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The setup: discrete-time dynamical system

Dynamical system: State xxx ∈ Ω ⊂ Rd , F : Ω→ Ω, xxxn+1 = F (xxxn).

Given snapshot data: {xxx (m),yyy (m)}Mm=1 with yyy (m) = F (xxx (m)).

Broad goal: Learn properties of the dynamical system.

Applications: Biochemistry, classical mechanics, climate, electronics, epidemiology, finance,
fluids, molecular dynamics, neuroscience, robotics, ... (anything evolving in time).

Immediate difficulties:

F is unknown

F is typically nonlinear

system could be chaotic
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Koopman operators

Observable g : Ω→ C
[Kg ](xxx) = g(F (xxx)), xxx ∈ Ω.

K : D(K) ⊂ L2(Ω, ω)→ L2(Ω, ω) is linear, but infinite-dimensional!

GOAL: Learn spectral properties of K. Spectrum, σ(K) = {z ∈ C : K− z not invertible}.
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Why spectra?

Suppose (λ, ϕλ) is an eigenfunction-eigenvalue pair of K, then

ϕλ(xxxn) = [Knϕλ](xxx0) = λnϕλ(xxx0).

Suppose system is measure-preserving (e.g., Hamiltonian, ergodic,...), ∀g ∈ L2(Ω, ω)

g =
∑

e-vals λ

cλϕλ︸ ︷︷ ︸
discrete spectral part

+

∫
[−π,π]per

φθ,g dθ.︸ ︷︷ ︸
continuous spectral part

ϕλ are eigenfunctions of K, cλ ∈ C, φθ,g are “continuously parametrised” eigenfunctions.
Koopman mode decomposition

g(xxxn) = [Kng ](xxx0) =
∑

e-vals λ

cλλ
nϕλ(xxx0) +

∫
[−π,π]per

e inθφθ,g (xxx0) dθ.

· I. Mezić “Spectral properties of dynamical systems, model reduction and decompositions,” Nonlin. Dyn., 2005.3/36
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Lots of interest!

· I. Mezić, A. Banaszuk “Comparison of systems with complex behavior,” Physica D, 2004.
· I. Mezić “Spectral properties of dynamical systems, model reduction and decompositions,” Nonlin. Dyn., 2005.4/36



Challenges

Global understanding of nonlinear dynamics in state-space:

“a mathematical grand challenge of the 21st century”

Challenges:

(C1) Continuous spectra. Lack
of finite-dimensional

(C2) Lack of finite-dimensional
invariant subspaces.

(C3) Spectral pollution. Lack
of finite-dimensional

(C4) Chaotic behaviour.

Solutions in this talk:

(S1) Compute smoothed approximations of spectral measures
with explicit high-order convergence rates.

(S2) Compute spectral properties of K directly, as opposed to
restrictions of K to finite-dimensional subspaces.

(S3) Compute residuals associated with the spectrum with error
control, providing convergence without spectral pollution.

(S4) Handle chaotic systems using single time steps.

· M. Budǐsić, R. Mohr, I. Mezić “Applied Koopmanism,” Chaos, 2012.
· S. Brunton, J. N. Kutz “Data-driven Science and Engineering: Machine learning, Dynamical systems, and
Control,” CUP, 2019. 5/36
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Part 1: Computing residuals and spectra.

General Koopman operators.

Work in L2(Ω, ω) with inner product 〈·, ·〉.

6/36



Extended dynamic mode decomposition (EDMD)

Subspace span{ψj}NK

j=1 ⊂ L2(Ω, ω), Ψ(xxx) =
[
ψ1(xxx) · · · ψNK

(xxx)
]
∈ C1×NK .

For {xxx (m),yyy (m) = F (xxx (m))}Mm=1, ΨX =

Ψ(xxx (1))
...

Ψ(xxx (M))

 ∈ CM×NK , ΨY =

Ψ(yyy (1))
...

