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• State 𝑥𝑥 ∈ Ω ⊆ ℝ𝑑𝑑, unknown function 𝐹𝐹:Ω → Ω governs dynamics
𝑥𝑥𝑛𝑛+1 = 𝐹𝐹(𝑥𝑥𝑛𝑛)

• Goal: Learn about system from data 𝑥𝑥(𝑚𝑚),𝑦𝑦(𝑚𝑚) = 𝐹𝐹(𝑥𝑥(𝑚𝑚)) 𝑚𝑚=1
𝑀𝑀

• E.g., data from trajectories, experimental measurements, simulations, …
• E.g., used for forecasting, control, design, understanding, …

• Applications: chemistry, climatology, 
electronics, epidemiology, finance, 
fluids, molecular dynamics, 
neuroscience, plasmas, robotics, 
video processing, …

Can we develop verified methods?

Data-driven dynamical systems
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Operator viewpoint
• Koopman operator 𝒦𝒦 acts on functions 𝑔𝑔:Ω → ℂ

𝒦𝒦𝑔𝑔 𝑥𝑥 = 𝑔𝑔(𝐹𝐹(𝑥𝑥))
• 𝒦𝒦 is linear but acts on an infinite-dimensional space.

• Work in 𝐿𝐿2(Ω,𝜔𝜔) for positive measure 𝜔𝜔, with inner product �,� .

• Koopman, “Hamiltonian systems and transformation in Hilbert space,” Proceedings of the National Academy of Sciences, 1931.
• Koopman, v. Neumann, “Dynamical systems of continuous spectra,” Proceedings of the National Academy of Sciences, 1932.

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 … 𝑥𝑥𝑛𝑛

𝑔𝑔(𝑥𝑥1) 𝑔𝑔(𝑥𝑥2) 𝑔𝑔(𝑥𝑥3) … 𝑔𝑔(𝑥𝑥𝑛𝑛)

𝐹𝐹 𝐹𝐹 𝐹𝐹 𝐹𝐹

𝒦𝒦𝑔𝑔 𝒦𝒦𝑔𝑔 𝒦𝒦𝑔𝑔 𝒦𝒦𝑔𝑔

State

Functions
of state

Non-linear

Linear
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Koopman mode decomposition

𝑔𝑔(𝑥𝑥) = �
eigenvalues 𝜆𝜆𝑗𝑗

𝑐𝑐𝜆𝜆𝑗𝑗𝜑𝜑𝜆𝜆𝑗𝑗(𝑥𝑥) + �
−𝜋𝜋

𝜋𝜋

𝜙𝜙𝜃𝜃,𝑔𝑔 𝑥𝑥 d𝜃𝜃

𝑔𝑔 𝑥𝑥𝑛𝑛 = 𝒦𝒦𝑛𝑛𝑔𝑔 𝑥𝑥0 = �
eigenvalues 𝜆𝜆𝑗𝑗

𝑐𝑐𝜆𝜆𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛𝜑𝜑𝜆𝜆𝑗𝑗 𝑥𝑥0 + �

−𝜋𝜋

𝜋𝜋

𝑒𝑒𝑖𝑖𝑛𝑛𝜃𝜃𝜙𝜙𝜃𝜃,𝑔𝑔 𝑥𝑥0 d𝜃𝜃

Encodes: geometric features, invariant measures, transient behaviour, 
long-time behaviour, coherent structures, quasiperiodicity, etc.

GOAL: Data-driven approximation of 𝒦𝒦 and its spectral properties. 

generalised
eigenfunction of 𝒦𝒦

eigenfunction of 𝒦𝒦

• Mezić, “Spectral properties of dynamical systems, model reduction and decompositions,” Nonlinear Dynamics, 2005.
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Koopmania*: a revolution in the big data era

≈35,000 papers over last decade!

Very little on convergence guarantees or verification.

Why is this lacking?

• Koopman operators have so far been quite distinct 
from both analysis and computational communities.

• Dealing with infinite dim is notoriously hard … Source: https://www.dimensions.ai/

*Wikipedia: “its wild surge in popularity is sometimes jokingly called ‘Koopmania’”
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Spec 𝒦𝒦 = 𝜆𝜆 ∈ ℂ:𝒦𝒦 − 𝜆𝜆𝐼𝐼 is not invertible

“Operators that arise in practice are not diagonalized, and it is often very hard to locate 
the spectrum. Thus, one has to settle for numerical approximations. Unfortunately, there 
are no proven general techniques.” W. Arveson, Berkeley (1994)

Naïve:     𝒦𝒦 𝕂𝕂 ∈ ℂ𝑁𝑁×𝑁𝑁 + compute e-values, problems:

1) “Too much”: Approximate spurious modes 𝜆𝜆 ∉ Spec(𝒦𝒦) - “spectral pollution”
2) “Too little”: Miss parts of Spec(𝒦𝒦)
3) Continuous spectra
4) Verification: Which part of an approximation can we trust?

Can we compute spectral properties in inf. dim.?

