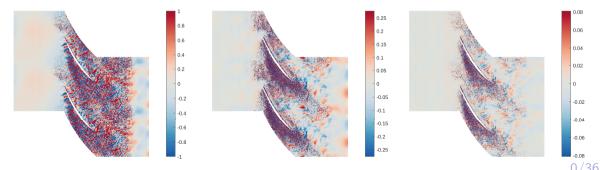
Data-driven numerical analysis of Koopman operators for dynamical systems

Matthew Colbrook

(University of Cambridge and École Normale Supérieure)

m.colbrook@damtp.cam.ac.uk

Based on: Matthew Colbrook and Alex Townsend, "*Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems*" (available on arXiv)



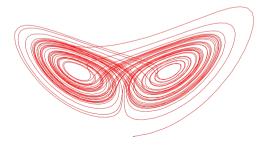
The setup: discrete-time dynamical system

Dynamical system: State $\mathbf{x} \in \Omega \subset \mathbb{R}^d$, $F : \Omega \to \Omega$, $\mathbf{x}_{n+1} = F(\mathbf{x}_n)$.

Given snapshot data: $\{\mathbf{x}^{(m)}, \mathbf{y}^{(m)}\}_{m=1}^{M}$ with $\mathbf{y}^{(m)} = F(\mathbf{x}^{(m)})$.

Broad goal: Learn properties of the dynamical system.

Applications: Biochemistry, classical mechanics, climate, electronics, epidemiology, finance, <u>fluids</u>, molecular dynamics, neuroscience, robotics, ... (anything evolving in time).



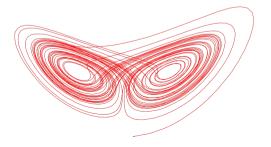
The setup: discrete-time dynamical system

Dynamical system: State $\mathbf{x} \in \Omega \subset \mathbb{R}^d$, $F : \Omega \to \Omega$, $\mathbf{x}_{n+1} = F(\mathbf{x}_n)$.

Given snapshot data: $\{\mathbf{x}^{(m)}, \mathbf{y}^{(m)}\}_{m=1}^{M}$ with $\mathbf{y}^{(m)} = F(\mathbf{x}^{(m)})$.

Broad goal: Learn properties of the dynamical system.

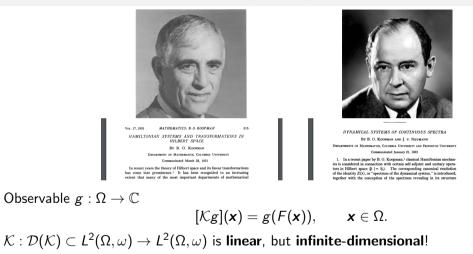
Applications: Biochemistry, classical mechanics, climate, electronics, epidemiology, finance, <u>fluids</u>, molecular dynamics, neuroscience, robotics, ... (anything evolving in time).



Immediate difficulties:

- *F* is **unknown**
- F is typically **nonlinear**
- system could be chaotic

Koopman operators



Koopman operators

Observable $g:\Omega \to \mathbb{C}$

$$[\mathcal{K}g](\mathbf{x}) = g(F(\mathbf{x})), \qquad \mathbf{x} \in \Omega.$$

 $\mathcal{K}: \mathcal{D}(\mathcal{K}) \subset L^2(\Omega, \omega) \to L^2(\Omega, \omega)$ is linear, but infinite-dimensional!

<u>GOAL</u>: Learn spectral properties of \mathcal{K} . Spectrum, $\sigma(\mathcal{K}) = \{z \in \mathbb{C} : \mathcal{K} - z \text{ not invertible}\}.$

Why spectra?

Suppose $(\lambda, arphi_{\lambda})$ is an eigenfunction-eigenvalue pair of \mathcal{K} , then

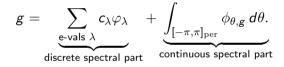
$$\varphi_{\lambda}(\mathbf{x}_n) = [\mathcal{K}^n \varphi_{\lambda}](\mathbf{x}_0) = \lambda^n \varphi_{\lambda}(\mathbf{x}_0).$$

Why spectra?

Suppose $(\lambda, \varphi_{\lambda})$ is an eigenfunction-eigenvalue pair of \mathcal{K} , then

$$\varphi_{\lambda}(\mathbf{x}_n) = [\mathcal{K}^n \varphi_{\lambda}](\mathbf{x}_0) = \lambda^n \varphi_{\lambda}(\mathbf{x}_0).$$

Suppose system is measure-preserving (e.g., Hamiltonian, ergodic,...), $\forall g \in L^2(\Omega, \omega)$



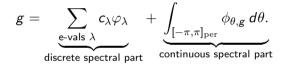
 φ_{λ} are eigenfunctions of \mathcal{K} , $c_{\lambda} \in \mathbb{C}$, $\phi_{\theta,g}$ are "continuously parametrised" eigenfunctions.

Why spectra?

Suppose $(\lambda, \varphi_{\lambda})$ is an eigenfunction-eigenvalue pair of \mathcal{K} , then

$$\varphi_{\lambda}(\mathbf{x}_n) = [\mathcal{K}^n \varphi_{\lambda}](\mathbf{x}_0) = \lambda^n \varphi_{\lambda}(\mathbf{x}_0).$$

Suppose system is measure-preserving (e.g., Hamiltonian, ergodic,...), $\forall g \in L^2(\Omega, \omega)$



 φ_{λ} are eigenfunctions of \mathcal{K} , $c_{\lambda} \in \mathbb{C}$, $\phi_{\theta,g}$ are "continuously parametrised" eigenfunctions. Koopman mode decomposition

$$g(m{x}_n) = [\mathcal{K}^n g](m{x}_0) = \sum_{ ext{e-vals }\lambda} c_\lambda \lambda^n arphi_\lambda(m{x}_0) + \int_{[-\pi,\pi]_{ ext{per}}} e^{in heta} \phi_{ heta,g}(m{x}_0) \, d heta.$$

[·] I. Mezić "Spectral properties of dynamical systems, model reduction and decompositions," Nonlin. Dyn., 2005.36

Lots of interest!

$\equiv Google$	cholar koopman		٩		9
Articles	About 82,400 results (0.05 sec)			S My profile	★ My librar
Any time Since 2021 Since 2020 Since 2017 Custom range	Analysis of fluid flows via spectral properties of the Koopman operator LMozić - Annual Review of Fluid Mechanics, 2013 - annualreviews.org This article reviews theory and applications of Koopman modes in fluid mechanics. Koopman mode decomposition is based on the surprising fact, discovered in, that normal ☆ Save 99 Cite Cited by 642 Related articles All 12 versions 🍪		[HTML] annualreviews.org Full View		
2004 — Search	tecong The Koopman Operator in Systems and 0 Methodologies, and Applications AMauroy. (Mezić, ⊻Susuki - 2020 - books.google.com This book provides a broad overview of state-of-the-art researt Koopman operator theory and control theory. It also reviews on ∳ Save 59 Cite Cited by 54 Related articles All 2 versic	ch at the intersection of the ovel theoretical results …			
Sort by date	A kernel-based approach to data-driven Koopm		[PDF] arxiv.org		
Any type Review articles	MO Williams, <u>CWI Rowley, IG Kevrekidis</u> - arXiv preprint arXiv: A data driven, kernel-based method for approximating the lead eigenfunctions, and modes in problems with high dimensional ☆ Save 50 Cite Cited by 217 Related articles All 9 vers	ing Koopman eigenvalues, state spaces is presented …			
 include patents include citations 	A data–driven approximation of the koopman o decomposition		[PDF] arxiv.org		
Create alert	$\begin{array}{l} \underline{MOWIII}{ams.} \ \underline{IGKevrekidis}, \underline{CWRwiley} - \mathrm{Journal of Nonlineae} \\ \\ \underline{The} \ \mathbf{Koopman} \ operator is a linear but infinite-dimensional operator is calar observables defined on the state space of a \\ \\ \underline{x} \ \mathrm{Save} \ 99 \ \mathrm{Cite} \ \mathrm{Cited by 863} \ \mathrm{Related articles} \ \mathrm{All 12 ver} \end{array}$	rator that governs the in autonomous dynamical …			

· I. Mezić, A. Banaszuk "Comparison of systems with complex behavior," Physica D, 2004.

