Data-driven numerical analysis of Koopman operators for dynamical systems

Matthew Colbrook
(University of Cambridge and École Normale Supérieure)
m.colbrook@damtp.cam.ac.uk

Based on: \quad Matthew Colbrook and Alex Townsend, "Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems" (available on arXiv)

The setup: discrete-time dynamical system

Dynamical system: State $x \in \Omega \subset \mathbb{R}^{d}, \quad F: \Omega \rightarrow \Omega, \quad x_{n+1}=F\left(x_{n}\right)$.
Given snapshot data: $\left\{\boldsymbol{x}^{(m)}, \boldsymbol{y}^{(m)}\right\}_{m=1}^{M}$ with $\boldsymbol{y}^{(m)}=F\left(\boldsymbol{x}^{(m)}\right)$.
Broad goal: Learn properties of the dynamical system.
Applications: Biochemistry, classical mechanics, climate, electronics, epidemiology, finance, fluids, molecular dynamics, neuroscience, robotics, ... (anything evolving in time).

The setup: discrete-time dynamical system

Dynamical system: State $x \in \Omega \subset \mathbb{R}^{d}, \quad F: \Omega \rightarrow \Omega, \quad x_{n+1}=F\left(x_{n}\right)$.
Given snapshot data: $\left\{\boldsymbol{x}^{(m)}, \boldsymbol{y}^{(m)}\right\}_{m=1}^{M}$ with $\boldsymbol{y}^{(m)}=F\left(\boldsymbol{x}^{(m)}\right)$.
Broad goal: Learn properties of the dynamical system.
Applications: Biochemistry, classical mechanics, climate, electronics, epidemiology, finance, fluids, molecular dynamics, neuroscience, robotics, ... (anything evolving in time).

Immediate difficulties:

- F is unknown
- F is typically nonlinear
- system could be chaotic

Koopman operators

DYNAMICAL SYSTEMS OF CONTINUOUS SPECTRA

> By b. o. Koopman and J. v. Neumann
 Communicated Jaruary 21, 1832

1. In a recent paper by B. O. Koopman, ${ }^{\text { }}$ classical Hamiltonian mechanics is coasidered in connection with certain self-adjoint and unitary poperais
tors in in Hilbert space $\$\left(=q_{2}\right)$. The corresponding canonical resolution of the identity $E(\lambda)$, or "spectrum of the dynamical system," "is introduced,
together with the conception of the spectrum revealing in its structure

Observable $g: \Omega \rightarrow \mathbb{C}$

$$
[\mathcal{K} g](x)=g(F(x)), \quad x \in \Omega
$$

$\mathcal{K}: \mathcal{D}(\mathcal{K}) \subset L^{2}(\Omega, \omega) \rightarrow L^{2}(\Omega, \omega)$ is linear, but infinite-dimensional!

Koopman operators

dYNAMICAL SYSTEMS OF CONTINUOUS SPECTRA
by b. O. Koopman and J. v. Neusann
 Commuricated Januiry 21, 1832

1. In a recent paper by B. O. Koopman, ${ }^{1}$ classical Hamiltonian mechanics is coasidered in connection with certain self-adjoint and unitary operaics is coasidered in connection with certain seif-adjoint and unitary opera-
tors in Hilbert space $£(=\Omega$). The corresponding canonical resolution of the identity $E(\lambda)$, or "spectrum of the dynamical system," is introduced,
together with the conception of the spectrum revealing in its structure

Observable $g: \Omega \rightarrow \mathbb{C}$

$$
[\mathcal{K} g](\boldsymbol{x})=g(F(\boldsymbol{x})), \quad \boldsymbol{x} \in \Omega
$$

$\mathcal{K}: \mathcal{D}(\mathcal{K}) \subset L^{2}(\Omega, \omega) \rightarrow L^{2}(\Omega, \omega)$ is linear, but infinite-dimensional!

GOAL: Learn spectral properties of \mathcal{K}. Spectrum, $\sigma(\mathcal{K})=\{z \in \mathbb{C}: \mathcal{K}-z$ not invertible $\}$.

Why spectra?

Suppose $\left(\lambda, \varphi_{\lambda}\right)$ is an eigenfunction-eigenvalue pair of \mathcal{K}, then

$$
\varphi_{\lambda}\left(x_{n}\right)=\left[\mathcal{K}^{n} \varphi_{\lambda}\right]\left(x_{0}\right)=\lambda^{n} \varphi_{\lambda}\left(x_{0}\right) .
$$

Why spectra?

Suppose $\left(\lambda, \varphi_{\lambda}\right)$ is an eigenfunction-eigenvalue pair of \mathcal{K}, then

$$
\varphi_{\lambda}\left(\boldsymbol{x}_{n}\right)=\left[\mathcal{K}^{n} \varphi_{\lambda}\right]\left(\boldsymbol{x}_{0}\right)=\lambda^{n} \varphi_{\lambda}\left(\boldsymbol{x}_{0}\right) .
$$

Suppose system is measure-preserving (e.g., Hamiltonian, ergodic,...), $\forall g \in L^{2}(\Omega, \omega)$

$$
g=\underbrace{\sum_{\text {e-vals } \lambda} c_{\lambda} \varphi_{\lambda}}_{\text {discrete spectral part }}+\underbrace{\int_{[-\pi, \pi]_{\text {per }}} \phi_{\theta, g} d \theta}_{\text {continuous spectral part }}
$$

φ_{λ} are eigenfunctions of $\mathcal{K}, c_{\lambda} \in \mathbb{C}, \phi_{\theta, g}$ are "continuously parametrised" eigenfunctions.

Why spectra?

Suppose $\left(\lambda, \varphi_{\lambda}\right)$ is an eigenfunction-eigenvalue pair of \mathcal{K}, then

$$
\varphi_{\lambda}\left(\boldsymbol{x}_{n}\right)=\left[\mathcal{K}^{n} \varphi_{\lambda}\right]\left(\boldsymbol{x}_{0}\right)=\lambda^{n} \varphi_{\lambda}\left(\boldsymbol{x}_{0}\right)
$$

Suppose system is measure-preserving (e.g., Hamiltonian, ergodic,...), $\forall g \in L^{2}(\Omega, \omega)$

$$
g=\underbrace{\sum_{\text {e-vals } \lambda} c_{\lambda} \varphi_{\lambda}}_{\text {discrete spectral part }}+\underbrace{\int_{[-\pi, \pi]_{\text {per }}} \phi_{\theta, g} d \theta}_{\text {continuous spectral part }}
$$

φ_{λ} are eigenfunctions of $\mathcal{K}, c_{\lambda} \in \mathbb{C}, \phi_{\theta, g}$ are "continuously parametrised" eigenfunctions. Koopman mode decomposition

$$
g\left(x_{n}\right)=\left[\mathcal{K}^{n} g\right]\left(x_{0}\right)=\sum_{\text {e-vals } \lambda} c_{\lambda} \lambda^{n} \varphi_{\lambda}\left(x_{0}\right)+\int_{[-\pi, \pi]_{\text {per }}} e^{i n \theta} \phi_{\theta, g}\left(x_{0}\right) d \theta
$$

[^0]
Lots of interest!