• Arveson, “The role of 𝐶𝐶∗-algebras in infinite dimensional numerical linear algebra,” Contemp. Math., 1994.
• Davies, “Linear operators and their spectra,” CUP, 2007.
• Brunton, Kutz, “Data-driven Science and Engineering: Machine learning, Dynamical systems, and Control,” CUP, 2019.
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Example of “too much” (spectral pollution)
perpendicular
magnetic field

𝑥𝑥

𝑦𝑦
𝑧𝑧

𝐵𝐵:

quasicrystal

“Infinite-dimensional” method

Convergent computation
Error control

Naïve method

Spectral pollution
No error control
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Approx. of spectrum (energy)

Infinite matrix: discrete
Schrödinger operator Approx. of spectrum (energy)

Spectral
pollution

• C., Roman, Hansen, “How to compute spectra with error control,” Physical Review Letters, 2019.
• C., Horning, Townsend, “Computing spectral measures of self-adjoint operators,” SIAM Review, 2021.
• Johnstone, C., Nielsen, Öhberg, Duncan, “Bulk Localised Transport States in Infinite and Finite Quasicrystals via Magnetic Aperiodicity,” PRB, 2022.
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Spectral methods for 
continuous spectra
E.g., cts spec of graphene

E.g., ground state of quasicrystal

• C., Roman, Hansen, “How to compute spectra with error control,” Physical Review Letters, 2019.
• C., Horning, Townsend, “Computing spectral measures of self-adjoint operators,” SIAM Review, 2021.
• Johnstone, C., Nielsen, Öhberg, Duncan, “Bulk Localised Transport States in Infinite and Finite Quasicrystals via Magnetic Aperiodicity,” PRB, 2022.

E.g., new states and phenomena: 
bulk localised transport states
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Example of “too much” (spectral pollution)
perpendicular
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• C., Roman, Hansen, “How to compute spectra with error control,” Physical Review Letters, 2019.
• C., Horning, Townsend, “Computing spectral measures of self-adjoint operators,” SIAM Review, 2021.
• Johnstone, C., Nielsen, Öhberg, Duncan, “Bulk Localised Transport States in Infinite and Finite Quasicrystals via Magnetic Aperiodicity,” PRB, 2022.

Need new tools for data-driven dynamical systems …
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Given dictionary 𝜓𝜓1, … ,𝜓𝜓𝑁𝑁𝐾𝐾 of functions 𝜓𝜓𝑗𝑗:Ω → ℂ

𝒦𝒦 𝕂𝕂 = Ψ𝑋𝑋∗𝑊𝑊Ψ𝑋𝑋 −1Ψ𝑋𝑋∗𝑊𝑊Ψ𝑌𝑌 ∈ ℂ𝑁𝑁𝐾𝐾×𝑁𝑁𝐾𝐾

Recall open problems: 1) “too much”, 2) “too little”, 3) continuous spectra, 4) verification.

𝜓𝜓𝑘𝑘 ,𝜓𝜓𝑗𝑗 ≈ ∑𝑚𝑚=1
𝑀𝑀 𝑤𝑤𝑚𝑚𝜓𝜓𝑗𝑗 𝑥𝑥 𝑚𝑚 𝜓𝜓𝑘𝑘 𝑥𝑥 𝑚𝑚 =

𝜓𝜓1(𝑥𝑥(1)) ⋯ 𝜓𝜓𝑁𝑁𝐾𝐾(𝑥𝑥(1))
⋮ ⋱ ⋮

𝜓𝜓1(𝑥𝑥(𝑀𝑀)) ⋯ 𝜓𝜓𝑁𝑁𝐾𝐾(𝑥𝑥(𝑀𝑀))
Ψ𝑋𝑋

∗
𝑤𝑤1

⋱
𝑤𝑤𝑀𝑀

𝑊𝑊

𝜓𝜓1(𝑥𝑥(1)) ⋯ 𝜓𝜓𝑁𝑁𝐾𝐾(𝑥𝑥(1))
⋮ ⋱ ⋮

𝜓𝜓1(𝑥𝑥(𝑀𝑀)) ⋯ 𝜓𝜓𝑁𝑁𝐾𝐾(𝑥𝑥(𝑀𝑀))
Ψ𝑋𝑋 𝑗𝑗𝑘𝑘

Build the matrix: Dynamic Mode Decomposition (DMD)

• Schmid, “Dynamic mode decomposition of numerical and experimental data,” Journal of fluid mechanics, 2010.
• Kutz, Brunton, Brunton, Proctor, “Dynamic mode decomposition: data-driven modeling of complex systems,” SIAM, 2016.
• Williams, Kevrekidis, Rowley “A data-driven approximation of the Koopman operator: Extending dynamic mode 

decomposition,” Journal of Nonlinear Science, 2015.

