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Motivation



Data-driven dynamical systems

State x € ) € R4.

Unknown function F: ) — () governs dynamics: x,,,1 = F(xy,)

Goal: Learning from data {x(m),y(m) = F(x(m))}

Applications: chemistry, climatology,
control, electronics, epidemiology,
finance, fluids, molecular dynamics,
neuroscience, plasmas, robotics,
video processing, etc.




Koopman Operator K : A global linearization
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Koopman, “Hamiltonian systems and transformation in Hilbert space,” Proc. Natl. Acad. Sci. USA, 1931.
Koopman, v. Neumann, “Dynamical systems of continuous spectra,” Proc. Natl. Acad. Sci. USA, 1932,



Koopman Operator K : A global linearization

C

X
[ g(Xg) g(x3)
4 °
] g:0- ¢ —
: -1
.,' “observable” ®g(x1)
L
X3 ¢ g(x0) 9(Xn)

* K acts on functions g: Q — C, [Kg](x) = g(F(x)).

* Function space: g € L*(Q, w), positive measure w, inner product {,-).

Koopman, “Hamiltonian systems and transformation in Hilbert space,” Proc. Natl. Acad. Sci. USA, 1931.
Koopman, v. Neumann, “Dynamical systems of continuous spectra,” Proc. Natl. Acad. Sci. USA, 1932.



Koopman Operator K : A global linearization

X C

o 9(x2) g9(x3)

4 )

| g:Q-C e,
: -

.,' “observable” ®g(x1)
o

X3 ® g(xo) 9(xn)

* K acts on functions g: Q — C, [Kg](x) = g(F(x)).

* Function space: g € L*(Q, w), positive measure w, inner product {,-).
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Koopman, “Hamiltonian systems and transformation in Hilbert space,” Proc. Natl. Acad. Sci. USA, 1931.
Koopman, v. Neumann, “Dynamical systems of continuous spectra,” Proc. Natl. Acad. Sci. USA, 1932.
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Koopman operators are
classical in ergodic theory.

y ’\ N\ : Peter Walters
@ o An Introduction
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—
§{ —
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Why all this sudden interest?

C., “The Multiverse of Dynamic Mode Decomposition Algorithms,” Handbook of Numerical Analysis, 2024.
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New Papers on | Koopman operators dare
Koopman Operators classical in ergodic theory.
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5000 <
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A xg F F F X,
1000 v
0 Methods!
% 2§ 2 % £ § g % 2 § 2 Why all this sudden interest?
—number of papers Data-driven
MARVEL STUDIOS Deal with nonlinearity...
doubles every 5 yrs ‘.
C., “The Multiverse of Dynamic Mode Decomposition Algorithms,” Handbook of Numerical Analysis, 2024.



Linear is much easier?

e Suppose 0 = R% F(x) = Ax,A € R¥*% A =VAV L.
e Set & =V 1y, o~
gn — V_lxn — V_lAnxO — AnV_le — Anfo

* ForwTA = Aw, set g(x) = w'x,

Trivial dynamics!

[ g](x) = wlAx = 2g(x) ‘Eigenfunction ‘
[Kg™](x) = W' Ax)"= A" g™ (x)

Much more general (non-linear and even chaotic F) ...

11
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Koopman mode decomposition

eigenfunction of K generalized

J " eigenfunction of K
9= Y e+ [ deglds

eigenvalues 4; T
T
g0 = K"l = D b es, )+ [ e (xo) dO
eigenvalues 4; —TT

Encodes: geometric features, invariant measures, transient behavior,
long-time behavior, coherent structures, quasiperiodicity, etc.

GOAL: Data-driven approximation of K and its spectral properties.

* Mezi¢, “Spectral properties of dynamical systems, model reduction and decompositions,” Nonlinear Dynamics, 2005.



Our setting — unitary evolution

[7gl(x) = g(F(x)), g E€L*(Q w)
g(xn) = [K"g](xp)

Assume: System is measure-preserving (I preserves w)
< [Xgll = ligll Gsometry) /= |
= Spec(K) C {z:|z| < 1}

(NB: consider unitary extensions of K via Wold decomposition.)

Spectral measure
(see later) on boundary
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Our setting — unitary evolution

[Kgl(x) = g(F(x)), g€ L*(Q w)
() = [K"g] (x,) I-

Assume: System is measure-preserving (I preserves w)

Geometric
S || Kgll = isometr Numerical
1%¢gll = ligll (isometry) Numercl
L s :}C*:K: =] Structure-Preserving
? lgngth Differential
r ordinary virierentia
= Spec(¥) € {z:|z| < 1} . Equations
. Lubich
(NB: consider unitary extensions of K via Wold decomposition.) e
WANT: Approximation of K that preserves |||| i

(e.g., stability, long-time behavior etc.)...
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* Reynolds number = 6.4 x 10*
 Ambient dimension (d) = 100,000

e b, et Ty (velocity at measurement points)
plate / *PIV data provided by Maté Sz6ke (Virginia Tech)

Time-avg. K.E.
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 Baddoo, Herrmann, McKeﬂjtz, Brunton, “Physics-informed dynamic mode
*  Williams, Kevrekidis, Rowley “A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition,” J. Nonlinear Sci., 2015.

%ﬁposition (piDMD),” preprint.
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Shift example (on £4(Z))

€ — €j_1

Jordan block!
\ truncate ( _ \
/discretize 0 1

E CNXN

b \ 0

* Spectrum is unit circle. * Spectrum is {0}. A

* Unitary evolution. * Nilpotent evolution Caution
e Spectrum is stable. e Spectrum is unstable.