· I. Mezić "Spectral properties of dynamical systems, model reduction and decompositions," Nonlin. Dyn., 2005/36

Global understanding of nonlinear dynamics in state-space:

"a mathematical grand challenge of the 21st century"

[·] M. Budišić, R. Mohr, I. Mezić "Applied Koopmanism," Chaos, 2012.

[·] S. Brunton, J. N. Kutz "Data-driven Science and Engineering: Machine learning, Dynamical systems, and Control," CUP, 2019.

Global understanding of nonlinear dynamics in state-space:

"a mathematical grand challenge of the 21st century"

Challenges:

[·] M. Budišić, R. Mohr, I. Mezić "Applied Koopmanism," Chaos, 2012.

[·] S. Brunton, J. N. Kutz "Data-driven Science and Engineering: Machine learning, Dynamical systems, and Control," CUP, 2019.

Global understanding of nonlinear dynamics in state-space:

"a mathematical grand challenge of the 21st century"

Challenges:

(C1) Continuous spectra.

5/36

[·] M. Budišić, R. Mohr, I. Mezić "Applied Koopmanism," Chaos, 2012.

[·] S. Brunton, J. N. Kutz "Data-driven Science and Engineering: Machine learning, Dynamical systems, and Control," CUP, 2019.

Global understanding of nonlinear dynamics in state-space:

"a mathematical grand challenge of the 21st century"

Challenges:

(C1) Continuous spectra.

(C2) Lack of finite-dimensional invariant subspaces.

5/36

[·] M. Budišić, R. Mohr, I. Mezić "Applied Koopmanism," Chaos, 2012.

[·] S. Brunton, J. N. Kutz "Data-driven Science and Engineering: Machine learning, Dynamical systems, and Control," CUP, 2019.

Global understanding of nonlinear dynamics in state-space:

"a mathematical grand challenge of the 21st century"

Challenges:

(C1) Continuous spectra.

- (C2) Lack of finite-dimensional invariant subspaces.
- (C3) Spectral pollution.

[·] M. Budišić, R. Mohr, I. Mezić "Applied Koopmanism," Chaos, 2012.

[·] S. Brunton, J. N. Kutz "Data-driven Science and Engineering: Machine learning, Dynamical systems, and Control," CUP, 2019.

Global understanding of nonlinear dynamics in state-space:

"a mathematical grand challenge of the 21st century"

Challenges:

(C1) Continuous spectra.

- (C2) Lack of finite-dimensional invariant subspaces.
- (C3) Spectral pollution.

[·] M. Budišić, R. Mohr, I. Mezić "Applied Koopmanism," Chaos, 2012.

[·] S. Brunton, J. N. Kutz "Data-driven Science and Engineering: Machine learning, Dynamical systems, and Control," CUP, 2019.

Global understanding of nonlinear dynamics in state-space:

"a mathematical grand challenge of the 21st century"

Challenges:

Solutions in this talk:

(C1) Continuous spectra.

- (C2) Lack of finite-dimensional invariant subspaces.
- (C3) Spectral pollution.

[·] M. Budišić, R. Mohr, I. Mezić "Applied Koopmanism," Chaos, 2012.

[·] S. Brunton, J. N. Kutz "Data-driven Science and Engineering: Machine learning, Dynamical systems, and Control," CUP, 2019.

Global understanding of nonlinear dynamics in state-space:

"a mathematical grand challenge of the 21st century"

Challenges:

(C1) Continuous spectra.

Solutions in this talk:

- (S1) Compute smoothed approximations of spectral measures with explicit high-order convergence rates.
- (C2) Lack of finite-dimensional invariant subspaces.
- (C3) Spectral pollution.

[·] M. Budišić, R. Mohr, I. Mezić "Applied Koopmanism," Chaos, 2012.

[·] S. Brunton, J. N. Kutz "Data-driven Science and Engineering: Machine learning, Dynamical systems, and Control," CUP, 2019.

Global understanding of nonlinear dynamics in state-space:

"a mathematical grand challenge of the 21st century"

Challenges:

(C1) Continuous spectra.

Solutions in this talk:

- (S1) Compute smoothed approximations of spectral measures with explicit high-order convergence rates.
- (C2) Lack of finite-dimensional (S2) Compute spectral properties of \mathcal{K} directly, as opposed to invariant subspaces. restrictions of \mathcal{K} to finite-dimensional subspaces.
- (C3) Spectral pollution.

[·] M. Budišić, R. Mohr, I. Mezić "Applied Koopmanism," Chaos, 2012.

[·] S. Brunton, J. N. Kutz "Data-driven Science and Engineering: Machine learning, Dynamical systems, and Control," CUP, 2019.

Global understanding of nonlinear dynamics in state-space:

"a mathematical grand challenge of the 21st century"

Challenges:

(C1) Continuous spectra.

Solutions in this talk:

- (S1) Compute smoothed approximations of spectral measures with explicit high-order convergence rates.
- (C2) Lack of finite-dimensional (S2) Compute spectral properties of \mathcal{K} directly, as opposed to invariant subspaces. restrictions of \mathcal{K} to finite-dimensional subspaces.
- (C3) Spectral pollution.

(S3) Compute residuals associated with the spectrum with error control, providing convergence without spectral pollution.

5/36

[·] M. Budišić, R. Mohr, I. Mezić "Applied Koopmanism," Chaos, 2012.

[·] S. Brunton, J. N. Kutz "Data-driven Science and Engineering: Machine learning, Dynamical systems, and Control," CUP, 2019.

Global understanding of nonlinear dynamics in state-space:

"a mathematical grand challenge of the 21st century"

Challenges:

(C1) Continuous spectra.

Solutions in this talk:

- (S1) Compute smoothed approximations of spectral measures with explicit high-order convergence rates.
- (C2) Lack of finite-dimensional (S2) Compute spectral properties of \mathcal{K} directly, as opposed to invariant subspaces. restrictions of \mathcal{K} to finite-dimensional subspaces.
- (C3) Spectral pollution.

(S3) Compute residuals associated with the spectrum with error control, providing convergence without spectral pollution.

5/36

(C4) Chaotic behaviour. (S4) Handle chaotic systems using single time steps.

[·] M. Budišić, R. Mohr, I. Mezić "Applied Koopmanism," Chaos, 2012.