𝒦𝒦𝜓𝜓𝑘𝑘,𝜓𝜓𝑗𝑗 ≈ ∑𝑚𝑚=1
𝑀𝑀 𝑤𝑤𝑚𝑚𝜓𝜓𝑗𝑗 𝑥𝑥 𝑚𝑚 𝜓𝜓𝑘𝑘 𝑦𝑦 𝑚𝑚

[𝒦𝒦𝒦𝒦𝑘𝑘] 𝑥𝑥 𝑚𝑚

=
𝜓𝜓1(𝑥𝑥(1)) ⋯ 𝜓𝜓𝑁𝑁𝐾𝐾(𝑥𝑥(1))

⋮ ⋱ ⋮
𝜓𝜓1(𝑥𝑥(𝑀𝑀)) ⋯ 𝜓𝜓𝑁𝑁𝐾𝐾(𝑥𝑥(𝑀𝑀))

Ψ𝑋𝑋

∗
𝑤𝑤1

⋱
𝑤𝑤𝑀𝑀

𝑊𝑊

𝜓𝜓1(𝑦𝑦(1)) ⋯ 𝜓𝜓𝑁𝑁𝐾𝐾(𝑦𝑦(1))
⋮ ⋱ ⋮

𝜓𝜓1(𝑦𝑦(𝑀𝑀)) ⋯ 𝜓𝜓𝑁𝑁𝐾𝐾(𝑦𝑦(𝑀𝑀))
Ψ𝑌𝑌 𝑗𝑗𝑘𝑘
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Residuals: 𝑔𝑔 = ∑𝑗𝑗=1
𝑁𝑁𝐾𝐾 𝐠𝐠𝑗𝑗𝜓𝜓𝑗𝑗 , 𝒦𝒦𝑔𝑔 − 𝜆𝜆𝑔𝑔 2 ≈ 𝐠𝐠∗ 𝐾𝐾2 − 𝜆𝜆𝐾𝐾1∗ − ̅𝜆𝜆𝐾𝐾1 + 𝜆𝜆 2𝐺𝐺 𝐠𝐠

Residual DMD (ResDMD): Approx. 𝒦𝒦 and𝒦𝒦∗𝒦𝒦

• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” 
Communications on Pure and Applied Mathematics, under review.

• Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

𝜓𝜓𝑘𝑘,𝜓𝜓𝑗𝑗 ≈ �
𝑚𝑚=1

𝑀𝑀

𝑤𝑤𝑚𝑚𝜓𝜓𝑗𝑗 𝑥𝑥 𝑚𝑚 𝜓𝜓𝑘𝑘 𝑥𝑥 𝑚𝑚 = Ψ𝑋𝑋∗𝑊𝑊Ψ𝑋𝑋
𝐺𝐺 𝑗𝑗𝑘𝑘

𝒦𝒦𝜓𝜓𝑘𝑘,𝜓𝜓𝑗𝑗 ≈ �
𝑚𝑚=1

𝑀𝑀

𝑤𝑤𝑚𝑚𝜓𝜓𝑗𝑗 𝑥𝑥 𝑚𝑚 𝜓𝜓𝑘𝑘 𝑦𝑦 𝑚𝑚

[𝒦𝒦𝒦𝒦𝑘𝑘] 𝑥𝑥 𝑚𝑚

= Ψ𝑋𝑋∗𝑊𝑊Ψ𝑌𝑌
𝐾𝐾1 𝑗𝑗𝑘𝑘

𝒦𝒦𝜓𝜓𝑘𝑘 ,𝒦𝒦𝜓𝜓𝑗𝑗 ≈ �
𝑚𝑚=1

𝑀𝑀

𝑤𝑤𝑚𝑚𝜓𝜓𝑗𝑗 𝑦𝑦 𝑚𝑚 𝜓𝜓𝑘𝑘 𝑦𝑦 𝑚𝑚 = Ψ𝑌𝑌∗𝑊𝑊Ψ𝑌𝑌
𝐾𝐾2 𝑗𝑗𝑘𝑘
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ResDMD: avoiding “too much”

res(𝜆𝜆, 𝐠𝐠)2 =
𝐠𝐠∗ 𝐾𝐾2 − 𝜆𝜆𝐾𝐾1∗ − �̅�𝜆𝐾𝐾1 + 𝜆𝜆 2𝐺𝐺 𝐠𝐠

𝐠𝐠∗𝐺𝐺𝐠𝐠

Algorithm 1:
1. Compute 𝐺𝐺,𝐾𝐾1,𝐾𝐾2 ∈ ℂ𝑁𝑁𝐾𝐾×𝑁𝑁𝐾𝐾 and eigendecomposition 𝐾𝐾1𝑉𝑉 = 𝐺𝐺𝑉𝑉Λ.
2. For each eigenpair (𝜆𝜆, 𝐯𝐯), compute res(𝜆𝜆, 𝐯𝐯).
3. Output: subset of e-vectors 𝑉𝑉(𝜀𝜀) & e-vals Λ(𝜀𝜀)with res 𝜆𝜆, 𝐯𝐯 ≤ 𝜀𝜀 (𝜀𝜀 = input tol).

