0/24
Robust and Verified Koopmania!
Infinite-dimensional spectral computations for nonlinear systems

Matthew Colbrook (m.colbrook@damtp.cam.ac.uk)
University of Cambridge + Ecole Normale Supérieure

Analysis: C., Townsend, “Rigorous data-driven computation of
spectral properties of Koopman operators for dynamical systems’

N

)

Applications: C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition:
Robust and verified Koopmanism”

http://www.damtp.cam.ac.uk/user/mjc249/home.html: slides, papers, and code
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Data-driven dynamical systems

e State x € Q € RY, unknown function F: Q — Q governs dynamics
Xn+1 = F(xn)
M
* Goal: Learn about system from data {x(m),y(m) = F(x(m))}m=1

e E.g., data from trajectories, experimental measurements, simulations, ...
* E.g., used for forecasting, control, design, understanding, ...

* Applications: chemistry, climatology,
electronics, epidemiology, finance,
fluids, molecular dynamics,
neuroscience, plasmas, robotics,
video processing, ...

Can we develop verified methods

°~J
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Operator viewpoint

* Koopman operator K acts on functions g: Q) — C

[Kgl(x) = g(F(x))
* K is linear but acts on an infinite-dimensional space.

State x x x xn Non linear
|

Funct|ons \ \ \ \ Lmear

of state g (X1) g (xz) g (xg) : g (xn)

* Work in L?(£), w) for positive measure w, with inner product (-,-).

e Koopman, “Hamiltonian systems and transformation in Hilbert space,” Proceedings of the National Academy of Sciences, 1931.
e Koopman, v. Neumann, “Dynamical systems of continuous spectra,” Proceedings of the National Academy of Sciences, 1932.
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Koopman mode decomposition

eigenfunction of X generalised

J " eigenfunction of K
9= ) e+ | doglo) do

eigenvalues 4; T
T
g0 = K"l = D b es, )+ [ e (xo) dO
eigenvalues 4; —TT

Encodes: geometric features, invariant measures, transient behaviouir,
long-time behaviour, coherent structures, quasiperiodicity, etc.

GOAL: Data-driven approximation of X and its spectral properties.

* Mezi¢, “Spectral properties of dynamical systems, model reduction and decompositions,” Nonlinear Dynamics, 2005.
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Koopmania*: a revolution in the big data era

New Papers on
“Koopman Operators”
6000

~35,000 papers over last decade!

/

5000
Very little on convergence guarantees or verification. 4000 /\/

3000

Why is this lacking? - /~/\\/

e Koopman operators have so far been quite distinct 10
from both analysis and computational communities. o

015
016

2010
2011
2012
2013
2014
2017
2018
2019

AN N

* Dealing with infinite dim is notoriously hard ... — number of papers

doubles every 5 yrs

*Wikipedia: “its wild surge in popularity is sometimes jokingly called ‘Koopmania™

2020

2021
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Can we compute spectral properties in inf. dim.?

Spec(K) = {1 € C: K — Al isnotinvertible}

“Operators that arise in practice are not diagonalized, and it is often very hard to locate
the spectrum. Thus, one has to settle for numerical approximations. Unfortunately, there
are no proven general techniques.” W. Arveson, Berkeley (1994)

Naive: X K € CV*N + compute e-values, problems:

1) “Too much”: Approximate spurious modes A & Spec(K) - “spectral pollution”
2) “Too little”: Miss parts of Spec(K)

3) Continuous spectra

4) Verification: Which part of an approximation can we trust?

* Arveson, “The role of C*-algebras in infinite dimensional numerical linear algebra,” Contemp. Math., 1994.