[·] S. Brunton, J. N. Kutz "Data-driven Science and Engineering: Machine learning, Dynamical systems, and Control," CUP, 2019.

Part 1: Computing residuals and spectra.

General Koopman operators.

Work in $L^2(\Omega, \omega)$ with inner product $\langle \cdot, \cdot \rangle$.

Subspace $\operatorname{span}\{\psi_j\}_{j=1}^{N_{\mathcal{K}}} \subset L^2(\Omega, \omega), \ \Psi(\mathbf{x}) = \begin{bmatrix} \psi_1(\mathbf{x}) & \cdots & \psi_{N_{\mathcal{K}}}(\mathbf{x}) \end{bmatrix} \in \mathbb{C}^{1 \times N_{\mathcal{K}}}.$

For
$$\{\boldsymbol{x}^{(m)}, \boldsymbol{y}^{(m)} = F(\boldsymbol{x}^{(m)})\}_{m=1}^{M}$$
, $\Psi_X = \begin{pmatrix} \Psi(\boldsymbol{x}^{(1)}) \\ \vdots \\ \Psi(\boldsymbol{x}^{(M)}) \end{pmatrix} \in \mathbb{C}^{M \times N_K}$, $\Psi_Y = \begin{pmatrix} \Psi(\boldsymbol{y}^{(1)}) \\ \vdots \\ \Psi(\boldsymbol{y}^{(M)}) \end{pmatrix} \in \mathbb{C}^{M \times N_K}$.

[•] M. Williams, I. Kevrekidis, C. Rowley "A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition," J. Nonlin. Sci., 2015.

Subspace $\operatorname{span}\{\psi_j\}_{j=1}^{N_{\mathcal{K}}} \subset L^2(\Omega, \omega), \ \Psi(\mathbf{x}) = \begin{bmatrix} \psi_1(\mathbf{x}) & \cdots & \psi_{N_{\mathcal{K}}}(\mathbf{x}) \end{bmatrix} \in \mathbb{C}^{1 \times N_{\mathcal{K}}}.$

For
$$\{\boldsymbol{x}^{(m)}, \boldsymbol{y}^{(m)} = F(\boldsymbol{x}^{(m)})\}_{m=1}^{M}$$
, $\Psi_X = \begin{pmatrix} \Psi(\boldsymbol{x}^{(1)}) \\ \vdots \\ \Psi(\boldsymbol{x}^{(M)}) \end{pmatrix} \in \mathbb{C}^{M \times N_K}$, $\Psi_Y = \begin{pmatrix} \Psi(\boldsymbol{y}^{(1)}) \\ \vdots \\ \Psi(\boldsymbol{y}^{(M)}) \end{pmatrix} \in \mathbb{C}^{M \times N_K}$.

Given
$$g = \sum_{j=1}^{N_{\mathcal{K}}} \psi_j \boldsymbol{g}_j$$
, seek $\mathcal{K}_{\text{EDMD}} \in \mathbb{C}^{N_{\mathcal{K}} \times N_{\mathcal{K}}}$ with $\mathcal{K} g \approx \sum_{j=1}^{N_{\mathcal{K}}} \psi_j [\mathcal{K}_{\text{EDMD}} \boldsymbol{g}]_j$.

[•] M. Williams, I. Kevrekidis, C. Rowley "A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition," J. Nonlin. Sci., 2015.

Subspace $\operatorname{span}\{\psi_j\}_{j=1}^{N_{\mathcal{K}}} \subset L^2(\Omega, \omega), \ \Psi(\mathbf{x}) = \begin{bmatrix} \psi_1(\mathbf{x}) & \cdots & \psi_{N_{\mathcal{K}}}(\mathbf{x}) \end{bmatrix} \in \mathbb{C}^{1 \times N_{\mathcal{K}}}.$

For
$$\{\boldsymbol{x}^{(m)}, \boldsymbol{y}^{(m)} = F(\boldsymbol{x}^{(m)})\}_{m=1}^{M}$$
, $\Psi_X = \begin{pmatrix} \Psi(\boldsymbol{x}^{(1)}) \\ \vdots \\ \Psi(\boldsymbol{x}^{(M)}) \end{pmatrix} \in \mathbb{C}^{M \times N_K}$, $\Psi_Y = \begin{pmatrix} \Psi(\boldsymbol{y}^{(1)}) \\ \vdots \\ \Psi(\boldsymbol{y}^{(M)}) \end{pmatrix} \in \mathbb{C}^{M \times N_K}$.

Given
$$g = \sum_{j=1}^{N_{K}} \psi_{j} \boldsymbol{g}_{j}$$
, seek $\mathcal{K}_{\text{EDMD}} \in \mathbb{C}^{N_{K} \times N_{K}}$ with $\mathcal{K} \boldsymbol{g} \approx \sum_{j=1}^{N_{K}} \psi_{j} [\mathcal{K}_{\text{EDMD}} \boldsymbol{g}]_{j}$.

$$\min_{B \in \mathbb{C}^{N_{K} \times N_{K}}} \int_{\Omega} \max_{\|\boldsymbol{g}\|_{\ell^{2}} = 1} \left| \mathcal{K} \boldsymbol{g} - \sum_{j=1}^{N_{K}} \psi_{j} [B \boldsymbol{g}]_{j} \right|^{2} d\omega(\boldsymbol{x}) \approx \sum_{m=1}^{M} w_{m} \left\| \Psi(\boldsymbol{y}^{(m)}) - \Psi(\boldsymbol{x}^{(m)}) B \right\|_{2}^{2}.$$

[•] M. Williams, I. Kevrekidis, C. Rowley "A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition," J. Nonlin. Sci., 2015.

Subspace $\operatorname{span}\{\psi_j\}_{j=1}^{N_{\mathcal{K}}} \subset L^2(\Omega, \omega), \ \Psi(\mathbf{x}) = \begin{bmatrix} \psi_1(\mathbf{x}) & \cdots & \psi_{N_{\mathcal{K}}}(\mathbf{x}) \end{bmatrix} \in \mathbb{C}^{1 \times N_{\mathcal{K}}}.$

For
$$\{\boldsymbol{x}^{(m)}, \boldsymbol{y}^{(m)} = F(\boldsymbol{x}^{(m)})\}_{m=1}^{M}$$
, $\Psi_X = \begin{pmatrix} \Psi(\boldsymbol{x}^{(1)}) \\ \vdots \\ \Psi(\boldsymbol{x}^{(M)}) \end{pmatrix} \in \mathbb{C}^{M \times N_K}$, $\Psi_Y = \begin{pmatrix} \Psi(\boldsymbol{y}^{(1)}) \\ \vdots \\ \Psi(\boldsymbol{y}^{(M)}) \end{pmatrix} \in \mathbb{C}^{M \times N_K}$.