Theorem (no spectral pollution): Suppose quad. rule converges. Then
lim sup
𝑀𝑀⟶∞

max
𝜆𝜆∈Λ(𝜀𝜀)

𝒦𝒦 − 𝜆𝜆 −1 −1 ≤ 𝜀𝜀
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ResDMD: avoiding “too much”

res(𝜆𝜆, 𝐠𝐠)2 =
𝐠𝐠∗ 𝐾𝐾2 − 𝜆𝜆𝐾𝐾1∗ − �̅�𝜆𝐾𝐾1 + 𝜆𝜆 2𝐺𝐺 𝐠𝐠

𝐠𝐠∗𝐺𝐺𝐠𝐠

Algorithm 1:
1. Compute 𝐺𝐺,𝐾𝐾1,𝐾𝐾2 ∈ ℂ𝑁𝑁𝐾𝐾×𝑁𝑁𝐾𝐾 and eigendecomposition 𝐾𝐾1𝑉𝑉 = 𝐺𝐺𝑉𝑉Λ.
2. For each eigenpair (𝜆𝜆, 𝐯𝐯), compute res(𝜆𝜆, 𝐯𝐯).
3. Output: subset of e-vectors 𝑉𝑉(𝜀𝜀) & e-vals Λ(𝜀𝜀)with res 𝜆𝜆, 𝐯𝐯 ≤ 𝜀𝜀 (𝜀𝜀 = input tol).

Theorem (no spectral pollution): Suppose quad. rule converges. Then
lim sup
𝑀𝑀⟶∞

max
𝜆𝜆∈Λ(𝜀𝜀)

𝒦𝒦 − 𝜆𝜆 −1 −1 ≤ 𝜀𝜀

BUT: Typically, does not capture all of spectrum! (“too little”)
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ResDMD: avoiding “too little”
Spec𝜀𝜀(𝒦𝒦) = �

ℬ ≤𝜀𝜀

Spec(𝒦𝒦 + ℬ) , lim
𝜀𝜀↓0

Spec𝜀𝜀(𝒦𝒦) = Spec(𝒦𝒦)

Algorithm 2:
1. Compute 𝐺𝐺,𝐾𝐾1,𝐾𝐾2 ∈ ℂ𝑁𝑁𝐾𝐾×𝑁𝑁𝐾𝐾.
2. For 𝑧𝑧𝑘𝑘 in comp. grid, compute 𝜏𝜏𝑘𝑘 = min

𝑔𝑔=∑𝑗𝑗=1
𝑁𝑁𝐾𝐾 𝐠𝐠𝑗𝑗𝒦𝒦𝑗𝑗

res(𝑧𝑧𝑘𝑘 ,𝑔𝑔), corresponding 𝑔𝑔𝑘𝑘 (gen. SVD).

3. Output: 𝑧𝑧𝑘𝑘: 𝜏𝜏𝑘𝑘 < 𝜀𝜀 (approx. of Spec𝜀𝜀(𝒦𝒦)), 𝑔𝑔𝑘𝑘: 𝜏𝜏𝑘𝑘 < 𝜀𝜀 (𝜀𝜀-pseudo-eigenfunctions).

Theorem (full convergence): Suppose the quadrature rule converges. 
• Error control: 𝑧𝑧𝑘𝑘: 𝜏𝜏𝑘𝑘 < 𝜀𝜀 ⊆ Spec𝜀𝜀(𝒦𝒦) (as 𝑀𝑀 → ∞)
• Convergence: Converges locally uniformly to Spec𝜀𝜀 𝒦𝒦 (as 𝑁𝑁𝐾𝐾 → ∞)

First convergent method for general 𝒦𝒦
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Suppose system is measure preserving (e.g., Hamiltonian, ergodic, …)

⟺𝒦𝒦∗𝒦𝒦 = 𝐼𝐼 (isometry)

⟹ Spec(𝒦𝒦) ⊆ 𝑧𝑧: 𝑧𝑧 ≤ 1

(For those interested: we consider canonical unitary extensions.)

Setup for continuous spectra
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• Fin.-dim.: 𝐵𝐵 ∈ ℂ𝑛𝑛×𝑛𝑛, 𝐵𝐵∗𝐵𝐵 = 𝐵𝐵𝐵𝐵∗, o.n. basis of e-vectors 𝑣𝑣𝑗𝑗 𝑗𝑗=1
𝑛𝑛

𝑣𝑣 = �
𝑗𝑗=1

𝑛𝑛

𝑣𝑣𝑗𝑗𝑣𝑣𝑗𝑗∗ 𝑣𝑣, 𝐵𝐵𝑣𝑣 = �
𝑗𝑗=1

𝑛𝑛

𝜆𝜆𝑗𝑗𝑣𝑣𝑗𝑗𝑣𝑣𝑗𝑗
∗ 𝑣𝑣, ∀𝑣𝑣 ∈ ℂ𝑛𝑛

• Inf.-dim.: Operator ℒ:𝒟𝒟(ℒ) → ℋ. Typically, no basis of e-vectors! 
Spectral theorem: (projection-valued) spectral measure 𝐸𝐸

𝑔𝑔 = �
Spec ℒ

1 d𝐸𝐸(𝜆𝜆) 𝑔𝑔, ℒ𝑔𝑔 = �
Spec ℒ

𝜆𝜆 d𝐸𝐸(𝜆𝜆) 𝑔𝑔, ∀𝑔𝑔 ∈ ℋ

• Spectral measures: 𝜈𝜈𝑔𝑔 𝑈𝑈 = 𝐸𝐸 𝑈𝑈 𝑔𝑔,𝑔𝑔 ( 𝑔𝑔 = 1) prob. measure.