Davies, “Linear operators and their spectra,” CUP, 2007.
Brunton, Kutz, “Data-driven Science and Engineering: Machine learning, Dynamical systems, and Control,” CUP, 2019.
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Example of “too much” (spectral pollution)

B: perpendicular

(1] ‘l [ [ L] L] ”
magnetic field Naive method Infinite-dimensional” method
. m 1r 1 = S-BTET
quasicrystal = ol
.'6,00.8— 0.8
C
8 0.7 - 0.7
-";; 06 06
% o5t Spectral
G= pollution
Q
..... -IG-S 03 0.3
C 0.2 0.2
o0
M M M M @© 0.1 0.1
Infinite matrix: discrete = e . N
Schrodinger operator Approx. of spectrum (energy) Approx. of spectrum (energy)
Spectral pollution Convergent computation
No error control Error control

 C., Roman, Hansen, “How to compute spectra with error control,” Physical Review Letters, 2019.
(., Horning, Townsend, “Computing spectral measures of self-adjoint operators,” SIAM Review, 2021.
« Johnstone, C., Nielsen, Ohberg, Duncan, “Bulk Localised Transport States in Infinite and Finite Quasicrystals via Magnetic Aperiodicity,” PRB, 2022.
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o V4
Example of “too much” (spec
Highlights
PHYSICAL . .
l = [;l Bulk localized transport states in
i infinite and finite quasicrystals via

|"| |

qL REVIEW

Z A LETTERS magnetic aperiodicity
' s D REVIEW Phys. Rev. B

X T e

i

In{
Sc

S S

et S&E.S_( Volume 122, Number 25 Spectra| methods for ' << e
E.g., new states and phenomena:

American Physical Society )

E.g., ground state of quasicrystal continuous spectra .
E.g., cts spec of graphene bulk localised transport states

C., Roman, Hansen, “How to compute spectra with error control,” Physical Review Letters, 2019.

(., Horning, Townsend, “Computing spectral measures of self-adjoint operators,” SIAM Review, 2021.
« Johnstone, C., Nielsen, Ohberg, Duncan, “Bulk Localised Transport States in Infinite and Finite Quasicrystals via Magnetic Aperiodicity,” PRB, 2022.
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Example of

/l/ PHYSICAL
y 4 REVIEW
LETTERS

28 Jung 2019

Articles published week ending

4
/

“too much” (spec

Volume 63 Number 3

lEW

a publication of the
Society for Industrial and Applied Mathematics

PHYSICAL REVIEW B

covering condensed matter and materials physics

v

Highlights

Bulk localized transport states in
infinite and finite quasicrystals via

magnetic aperiodicity
Phys. Rev. B

-
S

! fwiy
e
A

C., Roman, Hansen, “How to compute spectra with error control,” Physical Review Letters, 2019.

C., Horning, Townsend, “Computing spectral measures of self-adjoint operators,” SIAM Review, 2021.
« Johnstone, C., Nielsen, Ohberg, Duncan, “Bulk Localised Transport States in Infinite and Finite Quasicrystals via Magnetic Aperiodicity,” PRB, 2022.
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Build the matrix: Dynamic Mode Decomposition (DMD)

Given dictionary {1/)1, . l/)NK} of functions y;: 1 —» C

(Vi ;) = Ty Wit (x )y (x ) =

(K ;) = IM_ wih; (M) 1, (y™)) =
[Hpye] (2 (™))

H—> K= (Y, W) W, " WW, e CNe*Nk

Recall open problems: 1) “too much”, 2) “too little”, 3) continuous spectra, 4) verification.

(m
)) 7
m=1
[ (11 (xD) P O\ [y Py (D) Py (x)\]
Pr®) ey () wir ) \pr (eOD) oy (0D
Py % Wy L
[ (x D) U N\ [wy P (y D) Uy, D)
Pr ™) ey () wi ) \ s D) oy ()
Py W Wy L

* Schmid, “Dynamic mode decomposition of numerical and experimental data,” Journal of fluid mechanics, 2010.

e Kutz, Brunton, Brunton, Proctor, “Dynamic mode decomposition: data-driven modeling of complex systems,” SIAM, 2016.

* Williams, Kevrekidis, Rowley “A data-driven approximation of the Koopman operator: Extending dynamic mode
decomposition,” Journal of Nonlinear Science, 2015.
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Residual DMD (ResDMD): Approx. K and K*K

(i ¥j) = i Winth; (x ™) 1y (x ™)) = [wx WWX]

1 jk
M

(Kb ) = ) winp; (x(M) P (y) = [‘PX W‘Py]
m=1 [?Ctpk](x<m))

jk

M
(K 15 = > Wi (V) () = 4y Wy
K>

m=1 jk

Residuals: g = Z?’fl g, 1Kg —gll° = g"[K, — AK;" — AK; + |A|°Glg

* C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,”
Communications on Pure and Applied Mathematics, under review.
* Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition



https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

9/24

ResDMD: avoiding “too much”
g Gg

res(A, g)* =

Algorithm 1:
1. Compute G, K;, K, € CNk*Nk and eigendecomposition K;V = GVA.
2. For each eigenpair (4,v), compute res(4,v).