Given
$$g = \sum_{j=1}^{N_{K}} \psi_{j} \boldsymbol{g}_{j}$$
, seek $\mathcal{K}_{\text{EDMD}} \in \mathbb{C}^{N_{K} \times N_{K}}$ with $\mathcal{K} g \approx \sum_{j=1}^{N_{K}} \psi_{j} [\mathcal{K}_{\text{EDMD}} \boldsymbol{g}]_{j}$.

$$\min_{B \in \mathbb{C}^{N_{K} \times N_{K}}} \int_{\Omega} \max_{\|\boldsymbol{g}\|_{\ell^{2}} = 1} \left| \mathcal{K} g - \sum_{j=1}^{N_{K}} \psi_{j} [B \boldsymbol{g}]_{j} \right|^{2} d\omega(\boldsymbol{x}) \approx \sum_{m=1}^{M} w_{m} \left\| \Psi(\boldsymbol{y}^{(m)}) - \Psi(\boldsymbol{x}^{(m)}) B \right\|_{2}^{2}.$$

Solution: $\mathcal{K}_{\text{EDMD}} = (\Psi_X^* W \Psi_X)^{\dagger} (\Psi_X^* W \Psi_Y)$ $(W = \text{diag}(w_1, ..., w_M))$ Large data limit: $\lim_{M \to \infty} [\Psi_X^* W \Psi_X]_{jk} = \langle \psi_k, \psi_j \rangle$ and $\lim_{M \to \infty} [\Psi_X^* W \Psi_Y]_{jk} = \langle \mathcal{K} \psi_k, \psi_j \rangle$

• M. Williams, I. Kevrekidis, C. Rowley "A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition," J. Nonlin. Sci., 2015.

Residual DMD (ResDMD): A new matrix

If $g = \sum_{j=1}^{N_K} \psi_j g_j \in \text{span}\{\psi_j\}_{j=1}^{N_K}$ and λ are a candidate eigenfunction-eigenvalue pair then

$$\begin{split} \|\mathcal{K}\boldsymbol{g} - \lambda\boldsymbol{g}\|_{L^{2}(\Omega,\omega)}^{2} &= \sum_{j,k=1}^{N_{K}} \boldsymbol{g}_{k} \overline{\boldsymbol{g}_{j}} \left[\langle \mathcal{K}\psi_{k}, \mathcal{K}\psi_{j} \rangle - \lambda \langle \psi_{k}, \mathcal{K}\psi_{j} \rangle - \overline{\lambda} \langle \mathcal{K}\psi_{k}, \psi_{j} \rangle + |\lambda|^{2} \langle \psi_{k}, \psi_{j} \rangle \right] \\ &\approx \sum_{j,k=1}^{N_{K}} \boldsymbol{g}_{k} \overline{\boldsymbol{g}_{j}} \left[\Psi_{Y}^{*} W \Psi_{Y} - \lambda [\Psi_{X}^{*} W \Psi_{Y}]^{*} - \overline{\lambda} \Psi_{X}^{*} W \Psi_{Y} + |\lambda|^{2} \Psi_{X}^{*} W \Psi_{X} \right]_{jk} \\ &= \boldsymbol{g}^{*} \left[\Psi_{Y}^{*} W \Psi_{Y} - \lambda [\Psi_{X}^{*} W \Psi_{Y}]^{*} - \overline{\lambda} \Psi_{X}^{*} W \Psi_{Y} + |\lambda|^{2} \Psi_{X}^{*} W \Psi_{X} \right] \boldsymbol{g} \end{split}$$

Residual DMD (ResDMD): A new matrix

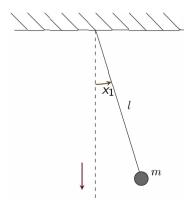
If $g = \sum_{j=1}^{N_K} \psi_j g_j \in \text{span}\{\psi_j\}_{j=1}^{N_K}$ and λ are a candidate eigenfunction-eigenvalue pair then

$$\begin{split} \|\mathcal{K}\boldsymbol{g} - \lambda\boldsymbol{g}\|_{L^{2}(\Omega,\omega)}^{2} &= \sum_{j,k=1}^{N_{K}} \boldsymbol{g}_{k} \overline{\boldsymbol{g}_{j}} \left[\langle \mathcal{K}\psi_{k}, \mathcal{K}\psi_{j} \rangle - \lambda \langle \psi_{k}, \mathcal{K}\psi_{j} \rangle - \overline{\lambda} \langle \mathcal{K}\psi_{k}, \psi_{j} \rangle + |\lambda|^{2} \langle \psi_{k}, \psi_{j} \rangle \right] \\ &\approx \sum_{j,k=1}^{N_{K}} \boldsymbol{g}_{k} \overline{\boldsymbol{g}_{j}} \left[\Psi_{Y}^{*} W \Psi_{Y} - \lambda [\Psi_{X}^{*} W \Psi_{Y}]^{*} - \overline{\lambda} \Psi_{X}^{*} W \Psi_{Y} + |\lambda|^{2} \Psi_{X}^{*} W \Psi_{X} \right]_{jk} \\ &= \boldsymbol{g}^{*} \left[\Psi_{Y}^{*} W \Psi_{Y} - \lambda [\Psi_{X}^{*} W \Psi_{Y}]^{*} - \overline{\lambda} \Psi_{X}^{*} W \Psi_{Y} + |\lambda|^{2} \Psi_{X}^{*} W \Psi_{X} \right] \boldsymbol{g} \end{split}$$

New matrix: $\Psi_Y^* W \Psi_Y$ with $\lim_{M \to \infty} [\Psi_Y^* W \Psi_Y]_{jk} = \langle \mathcal{K} \psi_k, \mathcal{K} \psi_j \rangle$

Example: nonlinear pendulum

$$\dot{x_1} = x_2, \quad \dot{x_2} = -\sin(x_1), \quad ext{ with } \quad \Omega = [-\pi,\pi]_{ ext{per}} imes \mathbb{R}.$$



Computed pseudospectra (ϵ = 0.25). Eigenvalues of $K_{\rm EDMD}$ shown as dots (spectral pollution). $_{9/36}$

ResDMD: Avoiding spectral pollution

$$\operatorname{res}(\lambda,g)^{2} = \frac{\boldsymbol{g}^{*}\left[\Psi_{Y}^{*}W\Psi_{Y} - \lambda[\Psi_{X}^{*}W\Psi_{Y}]^{*} - \overline{\lambda}\Psi_{X}^{*}W\Psi_{Y} + |\lambda|^{2}\Psi_{X}^{*}W\Psi_{X}\right]\boldsymbol{g}}{\boldsymbol{g}^{*}\left[\Psi_{X}^{*}W\Psi_{X}\right]\boldsymbol{g}}$$

Algorithm:

- 1. Compute $K_{\rm EDMD}$, its eigenvalues and eigenvectors.
- 2. For each eigenpair (λ, g) , compute res (λ, g) .
- 3. Discard eigenpairs with $res(\lambda, g) > \epsilon$, for accuracy tolerance $\epsilon > 0$.

Theorem (No spectral pollution, compute residuals from <u>above</u>.)

Let Λ_M denote the eigenvalue output of above algorithm. Then

$$\limsup_{M\to\infty}\max_{\lambda\in\Lambda_M}\|(\mathcal{K}-\lambda)^{-1}\|^{-1}\leq\epsilon.$$

BUT: typically does not capture all of spectrum!