Spectral measures → diagonalisation
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Koopman mode decomposition (again!)

𝑔𝑔(𝑥𝑥) = �
eigenvalues 𝜆𝜆𝑗𝑗

𝑐𝑐𝜆𝜆𝑗𝑗𝜑𝜑𝜆𝜆𝑗𝑗(𝑥𝑥) + �
−𝜋𝜋

𝜋𝜋

𝜙𝜙𝜃𝜃,𝑔𝑔 𝑥𝑥 d𝜃𝜃

𝜈𝜈𝑔𝑔 probability measures on −𝜋𝜋,𝜋𝜋 per

d𝜈𝜈𝑔𝑔 𝑦𝑦 = �
eigenvalues 𝜆𝜆𝑗𝑗=exp(𝑖𝑖𝜃𝜃𝑗𝑗)

𝑃𝑃 𝜆𝜆𝑗𝑗𝑔𝑔,𝑔𝑔 𝛿𝛿(𝑦𝑦 − 𝜃𝜃𝑗𝑗)

discrete

+ 𝜌𝜌𝑔𝑔 𝑦𝑦 d𝑦𝑦 + d𝜈𝜈𝑔𝑔sc 𝑦𝑦
continuous

𝑔𝑔 𝑥𝑥𝑛𝑛 = 𝒦𝒦𝑛𝑛𝑔𝑔 𝑥𝑥0 = �
eigenvalues 𝜆𝜆𝑗𝑗

𝑐𝑐𝜆𝜆𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛𝜑𝜑𝜆𝜆𝑗𝑗 𝑥𝑥0 + �

−𝜋𝜋

𝜋𝜋

𝑒𝑒𝑖𝑖𝑛𝑛𝜃𝜃𝜙𝜙𝜃𝜃,𝑔𝑔 𝑥𝑥0 d𝜃𝜃

Computing 𝜈𝜈𝑔𝑔 diagonalises non-linear dynamical system!

generalised
eigenfunction of 𝒦𝒦

eigenfunction of 𝒦𝒦

Leb. decomp:
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𝑚𝑚th order Plemelj formula

𝒞𝒞𝑔𝑔 𝑧𝑧 = �
−𝜋𝜋

𝜋𝜋 𝑒𝑒𝑖𝑖𝜃𝜃d𝜈𝜈𝑔𝑔(𝜃𝜃)
𝑒𝑒𝑖𝑖𝜃𝜃 − 𝑧𝑧

= � 𝒦𝒦 − 𝑧𝑧𝐼𝐼 −1𝑔𝑔,𝒦𝒦∗𝑔𝑔 , if 𝑧𝑧 > 1
−𝑧𝑧−1 𝑔𝑔, 𝒦𝒦 − ̅𝑧𝑧−1𝐼𝐼 −1𝑔𝑔 , if 0 < 𝑧𝑧 < 1

𝑚𝑚th order rational kernels:

𝐾𝐾𝜀𝜀 𝜃𝜃 =
𝑒𝑒−𝑖𝑖𝜃𝜃

2𝜋𝜋
�
𝑗𝑗=1

𝑚𝑚
𝑐𝑐𝑗𝑗

𝑒𝑒−𝑖𝑖𝜃𝜃 − (1 + 𝜀𝜀�𝑧𝑧𝑗𝑗)−1
−

𝑑𝑑𝑗𝑗
𝑒𝑒−𝑖𝑖𝜃𝜃 − 1 + 𝜀𝜀𝑧𝑧𝑗𝑗

𝐾𝐾𝜀𝜀 ∗ 𝜈𝜈𝑔𝑔 𝜃𝜃0 = �
𝑗𝑗=1

𝑚𝑚

𝑐𝑐𝑗𝑗𝒞𝒞𝑔𝑔 𝑒𝑒𝑖𝑖𝜃𝜃0(1 + 𝜀𝜀�𝑧𝑧𝑗𝑗)−1 − 𝑑𝑑𝑗𝑗𝒞𝒞𝑔𝑔 𝑒𝑒𝑖𝑖𝜃𝜃0 1 + 𝜀𝜀𝑧𝑧𝑗𝑗

𝑂𝑂(𝑃𝑃𝑁𝑁𝐾𝐾) cost for evaluation at 𝑃𝑃 values of 𝜃𝜃

ResDMD computes
with error control

𝜃𝜃0

•
•
𝑂𝑂(𝜀𝜀)𝑂𝑂(𝜀𝜀)