Ψ(yyy (M))

 ∈ CM×NK .

Given g =

NK∑
j=1

ψjggg j , seek KEDMD ∈ CNK×NK with Kg ≈
NK∑
j=1

ψj [KEDMDggg ]j .

min
B∈CNK×NK

∫
Ω

max
‖ggg‖`2 =1

∣∣∣Kg − NK∑
j=1

ψj [Bggg ]j

∣∣∣2 dω(xxx) ≈
M∑

m=1

wm

∥∥∥Ψ(yyy (m))−Ψ(xxx (m))B
∥∥∥2

2
.

Solution: KEDMD = (Ψ∗XWΨX )†(Ψ∗XWΨY ) (W = diag(w1, ...,wM))

Large data limit: lim
M→∞

[Ψ∗XWΨX ]jk = 〈ψk , ψj〉 and lim
M→∞

[Ψ∗XWΨY ]jk = 〈Kψk , ψj〉

· M. Williams, I. Kevrekidis, C. Rowley “A data–driven approximation of the Koopman operator: Extending
dynamic mode decomposition,” J. Nonlin. Sci., 2015. 7/36
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Residual DMD (ResDMD): A new matrix

If g =
∑NK

j=1 ψjggg j ∈ span{ψj}NK
j=1 and λ are a candidate eigenfunction-eigenvalue pair then

‖Kg − λg‖2
L2(Ω,ω) =

NK∑
j ,k=1

gggkggg j

[
〈Kψk ,Kψj〉 − λ〈ψk ,Kψj〉 − λ〈Kψk , ψj〉+ |λ|2〈ψk , ψj〉

]
≈

NK∑
j ,k=1

gggkggg j

[
Ψ∗YWΨY − λ[Ψ∗XWΨY ]∗ − λΨ∗XWΨY + |λ|2Ψ∗XWΨX

]
jk

= ggg∗
[
Ψ∗YWΨY − λ[Ψ∗XWΨY ]∗ − λΨ∗XWΨY + |λ|2Ψ∗XWΨX

]
ggg

New matrix: Ψ∗YWΨY with lim
M→∞

[Ψ∗YWΨY ]jk = 〈Kψk ,Kψj〉

8/36
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Example: nonlinear pendulum

ẋ1 = x2, ẋ2 = − sin(x1), with Ω = [−π, π]per × R.

I 
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I 
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I 

I 
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I 

I 

I 
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I 

l 

rn 

x1

Computed pseudospectra (ε = 0.25). Eigenvalues of KEDMD shown as dots (spectral pollution). 9/36



ResDMD: Avoiding spectral pollution

res(λ, g)2 =
ggg∗
[
Ψ∗YWΨY − λ[Ψ∗XWΨY ]∗ − λΨ∗XWΨY + |λ|2Ψ∗XWΨX

]
ggg

ggg∗
[
Ψ∗XWΨX

]
ggg

.

Algorithm:

1. Compute KEDMD, its eigenvalues and eigenvectors.

2. For each eigenpair (λ, g), compute res(λ, g).

3. Discard eigenpairs with res(λ, g) > ε, for accuracy tolerance ε > 0.

Theorem (No spectral pollution, compute residuals from above.)

Let ΛM denote the eigenvalue output of above algorithm. Then

lim sup
M→∞

max
λ∈ΛM

‖(K − λ)−1‖−1 ≤ ε.

BUT: typically does not capture all of spectrum!
10/36



ResDMD: Computing pseudospectra (and spectra)

σε(K) := ∪‖B‖≤εσ(K + B), lim
ε↓0

σε(K) = σ(K)

Algorithm:

1. Compute Ψ∗XWΨX , Ψ∗XWΨY , and Ψ∗YWΨY .

2. For each zj in a computational grid, compute τj = minggg∈CNK res(zj ,
∑NK

k=1 ψkgggk) and the
corresponding singular vectors ggg (j) (generalised SVD problem).