ResDMD: Computing pseudospectra (and spectra)

$$\sigma_\epsilon(\mathcal{K}) := \cup_{\|\mathcal{B}\| \leq \epsilon} \sigma(\mathcal{K} + \mathcal{B}), \quad \lim_{\epsilon \downarrow 0} \sigma_\epsilon(\mathcal{K}) = \sigma(\mathcal{K})$$

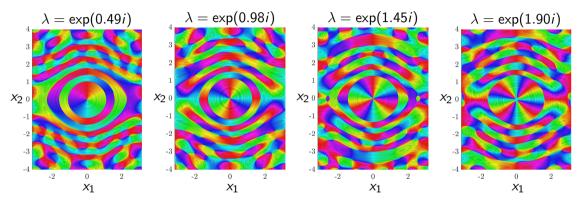
Algorithm:

- 1. Compute $\Psi_X^* W \Psi_X$, $\Psi_X^* W \Psi_Y$, and $\Psi_Y^* W \Psi_Y$.
- 2. For each z_j in a computational grid, compute $\tau_j = \min_{\boldsymbol{g} \in \mathbb{C}^{N_K}} \operatorname{res}(z_j, \sum_{k=1}^{N_K} \psi_k \boldsymbol{g}_k)$ and the corresponding singular vectors $\boldsymbol{g}_{(j)}$ (generalised SVD problem).
- 3. Output: $\{z_j : \tau_j < \epsilon\}$ (estimate of $\sigma_{\epsilon}(\mathcal{K})$) and ϵ -pseudo-eigenfunctions $\{g_{(j)} : \tau_j < \epsilon\}$.

Theorem

No spectral pollution: $\{z_j : \tau_j < \epsilon\} \subset \sigma_{\epsilon}(\mathcal{K}) \text{ (as } M \to \infty).$ Spectral inclusion: Converges uniformly to $\sigma_{\epsilon}(\mathcal{K})$ on bounded subsets of \mathbb{C} as $N_K \to \infty$.

Example: pseudo-eigenfunctions of nonlinear pendulum



Colour represents complex argument, lines of constant modulus shown as shadowed steps. All residuals smaller than $\epsilon = 0.05$ (can be made smaller by increasing N_K).

Part 2: Dealing with continuous spectra - computing spectral measures.

In this part, we assume that dynamics are measure-preserving.

This is equivalent to \mathcal{K} being an isometry^{*a*}:

$$\|\mathcal{K}g\|_{L^2(\Omega,\omega)} = \|g\|_{L^2(\Omega,\omega)}, \quad \forall g \in L^2(\Omega,\omega).$$

Spectrum lives inside the unit disk.

^aFor analysts: we actually consider unitary extensions of ${\cal K}$ with 'canonical' spectral measures.

Diagonalising infinite-dimensional operators

Finite-dimensional: $A \in \mathbb{C}^{n \times n}$ with $A^*A = AA^*$ has orthonormal basis of e-vectors $\{v_j\}_{i=1}^n$

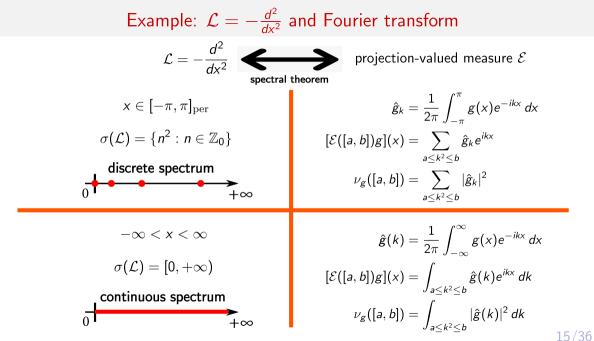
$$\mathbf{v} = \left(\sum_{j=1}^n v_j v_j^*\right) \mathbf{v}, \quad \mathbf{v} \in \mathbb{C}^n \qquad A\mathbf{v} = \left(\sum_{j=1}^n \lambda_j v_j v_j^*\right) \mathbf{v}, \quad \mathbf{v} \in \mathbb{C}^n.$$

Infinite-dimensional: Operator $\mathcal{L} : \mathcal{D}(\mathcal{L}) \to \mathcal{H}$, ($\mathcal{H} = \text{Hilbert space}$). Typically, no longer a basis of e-vectors. Spectral Theorem: Projection-valued spectral measure \mathcal{E}

$$g = \left(\int_{\sigma(\mathcal{L})} d\mathcal{E}(\lambda)
ight) g, \hspace{1em} g \in \mathcal{H} \hspace{1em} \mathcal{L}g = \left(\int_{\sigma(\mathcal{L})} \lambda \, d\mathcal{E}(\lambda)
ight) g, \hspace{1em} g \in \mathcal{D}(\mathcal{L}).$$

Scalar-valued spectral measures: $\nu_g(U) = \langle \underbrace{\mathcal{E}(U)}_{i \in I} g, g \rangle$.

projection



Koopman mode decomposition

 u_{g} are spectral measures on $[-\pi,\pi]_{\mathrm{per}}$

Lebesgue's decomposition theorem:

$$d\nu_{g}(\lambda) = \sum_{\substack{\text{e-vals } \lambda_{j} \\ \text{discrete part}}} \langle \mathcal{P}_{\lambda_{j}}g, g \rangle \,\delta(\lambda - \lambda_{j})d\lambda \qquad + \underbrace{\rho_{g}(\lambda) \,d\lambda + d\nu_{g}^{(\text{sc})}(\lambda)}_{\text{continuous part}} \\ g = \sum_{\substack{\text{e-vals } \lambda_{j} \\ \text{e-functions}}} c_{\lambda_{j}} \underbrace{\varphi_{\lambda_{j}}}_{\text{e-functions}} \qquad + \underbrace{\int_{[-\pi,\pi]_{\text{per}}} \phi_{\theta,g} \,d\theta}_{\text{ctsly param e-functions}} \\ g(\mathbf{x}_{n}) = [\mathcal{K}^{n}f](\mathbf{x}_{0}) = \sum_{\substack{\text{e-vals } \lambda_{j} \\ \text{e-vals } \lambda_{j}}} c_{\lambda_{j}}\lambda_{j}^{n}\varphi_{\lambda_{j}}(\mathbf{x}_{0}) \qquad + \int_{[-\pi,\pi]_{\text{per}}} e^{in\theta}\phi_{\theta,f}(\mathbf{x}_{0}) \,d\theta \\ \end{cases}$$

Computing ν_g provides diagonalisation of non-linear dynamical system!

Plemelj-type formula

$$\underbrace{\mathcal{K}_{\epsilon}(\theta) = \frac{1}{2\pi} \cdot \frac{(1+\epsilon)^2 - 1}{1 + (1+\epsilon)^2 - 2(1+\epsilon)\cos(\theta)}}_{\text{Poisson kernel for unit disc}}, \quad \underbrace{\mathbf{C}_{\nu_g}(z) := \frac{1}{2\pi} \int_{[-\pi,\pi]_{\mathrm{per}}} \frac{e^{i\theta} \, d\nu_g(\theta)}{e^{i\theta} - z}}_{\text{generalised Cauchy transform}}$$