3. Output: subset of e-vectors V) & e-vals Asywithres(4,v) < & (e =input tol).

Theorem (no spectral pollution): Suppose quad. rule converges. Then

lim sup max |[(K —A)7 Y|t <e
M—oco AEAE)
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ResDMD: avoiding “too much”

res(, )% =
4, 8) TG

Algorithm 1:
1. Compute G, K;, K, € CNk*Nk and eigendecomposition K;V = GVA.
2. For each eigenpair (4,v), compute res(4,v).

3. Output: subset of e-vectors V) & e-vals Asywithres(4,v) < & (e =input tol).

Theorem (no spectral pollution): Suppose quad. rule converges. Then

lim sup max |[(K —A)7 Y|t <e
M—oco AEAE)

BUT: Typically, does not capture all of spectrum! (“too little”)
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ResDMD: avoiding “too little”

Spec.(K) = U Spec(K + B), lgiH)I Spec.(K) = Spec(K)

IBll<e
Algorlthm 2: First convergent method for general X
1. Compute G, K;, K, € CNk*Nk,
2. For z, in comp. grid, compute 7, = IIIVlin res(zy, g), corresponding g (gen. SVD).
g=2j=K1 giYj
3. Output: {z;: 1), < €} (approx. of Spec.(K)), {gx: Tx < €} (e-pseudo-eigenfunctions).

Theorem (full convergence): Suppose the quadrature rule converges.
* Error control: {z;.: 7}, < €} € Spec.(X) (as M — oo)
* Convergence: Converges locally uniformly to Spec.(¥X) (as Ny — o)




11/24

Setup for continuous spectra

Suppose system is measure preserving (e.g., Hamiltonian, ergodic, ...)

& K*K =1 (isometry)

= Spec(K) € {z:|z| < 1}

(For those interested: we consider canonical unitary extensions.)
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Spectral measures — diagonalisation

e Fin.-dim.: B € C"*", B*B = BB*, o.n. basis of e-vectors {Uf}?ﬂ

%

Vjv;
1

[ n
U:

]

U,

Bv =

- ,
k

z }{]U]U] VU,

J=1 _

Vv e Ch

* Inf.-dim.: Operator £L: D(L) — H. Typically, no basis of e-vectors!
Spectral theorem: (projection-valued) spectral measure E

g:

f 1dE(Y)
Spec(L) |

f AdE ()
Spec(L) |

g, VgeH

* Spectral measures: v, (U) = (E(U)g, g) (llgll = 1) prob. measure.
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Koopman mode decomposition (again!)

Vv, probability measures on [—1, ] ey

Leb. decomp: dv,(y) = z <P ;ng,g> oy —6;) + Pg (y)dy + dvgc(yz

eigenvalues 4j=exp(if) continuous

N -

discrete

eigenfunction of K generalised

J n eigenfunction of K
9= ) e+ | doglo) do

eigenvalues 4; T
T
g0 = (K"l = > s )+ [ e (x0) do
eigenvalues 4; —TT

Computing v, diagonalises non-linear dynamical system!
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° m=2>5
mth order Plemelj formula o jT(emels |
15} ]}_ng 1
Cy(2) = J Teldvg(8) | (I —zD)7lg,K"g)if|z] > 1 o e
g . eif —z —z Hg, (K —2z"1D71g),if0< |z]| <1 ) O
\ ResDMD computes ‘
mth order rational kernels with error control
\ i m c d;
o K () = 2T Z e~ —(1+ez) 1 0 — (1+ ez)
X0 m ’ ’
|Ke vy |(8) = Z [cj(,’g (e (1 +ez)™1) —d,c, (eieo(l + ezj))]
=1

& = “smoothing parameter”