3. Output: {zj : τj < ε} (estimate of σε(K)) and ε-pseudo-eigenfunctions {ggg (j) : τj < ε}.

Theorem

No spectral pollution: {zj : τj < ε} ⊂ σε(K) (as M →∞).
Spectral inclusion: Converges uniformly to σε(K) on bounded subsets of C as NK →∞.

11/36



Example: pseudo-eigenfunctions of nonlinear pendulum

λ = exp(0.49i)

x1

x2

λ = exp(0.98i)

x1

x2

λ = exp(1.45i)

x1

x2

λ = exp(1.90i)

x1

x2

Colour represents complex argument, lines of constant modulus shown as shadowed steps.
All residuals smaller than ε = 0.05 (can be made smaller by increasing NK ).
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Part 2: Dealing with continuous spectra - computing spectral measures.

In this part, we assume that dynamics are measure-preserving.

This is equivalent to K being an isometrya:

‖Kg‖L2(Ω,ω) = ‖g‖L2(Ω,ω), ∀g ∈ L2(Ω, ω).

Spectrum lives inside the unit disk.

aFor analysts: we actually consider unitary extensions of K with ‘canonical’ spectral measures.

13/36



Diagonalising infinite-dimensional operators

Finite-dimensional: A ∈ Cn×n with A∗A = AA∗ has orthonormal basis of e-vectors {vj}nj=1

v =

 n∑
j=1

vjv
∗
j

 v , v ∈ Cn Av =

 n∑
j=1

λjvjv
∗
j

 v , v ∈ Cn.

Infinite-dimensional: Operator L : D(L)→ H, (H = Hilbert space). Typically, no longer a
basis of e-vectors. Spectral Theorem: Projection-valued spectral measure E

g =

(∫
σ(L)

dE(λ)

)
g , g ∈ H Lg =

(∫
σ(L)

λ dE(λ)

)
g , g ∈ D(L).

Scalar-valued spectral measures: νg (U) = 〈 E(U)︸ ︷︷ ︸
projection

g , g〉.
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Koopman mode decomposition

νg are spectral measures on [−π, π]per

Lebesgue’s decomposition theorem:

dνg (λ) =
∑

e-vals λj

〈Pλjg , g〉 δ(λ− λj)dλ︸ ︷︷ ︸
discrete part

+ ρg (λ) dλ+ dν
(sc)
g (λ)︸ ︷︷ ︸

continuous part

g =
∑

e-vals λj

cλj ϕλj︸︷︷︸
e-functions

+

∫
[−π,π]per

φθ,g dθ.︸ ︷︷ ︸
ctsly param e-functions

g(xxxn) = [Knf ](xxx0) =
∑

e-vals λj

cλjλ
n
j ϕλj (xxx0) +

∫
[−π,π]per

e inθφθ,f (xxx0) dθ.

Computing νg provides diagonalisation of non-linear dynamical system!
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Plemelj-type formula

Kε(θ) =
1

2π
· (1 + ε)2 − 1

1 + (1 + ε)2 − 2(1 + ε) cos(θ)︸ ︷︷ ︸
Poisson kernel for unit disc

, Cνg(z) :=
1

2π

∫
[−π,π]per

e iθ dνg (θ)

e iθ − z︸ ︷︷ ︸
generalised Cauchy transform

νεg (θ0) =

∫
[−π,π]per

Kε(θ0 − θ) dνg (θ)︸ ︷︷ ︸
smoothed measure

= Cνg

(
e iθ0(1 + ε)−1

)
− Cνg

(
e iθ0(1 + ε)

)
=
−1

2π

[
〈(K − e iθ0(1 + ε))−1g ,K∗g〉+ e−iθ0〈g , (K − e iθ0(1 + ε))−1g〉

]
︸ ︷︷ ︸

approximate using matrices Ψ∗XWΨX ,Ψ
∗
XWΨY ,Ψ

∗
YWΨY

Compute smoothed approximations using ResDMD discretisations of size NK .
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Example on `2(N) with known spectral measure

K =



α0 α1ρ0 ρ1ρ0

ρ0 −α1α0 −ρ1α0 0

0 α2ρ1 −α2α1 α3ρ2 ρ3ρ2

ρ2ρ1 −ρ2α1 −α3α2 −ρ3α2
. . .