𝜀𝜀 = “smoothing parameter”

Kernels

𝑚𝑚th order rational kernels
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Convergence

Theorem: Automatic selection of 𝑁𝑁𝐾𝐾(𝜀𝜀) with 𝑂𝑂(𝜀𝜀𝑚𝑚log(1/𝜀𝜀)) convergence:
• Density of continuous spectrum 𝜌𝜌𝑔𝑔. (pointwise and 𝐿𝐿𝑝𝑝)
• Integration against test functions. (weak convergence)

�
−𝜋𝜋

𝜋𝜋
ℎ 𝜃𝜃 𝐾𝐾𝜀𝜀 ∗ 𝜈𝜈𝑔𝑔 𝜃𝜃 d𝜃𝜃 = �

−𝜋𝜋

𝜋𝜋
ℎ 𝜃𝜃 d𝜈𝜈𝑔𝑔 𝜃𝜃 + 𝑂𝑂(𝜀𝜀𝑚𝑚log(1/𝜀𝜀))

• Also recover discrete spectrum.
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𝒦𝒦 =

𝛼𝛼0 𝛼𝛼1𝜌𝜌0 𝜌𝜌0𝜌𝜌1
𝜌𝜌0 −𝛼𝛼1𝛼𝛼0 −𝛼𝛼0𝜌𝜌1

𝛼𝛼2𝜌𝜌1 −𝛼𝛼2𝛼𝛼1 −𝛼𝛼3𝜌𝜌2 −𝜌𝜌3𝜌𝜌2
𝜌𝜌0 −𝜌𝜌2𝜌𝜌1 −𝛼𝛼1𝜌𝜌2 −𝛼𝛼3𝛼𝛼2 −𝜌𝜌3𝛼𝛼2 ⋱

𝛼𝛼4𝜌𝜌3 −𝛼𝛼4𝛼𝛼3 ⋱
⋱ ⋱ ⋱

𝛼𝛼𝑗𝑗 = (−1)𝑗𝑗0.95(𝑗𝑗+1)/2, 𝜌𝜌𝑗𝑗 = 1 − 𝛼𝛼𝑗𝑗
2

Generalised shift, typical building 
block of many dynamical systems.

Example
Pointwise error for spectral density

𝜀𝜀
NB: Small 𝑁𝑁𝐾𝐾 critical in data-driven computations. 
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Popular to learn dictionary 𝜓𝜓1, … ,𝜓𝜓𝑁𝑁𝐾𝐾

E.g., DMD with truncated SVD (linear dictionary, most popular), 
kernel methods (this talk), neural networks, etc.

Q: Is discretisation 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 𝝍𝝍𝟏𝟏, … ,𝝍𝝍𝑵𝑵𝑲𝑲 large/rich enough?

Above algorithms:
• Pseudospectra: 𝑧𝑧𝑘𝑘: 𝜏𝜏𝑘𝑘 < 𝜀𝜀 ⊆ Spec𝜀𝜀(𝒦𝒦) error control
• Spectral measures: 𝒞𝒞𝑔𝑔 𝑧𝑧 and smoothed measures adaptive check

⟹ Rigorously verify learnt dictionary 𝜓𝜓1, … ,𝜓𝜓𝑁𝑁𝐾𝐾

Large 𝑑𝑑 (Ω ⊆ ℝ𝑑𝑑): robust and scalable
17/24



Example: pressure field of turbulent flow

𝜆𝜆 = 𝑒𝑒0.11𝑖𝑖 𝜆𝜆 = 𝑒𝑒0.51𝑖𝑖 𝜆𝜆 = 𝑒𝑒0.71𝑖𝑖
?

Rel. Error = ? Rel. Error = ? Rel. Error = ?

• Data collected for 2 × 10−4s
• Reynolds number ≈ 3.9 × 105
• Ambient dimension ≈ 300,000

(number of measurement points*)
*Raw measurements provided by Stephane Moreau (Sherbrooke)
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𝜆𝜆 = 𝑒𝑒0.11𝑖𝑖 𝜆𝜆 = 𝑒𝑒0.51𝑖𝑖 𝜆𝜆 = 𝑒𝑒0.71𝑖𝑖
Rel. Error ≤ 0.0054 Rel. Error ≤ 0.0128 Rel. Error ≤ 0.0196

• Data collected for 2 × 10−4s
• Reynolds number ≈ 3.9 × 105
• Ambient dimension ≈ 300,000

(number of measurement points*)
*Raw measurements provided by Stephane Moreau (Sherbrooke)

18/24
Example: pressure field of turbulent flow



Example: molecular dynamics (Adenylate Kinase)
• All-atom equilibrium simulation 

for 1.004 × 10−6s
• Ambient dimension ≈ 20,000

(positions and momenta of atoms)
• 6th order kernel (spec res 10−6)
*Dataset: www.mdanalysis.org/MDAnalysisData/adk_equilibrium.html

LID NMP
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extremely efficient
compression