[^1]
Challenges

Global understanding of nonlinear dynamics in state-space:
"a mathematical grand challenge of the 21st century"

[^2]
Challenges

Global understanding of nonlinear dynamics in state-space:
"a mathematical grand challenge of the 21st century"

Challenges:

[^3]
Challenges

Global understanding of nonlinear dynamics in state-space:
"a mathematical grand challenge of the 21st century"

Challenges:

(C1) Continuous spectra.

[^4]
Challenges

Global understanding of nonlinear dynamics in state-space:
"a mathematical grand challenge of the 21st century"

Challenges:

(C1) Continuous spectra.
(C2) Lack of finite-dimensional invariant subspaces.

[^5]
Challenges

Global understanding of nonlinear dynamics in state-space:
"a mathematical grand challenge of the 21st century"

Challenges:

(C1) Continuous spectra.
(C2) Lack of finite-dimensional invariant subspaces.
(C3) Spectral pollution.

[^6]
Challenges

Global understanding of nonlinear dynamics in state-space:
"a mathematical grand challenge of the 21st century"

Challenges:

(C1) Continuous spectra.
(C2) Lack of finite-dimensional invariant subspaces.
(C3) Spectral pollution.
(C4) Chaotic behaviour.

[^7]
Challenges

Global understanding of nonlinear dynamics in state-space:
"a mathematical grand challenge of the 21st century"

Challenges:

Solutions in this talk:

(C1) Continuous spectra.
(C2) Lack of finite-dimensional invariant subspaces.
(C3) Spectral pollution.
(C4) Chaotic behaviour.

[^8]
Challenges

Global understanding of nonlinear dynamics in state-space:
"a mathematical grand challenge of the 21st century"

Challenges:

(C1) Continuous spectra.

Solutions in this talk:

(S1) Compute smoothed approximations of spectral measures with explicit high-order convergence rates.
(C2) Lack of finite-dimensional invariant subspaces.
(C3) Spectral pollution.
(C4) Chaotic behaviour.

[^9]
Challenges

Global understanding of nonlinear dynamics in state-space:
"a mathematical grand challenge of the 21st century"

Challenges:

(C1) Continuous spectra.

Solutions in this talk:

(S1) Compute smoothed approximations of spectral measures with explicit high-order convergence rates.
(C2) Lack of finite-dimensional (S2) Compute spectral properties of \mathcal{K} directly, as opposed to invariant subspaces.
(C3) Spectral pollution.
(C4) Chaotic behaviour.

[^10]
Challenges

Global understanding of nonlinear dynamics in state-space:
"a mathematical grand challenge of the 21st century"

Challenges:

(C1) Continuous spectra.

Solutions in this talk:

(S1) Compute smoothed approximations of spectral measures with explicit high-order convergence rates.
(C2) Lack of finite-dimensional (S2) Compute spectral properties of \mathcal{K} directly, as opposed to invariant subspaces.
(C3) Spectral pollution.
restrictions of \mathcal{K} to finite-dimensional subspaces.
(S3) Compute residuals associated with the spectrum with error control, providing convergence without spectral pollution.
(C4) Chaotic behaviour.

[^11]
Challenges

Global understanding of nonlinear dynamics in state-space:
"a mathematical grand challenge of the 21st century"

Challenges:

(C1) Continuous spectra.

Solutions in this talk:

(S1) Compute smoothed approximations of spectral measures with explicit high-order convergence rates.
(C2) Lack of finite-dimensional (S2) Compute spectral properties of \mathcal{K} directly, as opposed to invariant subspaces.
(C3) Spectral pollution.
(C4) Chaotic behaviour.
restrictions of \mathcal{K} to finite-dimensional subspaces.
(S3) Compute residuals associated with the spectrum with error control, providing convergence without spectral pollution.

[^12]Part 1: Computing residuals and spectra.

General Koopman operators.

Work in $L^{2}(\Omega, \omega)$ with inner product $\langle\cdot, \cdot\rangle$.

Extended dynamic mode decomposition (EDMD)

Subspace $\operatorname{span}\left\{\psi_{j}\right\}_{j=1}^{N_{K}} \subset L^{2}(\Omega, \omega), \Psi(\boldsymbol{x})=\left[\psi_{1}(\boldsymbol{x}) \cdots \psi_{N_{K}}(\boldsymbol{x})\right] \in \mathbb{C}^{1 \times N_{K}}$.

$$
\text { For }\left\{\boldsymbol{x}^{(m)}, \boldsymbol{y}^{(m)}=F\left(\boldsymbol{x}^{(m)}\right)\right\}_{m=1}^{M}, \quad \Psi_{X}=\left(\begin{array}{c}
\Psi\left(\boldsymbol{x}^{(1)}\right) \\
\vdots \\
\Psi\left(\boldsymbol{x}^{(M)}\right)
\end{array}\right) \in \mathbb{C}^{M \times N_{\kappa}}, \quad \Psi_{Y}=\left(\begin{array}{c}
\Psi\left(\boldsymbol{y}^{(1)}\right) \\
\vdots \\
\Psi\left(\boldsymbol{y}^{(M)}\right)
\end{array}\right) \in \mathbb{C}^{M \times N_{K}} .
$$

[^13]
Extended dynamic mode decomposition (EDMD)

Subspace $\operatorname{span}\left\{\psi_{j}\right\}_{j=1}^{N_{K}} \subset L^{2}(\Omega, \omega), \Psi(\boldsymbol{x})=\left[\psi_{1}(\boldsymbol{x}) \cdots \psi_{N_{K}}(\boldsymbol{x})\right] \in \mathbb{C}^{1 \times N_{K}}$.

$$
\text { For }\left\{\boldsymbol{x}^{(m)}, \boldsymbol{y}^{(m)}=F\left(\boldsymbol{x}^{(m)}\right)\right\}_{m=1}^{M}, \quad \Psi_{X}=\left(\begin{array}{c}
\Psi\left(\boldsymbol{x}^{(1)}\right) \\
\vdots \\
\Psi\left(\boldsymbol{x}^{(M)}\right)
\end{array}\right) \in \mathbb{C}^{M \times N_{K}}, \quad \Psi_{Y}=\left(\begin{array}{c}
\Psi\left(\boldsymbol{y}^{(1)}\right) \\
\vdots \\
\Psi\left(\boldsymbol{y}^{(M)}\right)
\end{array}\right) \in \mathbb{C}^{M \times N_{\kappa}} .
$$

Given $g=\sum_{j=1}^{N_{K}} \psi_{j} \boldsymbol{g}_{j}, \quad$ seek $K_{\text {EDMD }} \in \mathbb{C}^{N_{\kappa} \times N_{K}}$ with $\quad \mathcal{K} g \approx \sum_{j=1}^{N_{K}} \psi_{j}\left[K_{\mathrm{EDMD}} \boldsymbol{g}\right]_{j}$.