0 α4ρ3 −α4α3
. . .

. . .
. . .

. . .


, αj = (−1)j0.95(j+1)/2, ρj =

√
1− |αj |2.

Generalised shift, typical building block of many dynamical systems (e.g., Bernoulli shifts).
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Fix NK , vary ε
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Fix ε, vary NK
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Adaptive NK (ε) (or ε(NK )): New matrix Ψ∗YWΨY key!
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Slow convergence!

Problem: As ε ↓ 0, error is O(ε log(ε−1)) and NK (ε)→∞.

10
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Pointwise error for spectral density

O(ε
log(ε
−1 ))

ε
0 50 100 150 200

10
-15

10
-10

10
-5

10
0

Error due to discretisation

NK

ε = 0.01

ε = 0.1

ε = 0.5

Critical in data-driven computations where we want NK to be as small as possible.
Question: Can we improve the convergence rate in ε?
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High-order kernels

Idea: Replace the Poisson kernel by

Kε(θ) =
e−iθ

2π

m∑
j=1

[
cj

e−iθ − (1 + εzj)−1
−

dj
e−iθ − (1 + εzj)

]
Simple way to select suitable zj , cj and dj to achieve high-order kernel.

νεg (θ0) =

∫
[−π,π]per

Kε(θ0 − θ) dνg (θ) =
m∑
j=1

[
cjCνg

(
e iθ0(1 + εzj)

−1
)
− djCνg

(
e iθ0(1 + εzj)

)]

Cνg (z) computed using ResDMD.
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High-order kernels
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High-order kernels

m = 1

Cνg

(
e iθ0 (1 + ε)−1

)
− Cνg

(
e iθ0 (1 + ε)

)
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m = 6m∑
j=1

[
cjCνg

(
e iθ0 (1 + εzj)

−1
)
− djCνg

(
e iθ0 (1 + εzj)

) ]
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θ
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Convergence

O(εm log(ε−1)) convergence for:

Pointwise recovery of the density ρg

Lp recovery of ρg
Weak convergence

lim
ε↓0

∫
[−π,π]per

φ(θ)νεg (θ) dθ =

∫
[−π,π]per

φ(θ) dνg (θ),

for periodic continuous φ.

Also recover discrete part of measure.
(i.e., eigenvalues of K)
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=

6

Evaluate at P values of θ: Parallelisable O(N3
K + PNK ) computation.
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Example: double pendulum (chaotic)

θ1

θ2

`

`

θ̇1 =
2p1 − 3p2 cos(θ1 − θ2)

16− 9 cos2(θ1 − θ2)
,

θ̇2 =
8p2 − 3p1 cos(θ1 − θ2)

16− 9 cos2(θ1 − θ2)
,

ṗ1 = −3(θ̇1θ̇2 sin(θ1 − θ2) + sin(θ1)),

ṗ2 = −3(−θ̇1θ̇2 sin(θ1 − θ2) +
1

3
sin(θ2)),

where p1 = 8θ̇1 + 3θ̇2 cos(θ1 − θ2),
p2 = 2θ̇2 + 3θ̇1 cos(θ1 − θ2)
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Part 3: High-dimensional dynamical systems and learned dictionaries.
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Curse of dimensionality

initialized with a RANS simulation on the same mesh without trip, with the solver ANSYS v17. The turbulence model
is k − ω SST and both advection and turbulence model equations are resolved with second order schemes.

Fig. 3 Mesh used for the LES 3D - Cut at midchord with zoom on the tip-gap region.