O (P Ng) cost for evaluation at P values of 6

N
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Convergence

Theorem: Automatic selection of Ni (&) with O(¢™log(1/¢)) convergence:
* Density of continuous spectrum p,,. (pointwise and LP)

* Integration against test functions. (weak convergence)

j h() |K. *v,|(0) db = ] h(6) dv,(0) + 0(e™log(1/¢))

—TT —TT
* Also recover discrete spectrum.
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; Pointwise error for spectral density
/“_0 Tpo o1 \ e I —
Po —&1&p —ApP1
K> = azp1 —a; 3Py P3P
P2P1 —1P2  —aza, —p3a;
\ aup3  —0ua3 ™ / 107

, , 2 -
aj = (—1)70.950tD/2 p. = /1—|a,-| o010

Generalised shift, typical building
block of many dynamical systems.

NB: Small N critical in data-driven computations.
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Large d (2 S R?): robustand scalable

Popular to learn dictionary {1/J1, ey l/JNK}

E.g., DMD with truncated SVD (Ilinear dictionary, most popular),
kernel methods (this talk), neural networks, etc.

Q: Is discretisation span{tpl, . II)NK} large/rich enough?

Above algorithms:
* Pseudospectra: {z,: 1), < €} € Spec.(K) error control
* Spectral measures: C, (z) and smoothed measures adaptive check

=> Rigorously verify learnt dictionary {11, ..., l/JNK}
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Example: pressure field of turbulent flow

Inlet

Periodic

conditions
S »/, Blade Outlet

/"« Data collected for 2 X 107%*s
* Reynolds number = 3.9 x 10°
e Ambient dimension = 300,000

(number of measurement points*)

404 mm
Outlet *Raw measurements provided by Stephane Moreau (Sherbrooke)
Rel. Error =7 Rel. Error = ? Rel. Error =7
d 1 — . O 71i 0.08
0.25 — .
0.8 : A -
0.2 N 0.06
0.6 . acoustic source?
0.15 0.04
104 ™ :
n L o8 10.02
= 0 3 O i O
1-0.2 4 -0.05 | .00
4 -0.4 101
0.15 S
-0.6 -0.
2 -0.06
-0.8
-0.25

1 e -0.08
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Example: pressure field of turbulent flow

Inlet

Periodic

conditions
S - ,/, Blade Outlet

/"« Data collected for 2 x 10™%s

* Reynolds number = 3.9 x 10°

e Ambient dimension = 300,000
—— (number of measurement points*)

Outlet *Raw measurements provided by Stephane Moreau (Sherbrooke)

Rel. Error < 0.0128 Rel. Error < 0.0196

1 . . 0.08
A — ,0.511 025 0.711
0.8 S
0.2 0.06
0.6 turbulent
- fluctuations Rel 0.04
104 1.,
10.02
== . 10.05
|
4 O : 4 0 T 0
14 -0.2 g 1-0.05
1.0.02
101
§ 0.15 w3
é 0.2 -0.06
' -0.25
-0.08

acoustic vibrations
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Example: molecular dynamics (Adenylate Kinase)

* All-atom equilibrium simulation
for 1.004 x 107 °s

e Ambient dimension = 20,000
(positions and momenta of atoms)

 6th order kernel (spec res 107°)

*Dataset: www.mdanalysis.org/MDAnalysisData/adk_equilibrium.html

0.26L|D | _ 0.6
0.24 - w ” Cb ] 057
0.22+ / 1 0.47
02+ ] 0.3
0.18 - : 0.2}
0.16 - ] o1l
0.14° oL
3 2 1 0 1 > 3 3 2 1 0 1 2 3
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Example: laser-induced plasma

* 60 realisations (M = 6600)
 Ambient dimension = 10
(length of initial window™)

*Raw measurements provided by Maté Sz6ke (Virginia Tech)

a)t=15us b)t =10 us c)t =15 us
1
00 100 ' .
true —residual ordering
o modulus ordering ] —modulus ordering
50 t o residual ordering | | |
w107
| n
e ) :
|
()]
2 °r > 107
g | E
(ol [ — . .
ol | \ unseen shockwave < ) extremely efficient
50+ | s 3| )
| i
| from 40 modes
-100 : ' ' ' 107 . . :
0 2 4 6 8 0 50 100 150 200