[^14]
Extended dynamic mode decomposition (EDMD)

Subspace $\operatorname{span}\left\{\psi_{j}\right\}_{j=1}^{N_{K}} \subset L^{2}(\Omega, \omega), \Psi(\boldsymbol{x})=\left[\psi_{1}(\boldsymbol{x}) \cdots \psi_{N_{K}}(\boldsymbol{x})\right] \in \mathbb{C}^{1 \times N_{K}}$.

$$
\text { For }\left\{\boldsymbol{x}^{(m)}, \boldsymbol{y}^{(m)}=F\left(\boldsymbol{x}^{(m)}\right)\right\}_{m=1}^{M}, \quad \Psi_{X}=\left(\begin{array}{c}
\Psi\left(\boldsymbol{x}^{(1)}\right) \\
\vdots \\
\Psi\left(\boldsymbol{x}^{(M)}\right)
\end{array}\right) \in \mathbb{C}^{M \times N_{K}}, \quad \Psi_{Y}=\left(\begin{array}{c}
\Psi\left(\boldsymbol{y}^{(1)}\right) \\
\vdots \\
\Psi\left(\boldsymbol{y}^{(M)}\right)
\end{array}\right) \in \mathbb{C}^{M \times N_{\kappa}} .
$$

Given $g=\sum_{j=1}^{N_{K}} \psi_{j} \boldsymbol{g}_{j}, \quad$ seek $K_{\mathrm{EDMD}} \in \mathbb{C}^{N_{\kappa} \times N_{K}}$ with $\quad \mathcal{K} g \approx \sum_{j=1}^{N_{K}} \psi_{j}\left[K_{\mathrm{EDMD}} \boldsymbol{g}\right]_{j}$.
$\min _{B \in \mathbb{C}^{N_{K} \times N_{K}}} \int_{\Omega} \max _{\|\boldsymbol{g}\|_{\ell^{2}=1}}\left|\mathcal{K} g-\sum_{j=1}^{N_{K}} \psi_{j}[B \boldsymbol{g}]_{j}\right|^{2} d \omega(\boldsymbol{x}) \approx \sum_{m=1}^{M} w_{m}\left\|\Psi\left(\boldsymbol{y}^{(m)}\right)-\Psi\left(\boldsymbol{x}^{(m)}\right) B\right\|_{2}^{2}$.

[^15]
Extended dynamic mode decomposition (EDMD)

Subspace $\operatorname{span}\left\{\psi_{j}\right\}_{j=1}^{N_{K}} \subset L^{2}(\Omega, \omega), \Psi(\boldsymbol{x})=\left[\psi_{1}(\boldsymbol{x}) \cdots \psi_{N_{K}}(\boldsymbol{x})\right] \in \mathbb{C}^{1 \times N_{K}}$.

$$
\text { For }\left\{\boldsymbol{x}^{(m)}, \boldsymbol{y}^{(m)}=F\left(\boldsymbol{x}^{(m)}\right)\right\}_{m=1}^{M}, \quad \Psi_{X}=\left(\begin{array}{c}
\Psi\left(\boldsymbol{x}^{(1)}\right) \\
\vdots \\
\Psi\left(\boldsymbol{x}^{(M)}\right)
\end{array}\right) \in \mathbb{C}^{M \times N_{K}}, \quad \Psi_{Y}=\left(\begin{array}{c}
\Psi\left(\boldsymbol{y}^{(1)}\right) \\
\vdots \\
\Psi\left(\boldsymbol{y}^{(M)}\right)
\end{array}\right) \in \mathbb{C}^{M \times N_{K}}
$$

$$
\text { Given } \quad g=\sum_{j=1}^{N_{K}} \psi_{j} \boldsymbol{g}_{j}, \quad \text { seek } K_{\mathrm{EDMD}} \in \mathbb{C}^{N_{K} \times N_{K}} \text { with } \quad \mathcal{K} g \approx \sum_{j=1}^{N_{K}} \psi_{j}\left[K_{\mathrm{EDMD}} \boldsymbol{g}\right]_{j}
$$

$$
\min _{B \in \mathbb{C}^{N} K \times N_{K}} \int_{\Omega} \max _{\|\boldsymbol{g}\|_{\ell^{2}=1}}\left|\mathcal{K} g-\sum_{j=1}^{N_{K}} \psi_{j}[B \boldsymbol{g}]_{j}\right|^{2} d \omega(\boldsymbol{x}) \approx \sum_{m=1}^{M} w_{m}\left\|\Psi\left(\boldsymbol{y}^{(m)}\right)-\Psi\left(\boldsymbol{x}^{(m)}\right) B\right\|_{2}^{2}
$$

Solution: $\quad K_{\text {EDMD }}=\left(\Psi_{X}^{*} W \Psi_{X}\right)^{\dagger}\left(\Psi_{X}^{*} W \Psi_{Y}\right) \quad\left(W=\operatorname{diag}\left(w_{1}, \ldots, w_{M}\right)\right)$
Large data limit: $\lim _{M \rightarrow \infty}\left[\Psi_{X}^{*} W \Psi_{X}\right]_{j k}=\left\langle\psi_{k}, \psi_{j}\right\rangle$ and $\lim _{M \rightarrow \infty}\left[\Psi_{X}^{*} W \Psi_{Y}\right]_{j k}=\left\langle\mathcal{K} \psi_{k}, \psi_{j}\right\rangle$