Fig. 4 Mesh used for the LES 3D - Cut at midspan with zooms on the leading (LE) and trailing (TE) edges.

B. Small-span configuration

A second configuration is considered. A 25 mm slice of the full configuration at midspan, without tip gap, is
simulated with the exact same parameters. Only the span is reduced from 250 mm to 25 mm (10% span). The same
mesh is considered, with the same boundary layer trip on the blade suction side at 10% ca downstream of the leading
edge. The hybrid mesh is composed of 29 × 106 cells. The domain is seen in Fig. 5. Translational periodic conditions
are used both in the spanwise and the crosswise directions. This double periodicity computation has already been
achieved with LES on a turbine blade by Dupuy et al. [30] with the solver AVBP and showed its ability to handle such
constraints. This configuration will be used to compute the trailing-edge blade self noise, and this contribution will
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Scalar field
Ω ⊂ Rd , d = number of grid/mesh points

E.g., polynomial dictionary up to tot. deg. 5.

Small grid: d = 5× 5⇒ NK ≈ 50, 000.

Example later: d ≈ 300, 000⇒ NK ≈ 2× 1025

� number of stars in known universe!!!!

Conclusion: Infeasible to use hand-crafted dictionary when d ' 25.
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Kernelized EDMD

Kernelized EDMD: O(d) cost using “kernel trick”.

Forms K̃EDMD ∈ CM×M with subset of eigenvalues of KEDMD ∈ CNK×NK .

Implicitly learns dictionary: eigenfunctions of K̃EDMD ∈ CM×M .

Still face the challenges:

(C1) Continuous spectra. Lack of finite-dimensional
(C2) Lack of finite-dimensional invariant subspaces.
(C3) Spectral pollution. Lack of finite-dimensional
(C4) Chaotic behaviour.

· M. Williams, C. Rowley, and I. Kevrekidis “A kernel-based method for data-driven Koopman spectral
analysis,” J. Comput. Dyn., 2015. 30/36
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A solution: two sets of snapshot data

Two data sets: {xxx (m),yyy (m)}M′m=1 and {x̂xx (m), ŷyy (m)}M′′m=1.

1. Apply kernel EDMD to {xxx (m),yyy (m)}M′m=1.

2. Compute the dominant N ′′K eigenvectors of K̃EDMD (learned dictionary {ψj}
N′′K
j=1).

3. Apply above ResDMD algorithms with {x̂xx (m), ŷyy (m)}M′′m=1 and the dictionary {ψj}
N′′K
j=1.

Key advantages of ResDMD: Convergence theory and a posterior verification of dictionary.

Overcomes the above challenges...
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Spectral measures in molecular dynamics, d = 20,046

�� @
@
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��
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-3 -2 -1 0 1 2 3

0.14

0.16

0.18

0.2

0.22

0.24

0.26

θ

LID

φ
�
��	

ψ

A
A
AAU

-3 -2 -1 0 1 2 3

0

0.1

0.2

0.3

0.4

0.5

0.6

θ

NMP

φ@
@@I

ψ
���

Left: ADK with three domains: CORE (green), LID (yellow) and NMP (red).
Middle and right: Spectral measures with respect to the dihedral angles of the selected parts.
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Turbulent flow past a cascade of aerofoils, d = 295,122

(Reynolds number 3.88× 105.)Turbulent flow past a cascade of aerofoils, d = 295,122

36/43

Motivation: Reduce noise sources (e.g., turbines, wings etc.).

· R. Koch, M. Sanjosé, and S. Moreau “Large-Eddy Simulation of a Linear Compressor Cascade with Tip Gap:
Aerodynamic and Acoustic Analysis,” AIAA Aviation, 2021. 34/36



Turbulent flow past a cascade of aerofoils, d = 295,122
λ = e0.11i λ = e0.51i λ = e0.71i

D
M

D
acoustic source

��

residual ≤ 0.0054 residual ≤ 0.0128 residual ≤ 0.0196

R
es

D
M

D

acoustic vibrations
��

turbulent
fluctuations

Top row: Modes computed by DMD. Bottom row: Modes computed by ResDMD with residuals.
Each column corresponds to different physical frequencies of noise pollution.
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Concluding remarks

Summary: Rigorous and practical algorithms that overcome the challenges of
(C1) Continuous spectra, (C2) Lack of finite-dimensional invariant subspaces,
(C3) Spectral pollution, and (C4) Chaotic behaviour.