Plemelj-type formula

$$\underbrace{\mathcal{K}_{\epsilon}(\theta) = \frac{1}{2\pi} \cdot \frac{(1+\epsilon)^2 - 1}{1 + (1+\epsilon)^2 - 2(1+\epsilon)\cos(\theta)}}_{\text{Poisson kernel for unit disc}}, \underbrace{\mathcal{C}_{\nu_g}(z) \coloneqq \frac{1}{2\pi} \int_{[-\pi,\pi]_{\text{per}}} \frac{e^{i\theta} \, d\nu_g(\theta)}{e^{i\theta} - z}}_{\text{generalised Cauchy transform}}}$$

$$\nu_g^{\epsilon}(\theta_0) = \underbrace{\int_{[-\pi,\pi]_{\text{per}}} \mathcal{K}_{\epsilon}(\theta_0 - \theta) \, d\nu_g(\theta)}_{\text{smoothed measure}}}_{\text{smoothed measure}}$$

$$= C_{\nu_g} \left(e^{i\theta_0} (1+\epsilon)^{-1} \right) - C_{\nu_g} \left(e^{i\theta_0} (1+\epsilon) \right)$$

$$= \underbrace{\frac{-1}{2\pi} \left[\langle (\mathcal{K} - e^{i\theta_0} (1+\epsilon))^{-1}g, \mathcal{K}^*g \rangle + e^{-i\theta_0} \langle g, (\mathcal{K} - e^{i\theta_0} (1+\epsilon))^{-1}g \rangle \right]}_{\text{approximate using matrices}} \underbrace{\frac{1}{2\pi} \left[\langle W_X, \Psi_X^* W_Y, \Psi_Y^* W_Y \rangle}_{\text{approximate using matrices}} \underbrace{\frac{1}{2\pi} \left[\langle W_X, \Psi_X^* W_Y, \Psi_Y^* W_Y \rangle}_{\text{approximate using matrices}} \underbrace{\frac{1}{2\pi} \left[\langle W_X, \Psi_X^* W_Y, \Psi_Y^* W_Y \rangle}_{\text{approximate using matrices}} \underbrace{\frac{1}{2\pi} \left[\langle W_X, \Psi_X^* W_Y, \Psi_Y^* W_Y \rangle}_{\text{approximate using matrices}} \underbrace{\frac{1}{2\pi} \left[\langle W_X, \Psi_X^* W_Y, \Psi_Y^* W_Y \rangle}_{\text{approximate using matrices}} \underbrace{\frac{1}{2\pi} \left[\langle W_X, \Psi_X^* W_Y, \Psi_Y^* W_Y \rangle}_{\text{approximate using matrices}} \underbrace{\frac{1}{2\pi} \left[\langle W_X, \Psi_X^* W_Y, \Psi_Y^* W_Y \rangle}_{\text{approximate using matrices}} \underbrace{\frac{1}{2\pi} \left[\langle W_X, \Psi_X^* W_Y, \Psi_X^* W_Y \rangle}_{\text{approximate using matrices}} \underbrace{\frac{1}{2\pi} \left[\langle W_X, \Psi_X^* W_Y \rangle}_{\text{approximate using matrices}} \underbrace{\frac{1}{2\pi} \left[\langle W_X, \Psi_X^* W_Y \rangle}_{\text{approximate using matrices}} \underbrace{\frac{1}{2\pi} \left[\langle W_X, \Psi_X^* W_Y \rangle}_{\text{approximate using matrices} \underbrace{\frac{1}{2\pi} \left[\langle W_X, \Psi_X^* W_Y \rangle}_{\text{approximate using matrices} \underbrace{\frac{1}{2\pi} \left[\langle W_X, \Psi_X^* W_Y \rangle}_{\text{approximate using matrices}} \underbrace{\frac{1}{2\pi} \left[\langle W_X, \Psi_X^* W_Y \rangle}_{\text{approximate using matrices} \underbrace{\frac{1}{2\pi} \left[\langle W_X, \Psi_X^* W_Y \rangle}_{\text{approximate using matrices} \underbrace{\frac{1}{2\pi} \left[\langle W_X, \Psi_X^* W_Y \rangle}_{\text{approximate using matrices} \underbrace{\frac{1}{2\pi} \left[\langle W_X, \Psi_X^* W_Y \rangle}_{\text{approximate using matrices} \underbrace{\frac{1}{2\pi} \left[\langle W_X, \Psi_X^* W_Y \rangle}_{\text{approximate using matrices} \underbrace{\frac{1}{2\pi} \left[\langle W_X, \Psi_X^* W_Y \rangle}_{\text{approximate using matrixes} \underbrace{\frac{1}{2\pi} \left[\langle W_X, \Psi_X^* W_Y \rangle}_{\text{approximate using matrixes} \underbrace{\frac{1}{2\pi} \left[\langle W_X, \Psi_X^* W_Y \rangle}_{\text{approximate using matrixes} \underbrace{\frac{1}{2\pi} \left[\langle W_X, \Psi_X^* W_Y \rangle$$

Compute smoothed approximations using ResDMD discretisations of size N_K .

Example on $\ell^2(\mathbb{N})$ with known spectral measure

$$\mathcal{K} = \begin{bmatrix} \overline{\alpha_0} & \overline{\alpha_1}\rho_0 & \rho_1\rho_0 & & \\ \rho_0 & -\overline{\alpha_1}\alpha_0 & -\rho_1\alpha_0 & 0 & & \\ 0 & \overline{\alpha_2}\rho_1 & -\overline{\alpha_2}\alpha_1 & \overline{\alpha_3}\rho_2 & \rho_3\rho_2 & & \\ & \rho_2\rho_1 & -\rho_2\alpha_1 & -\overline{\alpha_3}\alpha_2 & -\rho_3\alpha_2 & \ddots & \\ & & 0 & \overline{\alpha_4}\rho_3 & -\overline{\alpha_4}\alpha_3 & \ddots & \\ & & \ddots & \ddots & \ddots & \ddots \end{bmatrix}, \alpha_j = (-1)^j 0.95^{(j+1)/2}, \rho_j = \sqrt{1 - |\alpha_j|^2}.$$

Generalised shift, typical building block of many dynamical systems (e.g., Bernoulli shifts).

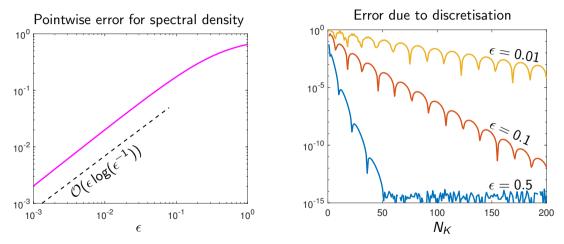
Fix N_K , vary ϵ

Fix ϵ , vary N_K

Adaptive $N_{\mathcal{K}}(\epsilon)$ (or $\epsilon(N_{\mathcal{K}})$): New matrix $\Psi_Y^* W \Psi_Y$ key!

Slow convergence!

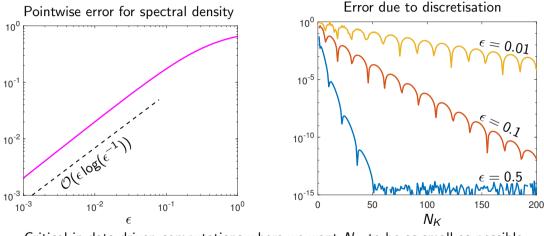
Problem: As $\epsilon \downarrow 0$, error is $\mathcal{O}(\epsilon \log(\epsilon^{-1}))$ and $N_{\mathcal{K}}(\epsilon) \to \infty$.



22/36

Slow convergence!