[^16]
Residual DMD (ResDMD): A new matrix

If $g=\sum_{j=1}^{N_{K}} \psi_{j} \boldsymbol{g}_{j} \in \operatorname{span}\left\{\psi_{j}\right\}_{j=1}^{N_{K}}$ and λ are a candidate eigenfunction-eigenvalue pair then

$$
\begin{aligned}
\|\mathcal{K} g-\lambda g\|_{L^{2}(\Omega, \omega)}^{2} & =\sum_{j, k=1}^{N_{K}} \boldsymbol{g}_{k} \overline{\boldsymbol{g}_{j}}\left[\left\langle\mathcal{K} \psi_{k}, \mathcal{K} \psi_{j}\right\rangle-\lambda\left\langle\psi_{k}, \mathcal{K} \psi_{j}\right\rangle-\bar{\lambda}\left\langle\mathcal{K} \psi_{k}, \psi_{j}\right\rangle+|\lambda|^{2}\left\langle\psi_{k}, \psi_{j}\right\rangle\right] \\
& \approx \sum_{j, k=1}^{N_{K}} \boldsymbol{g}_{k} \overline{\boldsymbol{g}_{j}}\left[\Psi_{Y}^{*} W \Psi_{Y}-\lambda\left[\Psi_{X}^{*} W \Psi_{Y}\right]^{*}-\bar{\lambda} \Psi_{X}^{*} W \Psi_{Y}+|\lambda|^{2} \Psi_{X}^{*} W \Psi_{X}\right]_{j k} \\
& =\boldsymbol{g}^{*}\left[\Psi_{Y}^{*} W \Psi_{Y}-\lambda\left[\Psi_{X}^{*} W \Psi_{Y}\right]^{*}-\bar{\lambda} \Psi_{X}^{*} W \Psi_{Y}+|\lambda|^{2} \Psi_{X}^{*} W \Psi_{X}\right] \boldsymbol{g}
\end{aligned}
$$

Residual DMD (ResDMD): A new matrix

If $g=\sum_{j=1}^{N_{K}} \psi_{j} \boldsymbol{g}_{j} \in \operatorname{span}\left\{\psi_{j}\right\}_{j=1}^{N_{K}}$ and λ are a candidate eigenfunction-eigenvalue pair then

$$
\begin{aligned}
\|\mathcal{K} g-\lambda g\|_{L^{2}(\Omega, \omega)}^{2} & =\sum_{j, k=1}^{N_{K}} \boldsymbol{g}_{k} \overline{\boldsymbol{g}_{j}}\left[\left\langle\mathcal{K} \psi_{k}, \mathcal{K} \psi_{j}\right\rangle-\lambda\left\langle\psi_{k}, \mathcal{K} \psi_{j}\right\rangle-\bar{\lambda}\left\langle\mathcal{K} \psi_{k}, \psi_{j}\right\rangle+|\lambda|^{2}\left\langle\psi_{k}, \psi_{j}\right\rangle\right] \\
& \approx \sum_{j, k=1}^{N_{K}} \boldsymbol{g}_{k} \overline{\boldsymbol{g}_{j}}\left[\Psi_{Y}^{*} W \Psi_{Y}-\lambda\left[\Psi_{X}^{*} W \Psi_{Y}\right]^{*}-\bar{\lambda} \Psi_{X}^{*} W \Psi_{Y}+|\lambda|^{2} \Psi_{X}^{*} W \Psi_{X}\right]_{j k} \\
& =\boldsymbol{g}^{*}\left[\Psi_{Y}^{*} W \Psi_{Y}-\lambda\left[\Psi_{X}^{*} W \Psi_{Y}\right]^{*}-\bar{\lambda} \Psi_{X}^{*} W \Psi_{Y}+|\lambda|^{2} \Psi_{X}^{*} W \Psi_{X}\right] \boldsymbol{g}
\end{aligned}
$$

New matrix: $\Psi_{Y}^{*} W \Psi_{Y}$ with $\lim _{M \rightarrow \infty}\left[\Psi_{Y}^{*} W \Psi_{Y}\right]_{j k}=\left\langle\mathcal{K} \psi_{k}, \mathcal{K} \psi_{j}\right\rangle$

Example: nonlinear pendulum

$$
\dot{x_{1}}=x_{2}, \quad \dot{x_{2}}=-\sin \left(x_{1}\right), \quad \text { with } \quad \Omega=[-\pi, \pi]_{\text {per }} \times \mathbb{R} .
$$

Computed pseudospectra $(\epsilon=0.25)$. Eigenvalues of $K_{\text {EDMD }}$ shown as dots (spectral pollution).

ResDMD: Avoiding spectral pollution

$$
\operatorname{res}(\lambda, g)^{2}=\frac{\boldsymbol{g}^{*}\left[\Psi_{Y}^{*} W \Psi_{Y}-\lambda\left[\Psi_{X}^{*} W \Psi_{Y}\right]^{*}-\bar{\lambda} \Psi_{X}^{*} W \Psi_{Y}+|\lambda|^{2} \Psi_{X}^{*} W \Psi_{X}\right] \boldsymbol{g}}{\boldsymbol{g}^{*}\left[\Psi_{X}^{*} W \Psi_{X}\right] \boldsymbol{g}}
$$

Algorithm:

1. Compute $K_{\text {EDMD }}$, its eigenvalues and eigenvectors.
2. For each eigenpair (λ, g), compute $\operatorname{res}(\lambda, g)$.
3. Discard eigenpairs with $\operatorname{res}(\lambda, g)>\epsilon$, for accuracy tolerance $\epsilon>0$.

Theorem (No spectral pollution, compute residuals from above.)
Let Λ_{M} denote the eigenvalue output of above algorithm. Then

$$
\limsup _{M \rightarrow \infty} \max _{\lambda \in \Lambda_{M}}\left\|(\mathcal{K}-\lambda)^{-1}\right\|^{-1} \leq \epsilon
$$

BUT: typically does not capture all of spectrum!

ResDMD: Computing pseudospectra (and spectra)

$$
\sigma_{\epsilon}(\mathcal{K}):=\cup_{\|\mathcal{B}\| \leq \epsilon} \sigma(\mathcal{K}+\mathcal{B}), \quad \lim _{\epsilon \downarrow 0} \sigma_{\epsilon}(\mathcal{K})=\sigma(\mathcal{K})
$$

Algorithm:

1. Compute $\Psi_{X}^{*} W \Psi_{X}, \Psi_{X}^{*} W \Psi_{Y}$, and $\Psi_{Y}^{*} W \Psi_{Y}$.
2. For each z_{j} in a computational grid, compute $\tau_{j}=\min _{\boldsymbol{g} \in \mathbb{C}^{N_{K}}} \operatorname{res}\left(z_{j}, \sum_{k=1}^{N_{K}} \psi_{k} \boldsymbol{g}_{k}\right)$ and the corresponding singular vectors $\boldsymbol{g}_{(j)}$ (generalised SVD problem).
3. Output: $\left\{z_{j}: \tau_{j}<\epsilon\right\}$ (estimate of $\sigma_{\epsilon}(\mathcal{K})$) and ϵ-pseudo-eigenfunctions $\left\{\boldsymbol{g}_{(j)}: \tau_{j}<\epsilon\right\}$.

Theorem

No spectral pollution: $\left\{z_{j}: \tau_{j}<\epsilon\right\} \subset \sigma_{\epsilon}(\mathcal{K})$ (as $M \rightarrow \infty$).
Spectral inclusion: Converges uniformly to $\sigma_{\epsilon}(\mathcal{K})$ on bounded subsets of \mathbb{C} as $N_{K} \rightarrow \infty$.

