric potential, coupled system on half-line:

DV =

(
1 + V (r) − d

dr + −1
r

d
dr + −1

r −1 + V (r)

)
, V (r) =

γ

r
.

Map to [−1, 1] and solve shifted linear systems using sparse spectral
methods.



Example II: Eigenvalue hunting
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NB: Previous state-of-the-art achieves a few digits for a few excited states.



Example III: Chern numbers

Finite dimensions Infinite dimensions

P̂n =
∑n

m=1|m〉〈m|, Q̂n = I−P̂n P̂E =
∫

(−∞,E ] dE(λ)

P̂E
ε =

∫ E
−∞[Kε ∗ E ](λ)dλ, Q̂E

ε = I−P̂E
ε

x̂n = Q̂nx̂ P̂n, ŷn = P̂nŷ Q̂n x̂Eε = Q̂E
ε x̂ P̂

E
ε , ŷEε = P̂E

ε ŷ Q̂
E
ε

Cni = −4π
A2
c
Im {〈i |x̂nŷn|i〉} CEi = −4π

A2
c
Im
{
〈i |x̂Eε ŷEε |i〉

}
Round and take maximal count over site i .

Intuition: Topological index to detect in-gap (conducting) state.



Example III: Chern numbers



Conclusion of Part III

Diagonalisation: General framework for computing spectral
measures and projections of self-adjoint operators.

Convolution with rational kernels:

Can be evaluated using resolvent. ALL you need to be able to do is
solve linear systems and compute inner products.
High-order kernels ⇒ high-order convergence.

Fast, local and parallelisable ⇒ State-of-the-art results for PDEs,
integral operators and discrete operators.

Example: Chern numbers of BLSs showing they are in-gap.

Code: https://github.com/SpecSolve.
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