Time(10~°s) Number of modes



Transient modes
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12,000 snapshots over 1s

~ 6.4 x 10*
Ambient dimension = 100,000

Reynolds number

(velocity at measurement points)
*Raw measurements provided by Maté Sz6ke (Virginia Tech)

Re(A)

0.8948 + 0.1065i, error < 0.1105

A=

A=

0.9439 + 0.2458i, error < 0.0765

Y TR T
Lo

110

108 109

107

et LY
\qw\\l\{._"
1 W

106

105

110

109

AW L
R K
e 2 RS

1

L R/

SRS o )
> iy
AW

FELRNE

r;;
REENC S N

108

xA/hjet

-

o ~ JIT\:\...\ I~
- ﬁ\\\ R xuadd 1 S
~ 4 & .\\\.Y/nlt;
BN T
.VA \////r . / o SRS t
| ,/. 78N 3 v ¥ e 2
l‘_/ /I\»;,./Uf/z_f‘,./ z\\ i
://.z/r/l&_,.ll./ /,..v D,
AV e \\/////.. /\.\
/::f\\\l? NN Y
WK A L~ =
o — S

w4

xA/hjet



22/24

Wider programme: a toolkit

* Inf.-dim. computational analysis = Compute spectral properties for the first time.

* Solvability Complexity Index hierarchy = Algorithms realise the boundaries of what’s possible.

* Builds on and extends work of Turing, Smale, and McMullen.

* Extends to: Foundations of Al, PDEs (e.g., time-dep. Schrédinger eq. on L?(R%) with error
control), optimisation (e.g., guarantees), computer-assisted proofs, ...

* C., “On the computation of geometric features of spectra of linear operators on Hilbert spaces,” Found. Comput. Math., under revisions.

 C., “Computing spectral measures and spectral types,” Communications in Mathematical Physics, 2021.

* C., Horning, Townsend “Computing spectral measures of self-adjoint operators,” SIAM Review, 2021.

 C.,Roman, Hansen, “How to compute spectra with error control,” Physical Review Letters, 2019.

 C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” JEMS, 2022.

* C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th
problem," Proceedings of the National Academy of Sciences, 2022.

 C. “Computing semigroups with error control,” SIAM Journal on Numerical Analysis, 2022.

e Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.

 Smale, “The fundamental theorem of algebra and complexity theory,” Bulletin of the AMS, 1981, 36 pp.

McMullen, “Families of rational maps and iterative root-finding algorithms,” Annals of Mathematics, 1987, 27 pp.
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Wider programme: a toolkit

* Inf.-dim. computational analysis = Compute spectral properties for the first time.

* Solvability Complexity Index hierarchy = Algorithms realise the boundaries of what’s possible.

* Builds on and extends work of Turing, Smale, and McMullen.

* Extends to: Foundations of Al, PDEs (e.g., time-dep. Schrédinger eq. on L?(R%) with error
control), optimisation (e.g., guarantees), computer-assisted proofs, ...
 C., “Computing spectral measures and spectral types,” Communications

General technique for lower bounds by
 C., Horning, Townsend “Computing spectral measures of self-adjoint operato embEddmg combinatorial pmblems'

 C.,Roman, Hansen, “How to compute spectra with error control,” Physical Review Letters, 2019.

 C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” JEMS, 2022.

* C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th
problem," Proceedings of the National Academy of Sciences, 2022.

 C. “Computing semigroups with error control,” SIAM Journal on Numerical Analysis, 2022.

e Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.

 Smale, “The fundamental theorem of algebra and complexity theory,” Bulletin of the AMS, 1981, 36 pp.

McMullen, “Families of rational maps and iterative root-finding algorithms,” Annals of Mathematics, 1987, 27 pp.