Example: pseudo-eigenfunctions of nonlinear pendulum

Colour represents complex argument, lines of constant modulus shown as shadowed steps. All residuals smaller than $\epsilon=0.05$ (can be made smaller by increasing N_{K}).

Part 2: Dealing with continuous spectra - computing spectral measures.

In this part, we assume that dynamics are measure-preserving.
This is equivalent to \mathcal{K} being an isometry:

$$
\|\mathcal{K} g\|_{L^{2}(\Omega, \omega)}=\|g\|_{L^{2}(\Omega, \omega)}, \quad \forall g \in L^{2}(\Omega, \omega)
$$

Spectrum lives inside the unit disk.
${ }^{a}$ For analysts: we actually consider unitary extensions of \mathcal{K} with 'canonical' spectral measures.

Diagonalising infinite-dimensional operators

Finite-dimensional: $A \in \mathbb{C}^{n \times n}$ with $A^{*} A=A A^{*}$ has orthonormal basis of e-vectors $\left\{v_{j}\right\}_{j=1}^{n}$

$$
v=\left(\sum_{j=1}^{n} v_{j} v_{j}^{*}\right) v, \quad v \in \mathbb{C}^{n} \quad A v=\left(\sum_{j=1}^{n} \lambda_{j} v_{j} v_{j}^{*}\right) v, \quad v \in \mathbb{C}^{n}
$$

Infinite-dimensional: Operator $\mathcal{L}: \mathcal{D}(\mathcal{L}) \rightarrow \mathcal{H}$, $(\mathcal{H}=$ Hilbert space). Typically, no longer a basis of e-vectors. Spectral Theorem: Projection-valued spectral measure \mathcal{E}

$$
g=\left(\int_{\sigma(\mathcal{L})} d \mathcal{E}(\lambda)\right) g, \quad g \in \mathcal{H} \quad \mathcal{L} g=\left(\int_{\sigma(\mathcal{L})} \lambda d \mathcal{E}(\lambda)\right) g, \quad g \in \mathcal{D}(\mathcal{L})
$$

Scalar-valued spectral measures: $\nu_{g}(U)=\langle\underbrace{\mathcal{E}(U)}_{\text {projection }} g, g\rangle$.

Example: $\mathcal{L}=-\frac{d^{2}}{d x^{2}}$ and Fourier transform

$$
\mathcal{L}=-\frac{d^{2}}{d x^{2}} \sum_{\text {spectral theorem }} \text { projection-valued measure } \mathcal{E}
$$

$$
\begin{aligned}
x & \in[-\pi, \pi]_{\text {per }} \\
\sigma(\mathcal{L}) & =\left\{n^{2}: n \in \mathbb{Z}_{0}\right\}
\end{aligned}
$$

$$
\begin{aligned}
\hat{g}_{k} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} g(x) e^{-i k x} d x \\
{[\mathcal{E}([a, b]) g](x) } & =\sum_{a \leq k^{2} \leq b} \hat{g}_{k} e^{i k x} \\
\nu_{g}([a, b]) & =\sum_{a \leq k^{2} \leq b}\left|\hat{g}_{k}\right|^{2}
\end{aligned}
$$

$$
\begin{gathered}
-\infty<x<\infty \\
\sigma(\mathcal{L})=[0,+\infty)
\end{gathered}
$$

continuous spectrum

$$
\begin{aligned}
\hat{g}(k) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} g(x) e^{-i k x} d x \\
{[\mathcal{E}([a, b]) g](x) } & =\int_{a \leq k^{2} \leq b} \hat{g}(k) e^{i k x} d k \\
\nu_{g}([a, b]) & =\int_{a \leq k^{2} \leq b}|\hat{g}(k)|^{2} d k
\end{aligned}
$$

Koopman mode decomposition

ν_{g} are spectral measures on $[-\pi, \pi]_{\text {per }}$
Lebesgue's decomposition theorem:

$$
\begin{array}{cc}
d \nu_{g}(\lambda)=\underbrace{\sum_{\text {e-vals } \lambda_{j}}\left\langle\mathcal{P}_{\lambda_{j}} g, g\right\rangle \delta\left(\lambda-\lambda_{j}\right) d \lambda}_{\text {discrete part }} & +\underbrace{\rho_{g}(\lambda) d \lambda+d \nu_{g}^{(\mathrm{sc})}(\lambda)}_{\text {continuous part }} \\
g=\sum_{\text {e-vals } \lambda_{j}} c_{\lambda_{j}} \underbrace{\varphi_{\lambda_{j}}}_{\text {e-functions }} & +\underbrace{\int_{[-\pi, \pi]_{\mathrm{per}}} \phi_{\theta, g} d \theta}_{\text {ctsly param e-functions }} \\
g\left(\boldsymbol{x}_{n}\right)=\left[\mathcal{K}^{n} f\right]\left(\boldsymbol{x}_{0}\right)=\sum_{\text {e-vals } \lambda_{j}} c_{\lambda_{j}} \lambda_{j}^{n} \varphi_{\lambda_{j}}\left(\boldsymbol{x}_{0}\right) & +\int_{[-\pi, \pi]_{\mathrm{per}}} e^{i n \theta} \phi_{\theta, f}\left(\boldsymbol{x}_{0}\right) d \theta
\end{array}
$$

Computing ν_{g} provides diagonalisation of non-linear dynamical system!

Plemelj-type formula

$$
\underbrace{K_{\epsilon}(\theta)=\frac{1}{2 \pi} \cdot \frac{(1+\epsilon)^{2}-1}{1+(1+\epsilon)^{2}-2(1+\epsilon) \cos (\theta)}}_{\text {Poisson kernel for unit disc }}, \quad \underbrace{\mathrm{C}_{\nu_{g}}(z):=\frac{1}{2 \pi} \int_{[-\pi, \pi]_{\text {per }}} \frac{e^{i \theta} d \nu_{g}(\theta)}{e^{i \theta}-z}}_{\text {generalised Cauchy transform }}
$$