Number of modes
Re

la
tiv

e 
M

SE

unseen shockwave
prediction
from 40 modes

Example: laser-induced plasma

Time(10−5s)

Pr
es

su
re

• 60 realisations (𝑀𝑀 = 6600)
• Ambient dimension ≈ 10

(length of initial window*)
*Raw measurements provided by Máté Szőke (Virginia Tech)
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Transient modes

𝜆𝜆 = 0.9439 + 0.2458𝑖𝑖, error ≤ 0.0765 𝜆𝜆 = 0.8948 + 0.1065𝑖𝑖, error ≤ 0.1105

• 12,000 snapshots over 1s
• Reynolds number ≈ 6.4 × 104
• Ambient dimension ≈ 100,000

(velocity at measurement points)
*Raw measurements provided by Máté Szőke (Virginia Tech)

Spectral pollution

Example: wall-jet boundary layer21/24



• Inf.-dim. computational analysis ⟹ Compute spectral properties for the first time.

• Solvability Complexity Index hierarchy⟹Algorithms realise the boundaries of what’s possible.

• Builds on and extends work of Turing, Smale, and McMullen.

• Extends to: Foundations of AI, PDEs (e.g., time-dep. Schrödinger eq. on 𝐿𝐿2(ℝ𝑑𝑑) with error 
control), optimisation (e.g., guarantees), computer-assisted proofs, …

Wider programme: a toolkit

• C., “On the computation of geometric features of spectra of linear operators on Hilbert spaces,” Found. Comput. Math., under revisions.
• C., “Computing spectral measures and spectral types,” Communications in Mathematical Physics, 2021.
• C., Horning, Townsend “Computing spectral measures of self-adjoint operators,” SIAM Review, 2021.
• C., Roman, Hansen, “How to compute spectra with error control,” Physical Review Letters, 2019.
• C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” JEMS, 2022.
• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th 

problem," Proceedings of the National Academy of Sciences, 2022.
• C., “Computing semigroups with error control,” SIAM Journal on Numerical Analysis, 2022. 
• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.
• Smale, “The fundamental theorem of algebra and complexity theory,” Bulletin of the AMS, 1981, 36 pp.
• McMullen, “Families of rational maps and iterative root-finding algorithms,” Annals of Mathematics, 1987, 27 pp.
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• Inf.-dim. computational analysis ⟹ Compute spectral properties for the first time.

• Solvability Complexity Index hierarchy⟹Algorithms realise the boundaries of what’s possible.

• Builds on and extends work of Turing, Smale, and McMullen.

• Extends to: Foundations of AI, PDEs (e.g., time-dep. Schrödinger eq. on 𝐿𝐿2(ℝ𝑑𝑑) with error 
control), optimisation (e.g., guarantees), computer-assisted proofs, …

Wider programme: a toolkit

• C., “On the computation of geometric features of spectra of linear operators on Hilbert spaces,” Found. Comput. Math., under revisions.
• C., “Computing spectral measures and spectral types,” Communications in Mathematical Physics, 2021.
• C., Horning, Townsend “Computing spectral measures of self-adjoint operators,” SIAM Review, 2021.
• C., Roman, Hansen, “How to compute spectra with error control,” Physical Review Letters, 2019.
• C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” JEMS, 2022.
• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th 

problem," Proceedings of the National Academy of Sciences, 2022.
• C., “Computing semigroups with error control,” SIAM Journal on Numerical Analysis, 2022. 
• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.
• Smale, “The fundamental theorem of algebra and complexity theory,” Bulletin of the AMS, 1981, 36 pp.
• McMullen, “Families of rational maps and iterative root-finding algorithms,” Annals of Mathematics, 1987, 27 pp.

General technique for lower bounds by 
embedding combinatorial problems.
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Π0

Σ0

Δ0

=
=

⊊ Δ1 ⊊

Π1

Σ1 ∪ Π1 ⊊ Δ2 ⊊

Π2

Σ2

Σ2 ∪ Π2 ⊊ Δ3 ⊊

Π3

Σ3

Σ3 ∪ Π3 ⋯

Error control

Increasing difficulty

Σ1

Small sample of classification theorems
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*Open problem of Schwinger: “The special canonical group,” “Unitary operator bases,” PNAS, 1960.
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compact operators

Error control
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Spectral gap problem
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Spectra of Schrödinger*
(different potential classes)

Spectra of 𝒦𝒦 Continuous spectra of 𝒦𝒦 (different regularity assumptions)

*Open problem of Schwinger: “The special canonical group,” “Unitary operator bases,” PNAS, 1960.
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Summary
Overcame: 1) “too much”, 2) “too little”, 3) continuous spectra, 4) verification.

• Spectra, pseudospectra, residuals of general Koopman operators (error control).
• Idea: New matrix for residual ⇒ ResDMD.

• Spectral measures of measure-preserving systems with high-order convergence.
• Idea: Convolution with rational kernels via resolvent and ResDMD.