* C., “On the computation of geometric features of spectra of linear o tors on ions.
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Small sample of classification theorems

Increasing difficulty

Error control

A
l |

I1 1_[1 Hz

0 & S & S &

Ay © A ESZ,UILLE A, €3, UILE Ay €3, UIlLL
. < & < & <

Z0 21 22
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Small sample of classification theorems

Increasing difficulty

Error control

I1 1_[1 Hz H3
0 & S & S &

Ay € Ay GZ,UILGE A, €3, UILE A; €2, UIL
. § & < & <

ZO 22 23

Spectra of K Continuous spectra of K (different regularity assumptions)
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Small sample of classification theorems

Increasing difficulty

Error control Spectra of
l compact operators
|
HO Hl / HZ H3
| & < & <

\ 3 & < &
ZO \ 22 23

Spectra of K Continuous spectra of K (different regularity assumptions)
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Small sample of classification theorems

Increasing difficulty

Error control Spectra of Spectra of Schrodinger*
| compact operators (different potential classes)

Spectra of K Continuous spectra of K (different regularity assumptions)

*Open problem of Schwinger: “The special canonical group,” “Unitary operator bases,” PNAS, 1960.
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Small sample of classification theorems

Increasing difficulty

Error control Spectra of Spectra of Schrodinger*
| compact operators (different potential classes)

Spectra of K Continuous spectra of K (different regularity assumptions)

*Open problem of Schwinger: “The special canonical group,” “Unitary operator bases,” PNAS, 1960.
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Small sample of classification theorems

Increasing difficulty

Error control Spectra of Spectra of Schrédinger*  Spectral stability
| compact operators (different potential classes)

Spectra of K Continuous spectra of K (different regularity assumptions)

*Open problem of Schwinger: “The special canonical group,” “Unitary operator bases,” PNAS, 1960.
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Summary

Overcame: 1) “too much”, 2) “too little”, 3) continuous spectra, 4) verification.
e Spectra, pseudospectra, residuals of general Koopman operators (error control).
* |dea: New matrix for residual = ResDMD.

e Spectral measures of measure-preserving systems with high-order convergence.
* ldea: Convolution with rational kernels via resolvent and ResDMD.

e Dealt with high-dimensional dynamical systems.
* ldea: Use ResDMD to verify learned dictionaries.

First general methods with convergence guarantees!
—> Opens the door to rigorous data-driven Koopmania!



Convergence of quadrature

E.g., (jcl/}k' l/)]) — Al]l—rgoz 1Wmlp] (x(m)) l/J (y(m))

(K] (X(m))

Three examples:

* High-order quadrature: {x(m) Wm} M -point quadrature rule.

Rapid convergence. Requires free ch0|ce of {x(m)} and small d.

* Random sampling: {x(m)} 1 selected at random. <« Most common
Large d. Slow Monte Carlo O(M 1/2) rate of convergence. /

* Ergodic sampling: x ("1 = F(x(™).
Single trajectory, large d. Requires ergodicity, convergence can be slow.



Example: non-linear pendulum

A = exp(0.49327)

Colour represents complex argument, constant modulus shown as shadowed steps.
All residuals smaller than € = 0.05 (made smaller by increasing N).



Koopman mode decomposition (KV = VA)

Standard Koopman mode decomposition (order modes by |A]):

9@ ~ 1) P IV (WWH) WGy - gtO)]T

N—

approx Koopman e—functions Koopman modes
? T
290 = Y1) - Yy O AT (VW) VW [g(x@) o gx@)]T
approx Koopman e—functions Koopman modes

Residual Koopman mode decomposition (order modes by res(4, v)):

gx) = [P1(x) - leK(x)]V(glgV(g)\/WLPX)T\/W[g(x(l)) gt

-

approx Koopman e—functions Koopman modes

gxn) = [V1(Xo) - P (Xo)]V(e) (E)EV(g)\/WLIJX)T\/W[g(x(l)) - gGUT

-

approx Koopman e—functions Koopman modes



But ... slow convergence
Problem: As € | 0, erroris O(& - log(1/¢)) and Nk (&) — oo.

Pointwise error for spectral density

Error due to discretisation
10° ' . -

109

€=0.07 |

mﬂ 1071

10_10 -

' 10-15 I
0
10 0 50 100 150 200

Small N critical in data-driven computations. Can we improve convergence rate?




Kernel method

Algorithm 4 A computational framework for kernelized versions of Algorithms 1 to 3.

Input: Snapshot data {z(™) y(™M_ and {:f:(m), A(m)}Mi positive-definite kernel function S : Q x
(2 — R, and positive integer N < M’.