Plemelj-type formula

$$
\underbrace{K_{\epsilon}(\theta)=\frac{1}{2 \pi} \cdot \frac{(1+\epsilon)^{2}-1}{1+(1+\epsilon)^{2}-2(1+\epsilon) \cos (\theta)}}_{\text {Poisson kernel for unit disc }}, \quad \underbrace{\mathrm{C}_{\nu_{g}}(z):=\frac{1}{2 \pi} \int_{[-\pi, \pi]_{\text {per }}} \frac{e^{i \theta} d \nu_{g}(\theta)}{e^{i \theta}-z}}_{\text {generalised Cauchy transform }}
$$

$$
\begin{aligned}
\nu_{g}^{\epsilon}\left(\theta_{0}\right) & =\underbrace{\int_{[-\pi, \pi]_{\mathrm{per}}} K_{\epsilon}\left(\theta_{0}-\theta\right) d \nu_{g}(\theta)}_{\text {smoothed measure }} \\
& =\mathrm{C}_{\nu_{g}}\left(e^{i \theta_{0}}(1+\epsilon)^{-1}\right)-\mathrm{C}_{\nu_{g}}\left(e^{i \theta_{0}}(1+\epsilon)\right) \\
& =\underbrace{\frac{-1}{2 \pi}\left[\left\langle\left(\mathcal{K}-e^{i \theta_{0}}(1+\epsilon)\right)^{-1} g, \mathcal{K}^{*} g\right\rangle+e^{-i \theta_{0}}\left\langle g,\left(\mathcal{K}-e^{i \theta_{0}}(1+\epsilon)\right)^{-1} g\right\rangle\right]}_{\text {approximate using matrices } \Psi_{X}^{*} W \Psi_{X}, \Psi_{X}^{*} W \Psi_{Y}, \Psi_{Y}^{*} W \Psi_{Y}}
\end{aligned}
$$

Compute smoothed approximations using ResDMD discretisations of size N_{K}.

Example on $\ell^{2}(\mathbb{N})$ with known spectral measure

$\mathcal{K}=\left[\begin{array}{cccccc}\overline{\alpha_{0}} & \overline{\alpha_{1}} \rho_{0} & \rho_{1} \rho_{0} & & & \\ \rho_{0} & -\overline{\alpha_{1}} \alpha_{0} & -\rho_{1} \alpha_{0} & 0 & & \\ 0 & \overline{\alpha_{2}} \rho_{1} & -\overline{\alpha_{2}} \alpha_{1} & \overline{\alpha_{3}} \rho_{2} & \rho_{3} \rho_{2} & \\ & \rho_{2} \rho_{1} & -\rho_{2} \alpha_{1} & -\overline{\alpha_{3}} \alpha_{2} & -\rho_{3} \alpha_{2} & \ddots \\ & & 0 & \overline{\alpha_{4}} \rho_{3} & -\overline{\alpha_{4}} \alpha_{3} & \ddots \\ & & & \ddots & \ddots & \ddots\end{array}\right], \alpha_{j}=(-1)^{j} 0.95^{(j+1) / 2}, \rho_{j}=\sqrt{1-\left|\alpha_{j}\right|^{2}}$.
Generalised shift, typical building block of many dynamical systems (e.g., Bernoulli shifts).

Fix N_{K}, vary ϵ

Fix ϵ, vary N_{K}

Adaptive $N_{K}(\epsilon)\left(\right.$ or $\left.\epsilon\left(N_{K}\right)\right)$: New matrix $\Psi_{Y}^{*} W \Psi_{Y}$ key!

Slow convergence!

Problem: As $\epsilon \downarrow 0$, error is $\mathcal{O}\left(\epsilon \log \left(\epsilon^{-1}\right)\right)$ and $N_{K}(\epsilon) \rightarrow \infty$.

Pointwise error for spectral density

Error due to discretisation

Slow convergence!

Problem: As $\epsilon \downarrow 0$, error is $\mathcal{O}\left(\epsilon \log \left(\epsilon^{-1}\right)\right)$ and $N_{K}(\epsilon) \rightarrow \infty$.

Pointwise error for spectral density

Error due to discretisation

Critical in data-driven computations where we want N_{K} to be as small as possible. Question: Can we improve the convergence rate in ϵ ?

High-order kernels

Idea: Replace the Poisson kernel by

$$
K_{\epsilon}(\theta)=\frac{e^{-i \theta}}{2 \pi} \sum_{j=1}^{m}\left[\frac{c_{j}}{e^{-i \theta}-\left(1+\epsilon \overline{z_{j}}\right)^{-1}}-\frac{d_{j}}{e^{-i \theta}-\left(1+\epsilon z_{j}\right)}\right]
$$

Simple way to select suitable z_{j}, c_{j} and d_{j} to achieve high-order kernel.

$$
\nu_{g}^{\epsilon}\left(\theta_{0}\right)=\int_{[-\pi, \pi]_{\mathrm{per}}} K_{\epsilon}\left(\theta_{0}-\theta\right) d \nu_{g}(\theta)=\sum_{j=1}^{m}\left[c_{j} \mathrm{C}_{\nu_{g}}\left(e^{i \theta_{0}}\left(1+\epsilon \overline{\mathrm{Z}}_{j}\right)^{-1}\right)-d_{j} \mathrm{C}_{\nu_{g}}\left(e^{i \theta_{0}}\left(1+\epsilon z_{j}\right)\right)\right]
$$

$\mathrm{C}_{\nu_{g}}(z)$ computed using ResDMD.

High-order kernels

$$
\begin{gathered}
m=1 \\
\mathrm{C}_{\nu_{g}}\left(e^{i \theta_{0}}(1+\epsilon)^{-1}\right)-\mathrm{C}_{\nu_{g}}\left(e^{i \theta_{0}}(1+\epsilon)\right)
\end{gathered}
$$

$\sum_{j=1}^{m}\left[c_{j} \mathrm{C}_{\nu_{g}}\left(e^{i \theta_{0}}\left(1+\epsilon \overline{Z_{j}}\right)^{-1}\right)-d_{j} \mathrm{C}_{\nu_{g}}\left(e^{i \theta_{0}}\left(1+\epsilon z_{j}\right)\right)\right]$

Convergence

$\mathcal{O}\left(\epsilon^{m} \log \left(\epsilon^{-1}\right)\right)$ convergence for:

- Pointwise recovery of the density ρ_{g}
- L^{p} recovery of ρ_{g}
- Weak convergence

$$
\lim _{\epsilon \downarrow 0} \int_{[-\pi, \pi]_{\mathrm{per}}} \phi(\theta) \nu_{g}^{\epsilon}(\theta) d \theta=\int_{[-\pi, \pi]_{\mathrm{per}}} \phi(\theta) d \nu_{g}(\theta)
$$

for periodic continuous ϕ.
Also recover discrete part of measure. (i.e., eigenvalues of \mathcal{K})

Evaluate at P values of θ : Parallelisable $\mathcal{O}\left(N_{K}^{3}+P N_{K}\right)$ computation.