Problem: As $\epsilon \downarrow 0$, error is $\mathcal{O}(\epsilon \log(\epsilon^{-1}))$ and $N_{\mathcal{K}}(\epsilon) \to \infty$.



<u>Critical</u> in data-driven computations where we want N_K to be as small as possible. Question: Can we improve the convergence rate in ϵ ?

High-order kernels

Idea: Replace the Poisson kernel by

$$\mathcal{K}_{\epsilon}(heta) = rac{e^{-i heta}}{2\pi}\sum_{j=1}^{m}\left[rac{c_{j}}{e^{-i heta}-(1+\epsilon\overline{z_{j}})^{-1}}-rac{d_{j}}{e^{-i heta}-(1+\epsilon z_{j})}
ight]$$

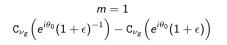
Simple way to select suitable z_j , c_j and d_j to achieve high-order kernel.

$$u_g^\epsilon(heta_0) = \int_{[-\pi,\pi]_{
m per}} \mathcal{K}_\epsilon(heta_0 - heta) \, d
u_g(heta) = \sum_{j=1}^m \left[c_j \mathtt{C}_{
u_g} \left(e^{i heta_0} (1 + \epsilon \overline{z_j})^{-1}
ight) - d_j \mathtt{C}_{
u_g} \left(e^{i heta_0} (1 + \epsilon z_j)
ight)
ight]$$

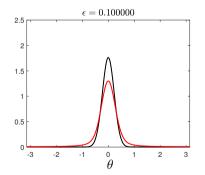
 $C_{\nu_g}(z)$ computed using ResDMD.

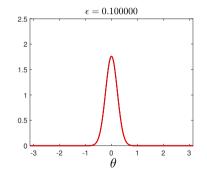
High-order kernels

High-order kernels



$$m=6 \ \sum_{j=1}^{m} \left[c_j \mathtt{C}_{
u_g} \left(e^{i heta_0} (1+\epsilon \overline{z_j})^{-1}
ight) - d_j \mathtt{C}_{
u_g} \left(e^{i heta_0} (1+\epsilon z_j)
ight)
ight]$$





Convergence

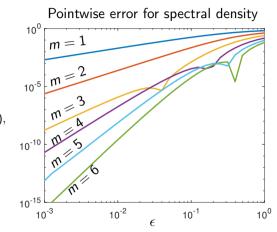
 $\mathcal{O}(\epsilon^m \log(\epsilon^{-1}))$ convergence for:

- $\bullet\,$ Pointwise recovery of the density ρ_g
- L^p recovery of ρ_g
- Weak convergence

$$\lim_{\epsilon \downarrow 0} \int_{[-\pi,\pi]_{\mathrm{per}}} \phi(\theta) \nu_g^\epsilon(\theta) \, d\theta = \int_{[-\pi,\pi]_{\mathrm{per}}} \phi(\theta) \, d\nu_g(\theta)$$

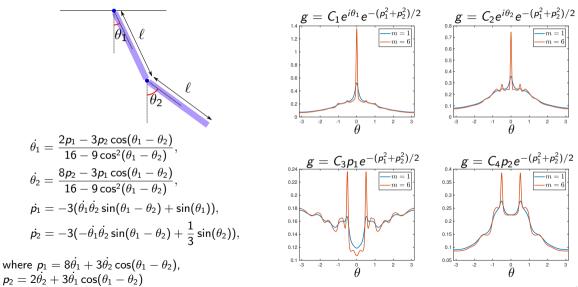
for periodic continuous ϕ .

Also recover discrete part of measure. (i.e., eigenvalues of $\ensuremath{\mathcal{K}}\xspace)$



Evaluate at P values of θ : Parallelisable $\mathcal{O}(N_K^3 + PN_K)$ computation.

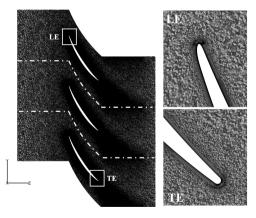
Example: double pendulum (chaotic)



27/36

Part 3: High-dimensional dynamical systems and learned dictionaries.

Curse of dimensionality



Scalar field $\Omega \subset \mathbb{R}^d$, d = number of grid/mesh points E.g., polynomial dictionary up to tot. deg. 5. Small grid: $d = 5 \times 5 \Rightarrow N_K \approx 50,000.$

Example later: $d \approx 300,000 \Rightarrow N_K \approx 2 \times 10^{25}$ \gg number of stars in known universe!!!!

Conclusion: Infeasible to use hand-crafted dictionary when $d \gtrsim 25$.

Kernelized EDMD

- Kernelized EDMD: $\mathcal{O}(d)$ cost using "kernel trick".
- Forms $\widetilde{K}_{EDMD} \in \mathbb{C}^{M \times M}$ with subset of eigenvalues of $K_{EDMD} \in \mathbb{C}^{N_K \times N_K}$.
- Implicitly learns dictionary: eigenfunctions of $\widetilde{K}_{\text{EDMD}} \in \mathbb{C}^{M \times M}$.

[•] M. Williams, C. Rowley, and I. Kevrekidis "A kernel-based method for data-driven Koopman spectral analysis," J. Comput. Dyn., 2015.

Kernelized EDMD

- Kernelized EDMD: $\mathcal{O}(d)$ cost using "kernel trick".
- Forms $\widetilde{K}_{\text{EDMD}} \in \mathbb{C}^{M \times M}$ with subset of eigenvalues of $K_{\text{EDMD}} \in \mathbb{C}^{N_{K} \times N_{K}}$.
- Implicitly learns dictionary: eigenfunctions of $\widetilde{K}_{\text{EDMD}} \in \mathbb{C}^{M \times M}$.

Still face the challenges:

- (C1) Continuous spectra.
- (C2) Lack of finite-dimensional invariant subspaces.
- (C3) Spectral pollution.
- (C4) Chaotic behaviour.

• M. Williams, C. Rowley, and I. Kevrekidis "A kernel-based method for data-driven Koopman spectral analysis," J. Comput. Dyn., 2015.

A solution: two sets of snapshot data

Two data sets: $\{ \pmb{x}^{(m)}, \pmb{y}^{(m)} \}_{m=1}^{M'}$ and $\{ \hat{\pmb{x}}^{(m)}, \hat{\pmb{y}}^{(m)} \}_{m=1}^{M''}$.

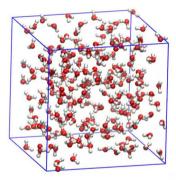
1. Apply kernel EDMD to $\{\boldsymbol{x}^{(m)}, \boldsymbol{y}^{(m)}\}_{m=1}^{M'}$.

- 2. Compute the dominant $N''_{\mathcal{K}}$ eigenvectors of $\widetilde{\mathcal{K}}_{\text{EDMD}}$ (learned dictionary $\{\psi_j\}_{j=1}^{N''_{\mathcal{K}}}$).
- 3. Apply above **ResDMD** algorithms with $\{\hat{\boldsymbol{x}}^{(m)}, \hat{\boldsymbol{y}}^{(m)}\}_{m=1}^{M''}$ and the dictionary $\{\psi_j\}_{j=1}^{N''_K}$.

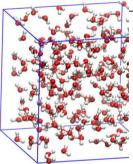
Key advantages of ResDMD: Convergence theory and a posterior verification of dictionary.