• Dealt with high-dimensional dynamical systems.
• Idea: Use ResDMD to verify learned dictionaries.

First general methods with convergence guarantees! ghghghghggh
⟶ Opens the door to rigorous data-driven Koopmania!
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Convergence of quadrature

E.g.,    𝒦𝒦𝜓𝜓𝑘𝑘 ,𝜓𝜓𝑗𝑗 = lim
𝑀𝑀→∞

∑𝑚𝑚=1
𝑀𝑀 𝑤𝑤𝑚𝑚𝜓𝜓𝑗𝑗 𝑥𝑥 𝑚𝑚 𝜓𝜓𝑘𝑘 𝑦𝑦 𝑚𝑚

[𝒦𝒦𝒦𝒦𝑘𝑘] 𝑥𝑥 𝑚𝑚

Three examples:

• High-order quadrature: 𝑥𝑥(𝑚𝑚),𝑤𝑤𝑚𝑚 𝑚𝑚=1
𝑀𝑀 𝑀𝑀-point quadrature rule.  

Rapid convergence. Requires free choice of 𝑥𝑥(𝑚𝑚)
𝑚𝑚=1
𝑀𝑀

and small 𝑑𝑑.

• Random sampling: 𝑥𝑥(𝑚𝑚)
𝑚𝑚=1
𝑀𝑀

selected at random.
Large 𝑑𝑑. Slow Monte Carlo 𝑂𝑂(𝑀𝑀−1/2) rate of convergence.

• Ergodic sampling: 𝑥𝑥(𝑚𝑚+1) = 𝐹𝐹(𝑥𝑥(𝑚𝑚)). 
Single trajectory, large 𝑑𝑑. Requires ergodicity, convergence can be slow.

Most common



Example: non-linear pendulum

Colour represents complex argument, constant modulus shown as shadowed steps.
All residuals smaller than ε = 0.05 (made smaller by increasing 𝑁𝑁𝐾𝐾).



Koopman mode decomposition (𝕂𝕂𝑉𝑉 = 𝑉𝑉Λ)

Standard Koopman mode decomposition (order modes by Λ ):
𝑔𝑔(𝑥𝑥) ≈ 𝜓𝜓1(𝑥𝑥) ⋯ 𝜓𝜓𝑁𝑁𝐾𝐾(𝑥𝑥) 𝑉𝑉

approx Koopman e−functions

𝑉𝑉 𝑊𝑊Ψ𝑋𝑋
†
𝑊𝑊 𝑔𝑔(𝑥𝑥(1)) ⋯ 𝑔𝑔(𝑥𝑥(𝑀𝑀)) T

Koopmanmodes

⇒
?
𝑔𝑔(𝑥𝑥𝑛𝑛) ≈ 𝜓𝜓1(𝑥𝑥) ⋯ 𝜓𝜓𝑁𝑁𝐾𝐾(𝑥𝑥) 𝑉𝑉

approx Koopman e−functions

Λ𝑛𝑛 𝑉𝑉 𝑊𝑊Ψ𝑋𝑋
†
𝑊𝑊 𝑔𝑔(𝑥𝑥(1)) ⋯ 𝑔𝑔(𝑥𝑥(𝑀𝑀)) T

Koopmanmodes

Residual Koopman mode decomposition (order modes by res 𝜆𝜆, 𝐯𝐯 ):
𝑔𝑔 𝑥𝑥 ≈ 𝜓𝜓1(𝑥𝑥) ⋯ 𝜓𝜓𝑁𝑁𝐾𝐾(𝑥𝑥) 𝑉𝑉(𝜀𝜀)

approx Koopman e−functions

𝑉𝑉(𝜀𝜀) 𝑊𝑊Ψ𝑋𝑋
†
𝑊𝑊 𝑔𝑔(𝑥𝑥(1)) ⋯ 𝑔𝑔(𝑥𝑥(𝑀𝑀)) T

Koopmanmodes

𝑔𝑔 𝑥𝑥𝑛𝑛 ≈ 𝜓𝜓1(𝑥𝑥0) ⋯ 𝜓𝜓𝑁𝑁𝐾𝐾(𝑥𝑥0) 𝑉𝑉(𝜀𝜀)
approx Koopman e−functions

Λ(𝜀𝜀)
𝑛𝑛 𝑉𝑉(𝜀𝜀) 𝑊𝑊Ψ𝑋𝑋

†
𝑊𝑊 𝑔𝑔(𝑥𝑥(1)) ⋯ 𝑔𝑔(𝑥𝑥(𝑀𝑀)) T

Koopmanmodes



But … slow convergence
Problem: As 𝜀𝜀 ↓ 0, error is 𝑂𝑂(𝜀𝜀 � log(1/𝜀𝜀)) and 𝑁𝑁𝐾𝐾(𝜀𝜀) → ∞.

Small 𝑁𝑁𝐾𝐾 critical in data-driven computations. Can we improve convergence rate?

Pointwise error for spectral density Error due to discretisation

𝜀𝜀 𝑁𝑁𝐾𝐾



Kernel method
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