Example: double pendulum (chaotic)

$$
\begin{aligned}
& \dot{\theta_{1}}=\frac{2 p_{1}-3 p_{2} \cos \left(\theta_{1}-\theta_{2}\right)}{16-9 \cos ^{2}\left(\theta_{1}-\theta_{2}\right)} \\
& \dot{\theta_{2}}=\frac{8 p_{2}-3 p_{1} \cos \left(\theta_{1}-\theta_{2}\right)}{16-9 \cos ^{2}\left(\theta_{1}-\theta_{2}\right)} \\
& \dot{p_{1}}=-3\left(\dot{\theta_{1}} \dot{\theta_{2}} \sin \left(\theta_{1}-\theta_{2}\right)+\sin \left(\theta_{1}\right)\right) \\
& \dot{p_{2}}=-3\left(-\dot{\theta_{1}} \dot{\theta_{2}} \sin \left(\theta_{1}-\theta_{2}\right)+\frac{1}{3} \sin \left(\theta_{2}\right)\right)
\end{aligned}
$$

where $p_{1}=8 \dot{\theta}_{1}+3 \dot{\theta_{2}} \cos \left(\theta_{1}-\theta_{2}\right)$,

$$
p_{2}=2 \dot{\theta_{2}}+3 \dot{\theta_{1}} \cos \left(\theta_{1}-\theta_{2}\right)
$$

Part 3: High-dimensional dynamical systems and learned dictionaries.

Curse of dimensionality

Scalar field
$\Omega \subset \mathbb{R}^{d}, d=$ number of grid/mesh points
E.g., polynomial dictionary up to tot. deg. 5 .

Small grid: $d=5 \times 5 \Rightarrow N_{K} \approx 50,000$.
Example later: $d \approx 300,000 \Rightarrow N_{K} \approx 2 \times 10^{25}$
\gg number of stars in known universe!!!!

Conclusion: Infeasible to use hand-crafted dictionary when $d \gtrsim 25$.

Kernelized EDMD

- Kernelized EDMD: $\mathcal{O}(d)$ cost using "kernel trick".
- Forms $\widetilde{K}_{\text {EDMD }} \in \mathbb{C}^{M \times M}$ with subset of eigenvalues of $K_{\text {EDMD }} \in \mathbb{C}^{N_{K} \times N_{K}}$.
- Implicitly learns dictionary: eigenfunctions of $\widetilde{K}_{\text {EDMD }} \in \mathbb{C}^{M \times M}$.

[^17]
Kernelized EDMD

- Kernelized EDMD: $\mathcal{O}(d)$ cost using "kernel trick".
- Forms $\widetilde{K}_{\text {EDMD }} \in \mathbb{C}^{M \times M}$ with subset of eigenvalues of $K_{\text {EDMD }} \in \mathbb{C}^{N_{K} \times N_{K}}$.
- Implicitly learns dictionary: eigenfunctions of $\widetilde{K}_{\text {EDMD }} \in \mathbb{C}^{M \times M}$.

Still face the challenges:
(C1) Continuous spectra.
(C2) Lack of finite-dimensional invariant subspaces.
(C3) Spectral pollution.
(C4) Chaotic behaviour.

[^18]Two data sets: $\left\{\boldsymbol{x}^{(m)}, \boldsymbol{y}^{(m)}\right\}_{m=1}^{M^{\prime}}$ and $\left\{\hat{\boldsymbol{x}}^{(m)}, \hat{\boldsymbol{y}}^{(m)}\right\}_{m=1}^{M^{\prime \prime}}$.

1. Apply kernel EDMD to $\left\{\boldsymbol{x}^{(m)}, \boldsymbol{y}^{(m)}\right\}_{m=1}^{M^{\prime}}$
2. Compute the dominant $N_{K}^{\prime \prime}$ eigenvectors of $\widetilde{K}_{\text {EDMD }}$ (learned dictionary $\left\{\psi_{j}\right\}_{j=1}^{N_{K}^{\prime \prime}}$).
3. Apply above ResDMD algorithms with $\left\{\hat{\boldsymbol{x}}^{(m)}, \hat{\boldsymbol{y}}^{(m)}\right\}_{m=1}^{M^{\prime \prime}}$ and the dictionary $\left\{\psi_{j}\right\}_{j=1}^{N_{K}^{\prime \prime \prime}}$.

Key advantages of ResDMD: Convergence theory and a posterior verification of dictionary.
Overcomes the above challenges...

Molecular dynamics

Molecular dynamics

nature

Molecular dynamics

www.mdanalysis.org/MDAnalysisData/adk_equilibrium.html

Spectral measures in molecular dynamics, $d=20,046$

Left: ADK with three domains: CORE (green), LID (yellow) and NMP (red).
Middle and right: Spectral measures with respect to the dihedral angles of the selected parts.

Turbulent flow past a cascade of aerofoils, $d=295,122$

(Reynolds number 3.88×10^{5}.)

Motivation: Reduce noise sources (e.g., turbines, wings etc.).

[^19]Turbulent flow past a cascade of aerofoils, $d=295,122$

	$\lambda=e^{0.11 i}$	$\lambda=e^{0.51 i}$	$\lambda=e^{0.71 i}$
\sum_{0}^{0}			
$\begin{aligned} & \sum_{0}^{0} \\ & \underset{\sim}{0} \\ & \underset{\sim}{2} \end{aligned}$	$\text { residual } \leq 0.0054$		$\text { residual } \leq 0.0196$

Top row: Modes computed by DMD. Bottom row: Modes computed by ResDMD with residuals. Each column corresponds to different physical frequencies of noise pollution.

Concluding remarks

Summary: Rigorous and practical algorithms that overcome the challenges of (C1) Continuous spectra, (C2) Lack of finite-dimensional invariant subspaces, (C3) Spectral pollution, and (C4) Chaotic behaviour.

Part 1: Computed spectra, pseudospectra and residuals of general Koopman operators.
Idea: New matrix for residual \Rightarrow ResDMD.
Part 2: Computed spectral measures of measure-preserving systems with high-order convergence. Density of continuous spectrum, discrete spectrum and weak convergence.

Idea: Convolution with rational kernels through the resolvent and ResDMD.
Part 3: Dealt with high-dimensional dynamical systems.
Idea: Kernel trick to learn dictionary, then apply ResDMD.
Details and code: http://www.damtp.cam.ac.uk/user/mjc249/home.html If you have additional comments, questions, problems for collaboration, please get in touch!

Example: Lorenz and extended Lorenz systems

$$
\dot{X}=10(Y-X), \quad \dot{Y}=X(\rho-Z)-Y, \quad \dot{Z}=X Y-8 Z / 3 .
$$

Top row: Lorenz system. Bottom row: Extended 11-dimensional Lorenz system.
S. Moon et al. "Periodicity and chaos of high-order Lorenz systems," Inter. J. Bifur. Chaos, 2017.