Overcomes the above challenges...

Molecular dynamics



Molecular dynamics



nature

View all Nature Research journals Search Q

Sion up for alerts Q

Explore our content Y Journal information Y Subscribe

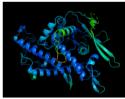
nature > news > article

NEWS . 30 NOVEMBER 2020

'It will change everything': DeepMind's AI makes gigantic leap in solving protein structures

Google's deep-learning program for determining the 3D shapes of proteins stands to transform biology, say scientists.

Even Callaver



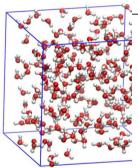
-

biology

RELATED ARTICLES

At protein folding algorithms solve structures faster than

Molecular dynamics



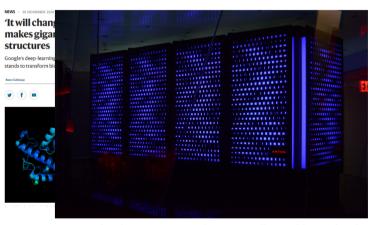
nature

View all Nature Research journals Search Q

Sion up for alerts Q

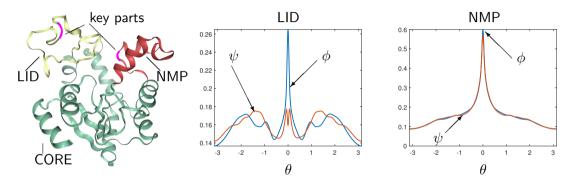
Explore our content * Journal information * Subscribe

nature > news > article



 $www.mdanalysis.org/MDAnalysisData/adk_equilibrium.html$

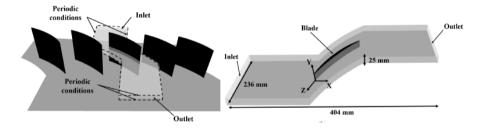
Spectral measures in molecular dynamics, d = 20,046



Left: ADK with three domains: CORE (green), LID (yellow) and NMP (red). **Middle and right:** Spectral measures with respect to the dihedral angles of the selected parts.

Turbulent flow past a cascade of aerofoils, d = 295,122

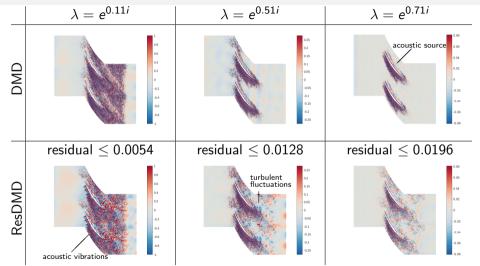
(Reynolds number 3.88×10^5 .)



Motivation: Reduce noise sources (e.g., turbines, wings etc.).

 [·] R. Koch, M. Sanjosé, and S. Moreau "Large-Eddy Simulation of a Linear Compressor Cascade with Tip Gap:

 Aerodynamic and Acoustic Analysis," AIAA Aviation, 2021.



Top row: Modes computed by DMD. **Bottom row:** Modes computed by ResDMD with residuals. Each column corresponds to different physical frequencies of noise pollution.

Concluding remarks

Summary: Rigorous and practical algorithms that overcome the challenges of (C1) Continuous spectra, (C2) Lack of finite-dimensional invariant subspaces, (C3) Spectral pollution, and (C4) Chaotic behaviour.

Part 1: Computed spectra, pseudospectra and residuals of general Koopman operators. **Idea:** New matrix for residual \Rightarrow ResDMD.

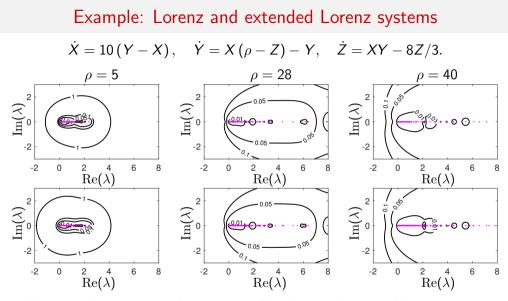
Part 2: Computed spectral measures of measure-preserving systems with high-order convergence. Density of continuous spectrum, discrete spectrum and weak convergence.Idea: Convolution with rational kernels through the resolvent and ResDMD.

Part 3: Dealt with high-dimensional dynamical systems.

Idea: Kernel trick to learn dictionary, then apply ResDMD.

Details and code: http://www.damtp.cam.ac.uk/user/mjc249/home.html

If you have additional comments, questions, problems for collaboration, please get in touch!



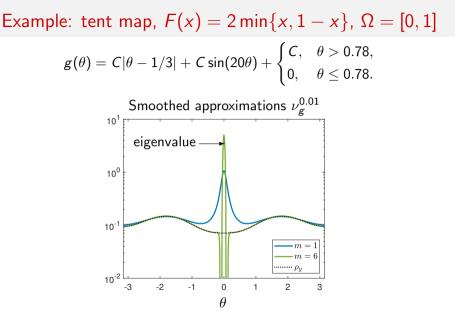
Top row: Lorenz system. Bottom row: Extended 11-dimensional Lorenz system.

[·] S. Moon et al. "Periodicity and chaos of high-order Lorenz systems," Inter. J. Bifur. Chaos, 2017.

Example: Lorenz and extended Lorenz systems

ho = 5				ho = 28				ho = 40			
<i>d</i> = 3		d = 11		<i>d</i> = 3		d = 11		<i>d</i> = 3		d = 11	
λ_j	rj	λ_j	rj	λ_j	rj	λ_j	rj	λ_j	rj	λ_j	rj
1.0108	4.9E-7	1.0108	8.6E-5	1.0423	5.1E-6	1.0346	2.6E-4	1.0689	4.6E-4	1.0046	6.2E-04
1.0217	3.8E-4	1.1550	1.1E-6	1.0712	7.9E-4	1.0423	1.9E-5	1.2214	2.9E-6	1.0868	1.1E-04
1.1550	5.1E-8	1.3339	1.0E-5	1.0862	6.3E-4	1.0472	4.8E-4	1.4191	9.9E-4	1.2214	1.3E-05
1.1675	7.6E-5	1.3380	5.2E-4	1.3839	7.5E-5	1.0594	7.7E-5	1.4823	4.9E-4	1.2419	8.3E-07
1.3340	1.3E-6	1.5410	4.0E-4	1.5810	4.4E-7	1.0598	2.0E-6	1.4916	4.8E-4	1.2452	6.7E-04
1.3385	6.9E-4			1.8065	7.4E-8	1.0685	9.8E-4	1.6216	5.2E-5	1.2526	1.2E-04
1.5410	3.1E-4			1.8829	5.8E-4	1.0707	9.4E-4	1.8527	1.7E-7	1.3498	1.7E-04
				2.8561	7.2E-5	1.0862	8.2E-4	2.1170	7.5E-8	1.3541	9.6E-04
				3.2633	2.9E-7	1.1964	2.4E-4	2.5857	3.7E-4	1.4251	1.5E-04
				5.8954	3.1E-4	1.3675	1.3E-6	3.9223	6.2E-5	1.4788	6.9E-04

Eigenvalues computed using Algorithm 1 with $\epsilon = 0.001$ along with the computed residuals r_j .



Added benefit: Avoid oversmoothing, and have better localisation of singular parts.