1:

m=1>

Apply kernel EDMD to {m(m) : y(m)}%/zl with kernel S to compute the matrices vW WV x U +W and
VWUV W using the kernel trick.

. Compute U and ¥ from the eigendecomposition vW W x W% /W = UX2U*.

: Compute the dominant N eigenvectors of [?EDMD = (ZTU*)v WUy U5 VW (UXT) and stack them
column-by-column into Z € CM %Nk
Apply a QR decomposition to orthogonalize Z to () = [Q e Q) Nu} (CM XNk

. Apply Algorithms 1 to 3 with {m(m), A(m)}M“ and the dictionary {1, }‘7 ., where

Output: Spectral properties of Koopman operator according to Algorithms 1 to 3.
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The difficulty of computing stable and
accurate neural networks: On the barriers of
deep learning and Smale’s 18th problem

Matthew |. Colbrook @ & Vegard Antun &, and Anders C. Hansen & Authors Info & Affiliations

March 16, 2022 119 (12) e2107151119 https://doi.org/10.1073/pnas. 2107151119

‘Dn

Significance

Instability is the Achilles’ heel of modern artificial intelligence (Al) and a paradox, with =
training algorithms finding unstable neural networks (NNs) despite the existence of stable
ones. This foundational issue relates to Smale's 18th mathematical problem for the 21st
century on the limits of Al. By expanding methodologies initiated by Gédel and Turing, we
demonstrate limitations on the existence of (even randomized) algorithms for computing =
NNs. Despite numerous existence results of NNs with great approximation properties,
only in specific cases do there also exist algorithms that can compute them. We initiate a
classification theory on which NNs can be trained and introduce NNs that—under

suitable conditions—are robust to perturbations and exponentially accurate in the

number of hidden layers.
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Some Al Systems May Be Impossible to Compute>
New research suggests there are limitations to what deep
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che\,el publishing al
study can be undesirable. For example.
medical i n particular include personal
information that—if published in full—
would violate patients’ privacy and poten-
tially expose them to harm. Similarly, many

Original
Data

Differential Privacy
Preprocessing

Vine Copula
Model

Synthetic
Data

igure 1. In adaition (o adding noise (o
the data set, Sébastien Gambs” differential
privacy-based method processes it with
an information theory algorithm to obtain
synthetic data that—in_ principle—shields
the privacy of the people involved. Figure
courtesy of the author.

that mnply anonymizing the data—by
removing individuals’ names before publi-
L.mnn for instance—is insufficient, as out-
n use context clues to reconstruct
information and expose research
‘We want to gencrate synthetic
data for public release to replace the o
nal data set” Bei Jiang of the University o
Alberta said. “When we design our frame-
work, we have this main goal in mind: we
want (o produce the same inference results
as in the original data s

In contrast with falsified data, which is
one of the deadliest scientific sins, research-
ers can generate sythetic data directly from
original data sets. If the construction process
is done properly, other scientists can then
analyze this synthetic data and trust that their
conclusions are no different from what they
would have obtained with full access to the
original raw data — ideally, at least, “When
you [create] synthetic data, what does it mean
tobe private yet realistic?” Sébastien Gambs

lenges in the era
sakes are higher than ever. “There s aNvays
4 trade-off between utility and risk.” Jiang
said. “If you want (o protect people [who]
are at a higher risk, then you perturb their
data. But the utility will be lowered the more
you perturb. A better approach is to account
for their risks o begin with.”

Unfortunately, malicious actors have access
to the same algorithmic tools as research-
ers. Therefore, protection of confidentially
also involves testing synthetic data against
the types of attacks that such players might
utilize. “In practice. this helps one really
understand the translation between an abstract
privacy parameter and a practical guarantee.”
Gambs said. In other words, the robustness
of a formal mathematical model is irrel-
evant if the model is not well implemented.