Example: Lorenz and extended Lorenz systems

$\rho=5$				$\rho=28$				$\rho=40$			
$d=3$		$d=11$		$d=3$		$d=11$		$d=3$		$d=11$	
λ_{j}	r_{j}										
1.0108	4.9E-7	1.0108	8.6E-5	1.0423	5.1E-6	1.0346	$2.6 \mathrm{E}-4$	1.0689	4.6E-4	1.0046	6.2E-04
1.0217	3.8E-4	1.1550	1.1E-6	1.0712	7.9E-4	1.0423	$1.9 \mathrm{E}-5$	1.2214	$2.9 \mathrm{E}-6$	1.0868	$1.1 \mathrm{E}-04$
1.1550	5.1E-8	1.3339	1.0E-5	1.0862	6.3E-4	1.0472	$4.8 \mathrm{E}-4$	1.4191	9.9E-4	1.2214	1.3E-05
1.1675	7.6E-5	1.3380	5.2E-4	1.3839	7.5E-5	1.0594	7.7E-5	1.4823	$4.9 \mathrm{E}-4$	1.2419	8.3E-07
1.3340	1.3E-6	1.5410	4.0E-4	1.5810	$4.4 \mathrm{E}-7$	1.0598	2.0E-6	1.4916	$4.8 \mathrm{E}-4$	1.2452	6.7E-04
1.3385	6.9E-4			1.8065	7.4E-8	1.0685	9.8E-4	1.6216	5.2E-5	1.2526	1.2E-04
1.5410	3.1E-4			1.8829	5.8E-4	1.0707	9.4E-4	1.8527	1.7E-7	1.3498	1.7E-04
				2.8561	7.2E-5	1.0862	8.2E-4	2.1170	7.5E-8	1.3541	9.6E-04
				3.2633	$2.9 \mathrm{E}-7$	1.1964	2.4E-4	2.5857	$3.7 \mathrm{E}-4$	1.4251	$1.5 \mathrm{E}-04$
				5.8954	3.1E-4	1.3675	1.3E-6	3.9223	6.2E-5	1.4788	6.9E-04

Eigenvalues computed using Algorithm 1 with $\epsilon=0.001$ along with the computed residuals r_{j}.

Example: tent map, $F(x)=2 \min \{x, 1-x\}, \Omega=[0,1]$

$$
g(\theta)=C|\theta-1 / 3|+C \sin (20 \theta)+ \begin{cases}C, & \theta>0.78 \\ 0, & \theta \leq 0.78\end{cases}
$$

Added benefit: Avoid oversmoothing, and have better localisation of singular parts.

[^0]: - I. Mezić "Spectral properties of dynamical systems, model reduction and decompositions," Nonlin. Dyn., 2005.36

[^1]: - I. Mezić, A. Banaszuk "Comparison of systems with complex behavior," Physica D, 2004.
 - I. Mezić "Spectral properties of dynamical systems, model reduction and decompositions," Nonlin. Dyn., 2005. 36

[^2]: - M. Budišić, R. Mohr, I. Mezić "Applied Koopmanism," Chaos, 2012.
 - S. Brunton, J. N. Kutz "Data-driven Science and Engineering: Machine learning, Dynamical systems, and Control," CUP, 2019.

[^3]: - M. Budišić, R. Mohr, I. Mezić "Applied Koopmanism," Chaos, 2012.
 - S. Brunton, J. N. Kutz "Data-driven Science and Engineering: Machine learning, Dynamical systems, and Control," CUP, 2019.

[^4]: - M. Budišić, R. Mohr, I. Mezić "Applied Koopmanism," Chaos, 2012.
 - S. Brunton, J. N. Kutz "Data-driven Science and Engineering: Machine learning, Dynamical systems, and Control," CUP, 2019.

[^5]: - M. Budišić, R. Mohr, I. Mezić "Applied Koopmanism," Chaos, 2012.
 - S. Brunton, J. N. Kutz "Data-driven Science and Engineering: Machine learning, Dynamical systems, and Control," CUP, 2019.

[^6]: - M. Budišić, R. Mohr, I. Mezić "Applied Koopmanism," Chaos, 2012.
 - S. Brunton, J. N. Kutz "Data-driven Science and Engineering: Machine learning, Dynamical systems, and Control," CUP, 2019.

[^7]: - M. Budišić, R. Mohr, I. Mezić "Applied Koopmanism," Chaos, 2012.
 - S. Brunton, J. N. Kutz "Data-driven Science and Engineering: Machine learning, Dynamical systems, and Control," CUP, 2019.

[^8]: - M. Budišić, R. Mohr, I. Mezić "Applied Koopmanism," Chaos, 2012.
 - S. Brunton, J. N. Kutz "Data-driven Science and Engineering: Machine learning, Dynamical systems, and Control," CUP, 2019.

[^9]: - M. Budišić, R. Mohr, I. Mezić "Applied Koopmanism," Chaos, 2012.
 - S. Brunton, J. N. Kutz "Data-driven Science and Engineering: Machine learning, Dynamical systems, and Control," CUP, 2019.

[^10]: - M. Budišić, R. Mohr, I. Mezić "Applied Koopmanism," Chaos, 2012.
 - S. Brunton, J. N. Kutz "Data-driven Science and Engineering: Machine learning, Dynamical systems, and Control," CUP, 2019.

[^11]: - M. Budišić, R. Mohr, I. Mezić "Applied Koopmanism," Chaos, 2012.
 - S. Brunton, J. N. Kutz "Data-driven Science and Engineering: Machine learning, Dynamical systems, and Control," CUP, 2019.

[^12]: - M. Budišić, R. Mohr, I. Mezić "Applied Koopmanism," Chaos, 2012.
 - S. Brunton, J. N. Kutz "Data-driven Science and Engineering: Machine learning, Dynamical systems, and Control," CUP, 2019.

[^13]: - M. Williams, I. Kevrekidis, C. Rowley "A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition," J. Nonlin. Sci., 2015.

[^14]: - M. Williams, I. Kevrekidis, C. Rowley "A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition," J. Nonlin. Sci., 2015.

[^15]: - M. Williams, I. Kevrekidis, C. Rowley "A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition," J. Nonlin. Sci., 2015.

[^16]: - M. Williams, I. Kevrekidis, C. Rowley "A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition," J. Nonlin. Sci., 2015.

[^17]: - M. Williams, C. Rowley, and I. Kevrekidis "A kernel-based method for data-driven Koopman spectral analysis," J. Comput. Dyn., 2015.

[^18]: - M. Williams, C. Rowley, and I. Kevrekidis "A kernel-based method for data-driven Koopman spectral analysis," J. Comput. Dyn., 2015.

[^19]: - R. Koch, M. Sanjosé, and S. Moreau "Large-Eddy Simulation of a Linear Compressor Cascade with Tip Gap: Aerodynamic and Acoustic Analysis," AIAA Aviation, 2021.