Part 1: Computed spectra, pseudospectra and residuals of general Koopman operators.

Idea: New matrix for residual ⇒ ResDMD.

Part 2: Computed spectral measures of measure-preserving systems with high-order
convergence. Density of continuous spectrum, discrete spectrum and weak convergence.

Idea: Convolution with rational kernels through the resolvent and ResDMD.

Part 3: Dealt with high-dimensional dynamical systems.

Idea: Kernel trick to learn dictionary, then apply ResDMD.

Details and code: http://www.damtp.cam.ac.uk/user/mjc249/home.html

If you have additional comments, questions, problems for collaboration, please get in touch!
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Example: Lorenz and extended Lorenz systems

Ẋ = 10 (Y − X ) , Ẏ = X (ρ− Z )− Y , Ż = XY − 8Z/3.
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Top row: Lorenz system. Bottom row: Extended 11-dimensional Lorenz system.

· S. Moon et al. “Periodicity and chaos of high-order Lorenz systems,” Inter. J. Bifur. Chaos, 2017. 1/3



Example: Lorenz and extended Lorenz systems

ρ = 5 ρ = 28 ρ = 40

d = 3 d = 11 d = 3 d = 11 d = 3 d = 11

λj rj λj rj λj rj λj rj λj rj λj rj

1.0108 4.9E-7 1.0108 8.6E-5 1.0423 5.1E-6 1.0346 2.6E-4 1.0689 4.6E-4 1.0046 6.2E-04

1.0217 3.8E-4 1.1550 1.1E-6 1.0712 7.9E-4 1.0423 1.9E-5 1.2214 2.9E-6 1.0868 1.1E-04

1.1550 5.1E-8 1.3339 1.0E-5 1.0862 6.3E-4 1.0472 4.8E-4 1.4191 9.9E-4 1.2214 1.3E-05

1.1675 7.6E-5 1.3380 5.2E-4 1.3839 7.5E-5 1.0594 7.7E-5 1.4823 4.9E-4 1.2419 8.3E-07

1.3340 1.3E-6 1.5410 4.0E-4 1.5810 4.4E-7 1.0598 2.0E-6 1.4916 4.8E-4 1.2452 6.7E-04

1.3385 6.9E-4 1.8065 7.4E-8 1.0685 9.8E-4 1.6216 5.2E-5 1.2526 1.2E-04

1.5410 3.1E-4 1.8829 5.8E-4 1.0707 9.4E-4 1.8527 1.7E-7 1.3498 1.7E-04

2.8561 7.2E-5 1.0862 8.2E-4 2.1170 7.5E-8 1.3541 9.6E-04

3.2633 2.9E-7 1.1964 2.4E-4 2.5857 3.7E-4 1.4251 1.5E-04

5.8954 3.1E-4 1.3675 1.3E-6 3.9223 6.2E-5 1.4788 6.9E-04

Eigenvalues computed using Algorithm 1 with ε = 0.001 along with the computed residuals rj .
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Example: tent map, F (x) = 2 min{x , 1− x}, Ω = [0, 1]

g(θ) = C |θ − 1/3|+ C sin(20θ) +

{
C , θ > 0.78,

0, θ ≤ 0.78.

-3 -2 -1 0 1 2 3
10

-2

10
-1

10
0

10
1

Smoothed approximations ν0.01
g

θ

-eigenvalue

Added benefit: Avoid oversmoothing, and have better localisation of singular parts.
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