I https://aaas.confex.com/aaas/2022/

‘meetingapp.cgi

lex and

Extract
h Statistics
u Apply Multiple

Imputation Model

Synthetic
Data

igure 2. Researchers can protect privacy
by performing & full statistical analysis on
the original data set, then using a missing-
data algorithm called multiple imputation
to construct a synthetic data set that has
exactly the same statistical characteristics.
Figure courtesy of the author.
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Proving Existence Is Not Enough:

Mathematical Paradoxes Unravel the Limits
of Neural Networks in Artificial Intelligence

By Vegard Antun, Matthew J.
Colbrook, and Anders C. Hansen

e impact of deep learni ). neural
networks (NNs), and ial intelli-
gence (AD) over the last decade has been
profound. Advances in computer vision and
nawral language processing have  yielded
smart speakers in our homes, driving assis-
tance in our cars, and automated diagnoses
in medicine. AT has also rapidly entered sci-
entific computing. However, overwhelming
amounts of empirical evidence (3, 8] suggest
that modern AL is often non-robust (unstable).
may generate hallucinations, and can produce
nonsensical output with high levels of predic-
tion confidence (see Figure 1). These issues
present a serious concern for Al use within
legal frameworks. As stated by the European
Commission’s Joint Research Centre, “/n
the light of the recent advances in Al, the
serious negative consequences of ts use for
EU citizens and organisations have led 1o
multiple initatives [...] Among the identified
requirements, the concepts of robustness and
explainability of Al systems have emerged
as key elements for a fuure regulation.”
Robustness and trust of algorithms lie
at the heart of numerical analysis [9). The
lack of robustness and trust in Al is hence
the Achilles” heel of DL and has become a
serious political issue. Classical approxima-

Our main result reveals a serious issue
for certain problems; while stable and accu-
rate NNs may provably exist, no training
algorithm can obtain them (see Figure 2,
on page 4). As such, existence theorems
on approximation qualities of NNs (e.2..
universal approximation) represent only the
first step towards a complete understanding
of modern AL Sometimes

results about the feasible achievements of
mathematics and digital computers.

A similar program on the boundaries of
Al necessary. Stephen Smale already sug-
gested such a program in the 18th problem
on his list of mathematical problems for the
21t century: What are the limits of AI? [11].

See Mathematical Paradoxes on page 4

they even provide overly

optimistic estimates of pos-
sible NN achievements.

The Limits of Al:
Smale’s 18th Problem
The strong optimism that
surrounds Al is evident in
computer scientist Geoffrey
Hinton’s 2017 quote: “They
should stop training. radi-
ologists now.”* Such opti-
mism is comparable to the
confidence that surrounded
mathematics in the early
20th century, as summed
up in David Hilbert’s senti-
ment: “Wir miissen wissen.
Wir werden wissen” [*We
must know. We will know”].
Hilbert believed  that
mathematics could prove or
disprove any statement, and

Original image

-

Instabilities in medical diagnosis
Original Mole

in image reconsf
Al ¢ (-mnsnuct ion

Perturbed Mole

that there were no restric-
tions on which problems
algorithms could solve. The

seminal of L
igure 1. Hallucinalions in image reconstruction and instabilities
Kurt Godel (7] and Alan 7,005 giagnosss. 1a. The correct, original image from the
Turing [12] turned Hilbert’s 2020 fastMRI Chaflenge. 1b. Reconstruction by an artificial intelli-
umlnm upside down by gence (Al) mzthod that produces an incorrect detail (Al-generated
paradoxes that image of a benign melanocytic
impossibility 1evus, along wrm the diagnostic probability computed by a deep
nneural network (NN). 1d. Combined image of the nevus with a
P slight perturbation and the diagnostic probabilty from the same
2 hupsi/iwww.newyorker.  deep NN, One diagnosis is clearly incorrect, but can an aigorithm
12017/04/03/  determine which one? Figures 1a and 1b are courtesy of the 2020

fastMRI Challenge (10], and 1c and 1d are courtesy of [6].

Benign Benign
Malignant Malignant

Model confidence Model confidence

tion theorems show that a continuous func-
tion can be approximated arbitrarily well
by a NN [5]. Therefore, stable problems
that are described by stable functions can
be solved stably with a NN. These results
inspire the following fundamental question:
Why does DL lead 0 unstable methods and

. even in sce-
narios wmw we can prove that stable and
accurate NN exist?

suitable conditions-

number of hidden Iz
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