Lots of Koopman operators are built up from operators like these!
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The most important slide

E CNXN

* Spectrum is {0}.
* Nilpotent evolution
e Spectrum is unstable.

polar
decomposition

Circulant matrix

E CNXN

e Spectrum converges to unit
circleas N —» oo,

* Unitary evolution.
e Spectrum is stable.



The mpEDMD algorithm
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Extended Dynamic Mode Decomposition (EDMD)

Given dictionary {1, ...,y } of functions ;: Q - C, L{X(m),y(m) _ F(x(m))}M 7
m=1

—

g 1Wmbj X : . : . . :
| | k WM

YD) e P D) Y1) o (D)

Wy % ¥y L
(Kpr ) = My Wit () () (WD) D) (wy YD) - 1/)N(y(1))>
kWil = Lm=1Wm j(xtm Kly) = : : : :
[ (M) 1/)1(X(M)) wN(x(M)) Wu l/J1(3’(M)) l/JN()’(M))
_ Wy % 7y L

. * -1 * NXN
K K W W €

Schmid, “Dynamic mode decomposition of numerical and experimental data,” J. Fluid Mech., 2010.

Rowley, Mezi¢, Bagheri, Schlatter, Henningson, “Spectral analysis of nonlinear flows,” J. Fluid Mech., 2009.

Kutz, Brunton, Brunton, Proctor, “Dynamic mode decomposition: data-driven modeling of complex systems,” SIAM, 2016.
Williams, Kevrekidis, Rowley “A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition,” J. Nonlinear Sci., 2015.
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feature map Least-squares route

N\

Y(x) =[P(x) ... Yy(x)], g = zgjl/)j =Yg € span {Yy, ..., Py}

j=1

=2

min U max [[Kg](x) - $()Kg|? dw(x) = f ||w<F<x>>—w<x>K||%dw<x>}

KeCNXN lgll.=1

(m)
quadrature L{x ,y(m) _ F(x(m))}M
m=1

—_——

min Wi || ¥ (™) — w(x<m>)n<<||§

KeﬂNXN

=

1

3
I
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A simple alteration
G=Y'WW, Gy = (Yr))

Measure-preserving: ||[Wg|l = [[WYKgll, I¥gll* ~ g*Gg, IYKgll* = g"K"GKg
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A simple alteration
G=Y'WW, Gy = (Yr))
Measure-preserving: ||Wg|l = [WKgll, [|Wgll* = g"Gg, [IYKgll* ~ g"K*GKg

Enforce: ¢ = K*'GIK
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A simple alteration
G=Y'WW, Gy = (Yr))
Measure-preserving: ||Wg|l = [WKgll, [|Wgll* = g"Gg, [IYKgll* ~ g"K*GKg

Enforce: G = K*GIK

quadrature

orthogonal
/ Procrustes
N problem
g, D w0 )6 =W

G=KGRyn=1



The mpEDMD algorithm

Algorithm 4.1 The mpEDMD algorithm

Input: Snapshot data X € C™M and Y € C™M | quadrature weights {w,,}*_,, and a

dictionary of functions {; }?le.

. Compute the matrices ¥y and ¥y and W = diag(wq,...,wyr).

m=1>

. Compute an economy QR decomposition W'/?¥ y = QR.,, where Q € CM*N, R € CNXV,

1
2
3: Compute an SVD of (R™1)*®: W!/2Q = U, ZU3.
4

. Compute the eigendecomposition UyU7 = VAV* (via a Schur decomposition).

5: Compute K =R Uy UIR and V = R V.
Output: Koopman matrix K with eigenvectors V and eigenvalues A.

Some initial properties:

VN — Span {1/11; ""l/}N}
:PVN:LZ(.Q., C()) - VN

orthogonal projection

* AsM — oo, EDMD: ?VN%.’P;N, MmPEDMD: unitary part of polar decomp. of PVNKIP;N.

* Orthogonal Procrustes = constrained total least squares = better stability to noise!




Convergence theory

Key ingredient: unitary discretization.

25



Spectral measures

White light contains a continuous spectra

Spectrum of Solar Radiation (Earth)

UV | Visible| Infrared »

i Sunlight without atmospheric absorption

1.5

5778K blackbody

Often interesting to look at

H,0 Sunlight at sea level
the intensity of each wavelength

Atmospheric
absorption bands

0.5]

Irradiance (W/m2/nm)

250 500 750 1000 1250 1500 1750 2000 2250 2500

Wavelength (nm)
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Spectral measures — diagonalisation

* Fin.-dim.: B € C"*", B*B = BB™, orthonormal basis of e-vectors {vj};;l

n
p— . .*
J=1 _

U,

Bv =

. ]

* n
Eﬂjvjvj v, Vv € C
J=1

* Inf.-dim.: Normal Operator L: D(L) = H . Typically, no basis of e-vectors!
Spectral theorem: (projection-valued) spectral measure £

g:

f 1dEQD)
Spec(L) |

Y,

Lg

Spec(L)

* Spectral measures: u,(U) = (£(U)g, g) (llgll = 1) probability measure.



Simple way to understand spectral measures

moments Uy probability measures on T

1 1
fig(n) ——Zﬂf/l dug(4) - (K"g,9)
T

A = exp(if) so Fourier coefficients in disguise.

Characterize forward-time dynamics and give back Koopman mode decomposition.

28
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Convergence of projection-valued measures
N

This assumption
cannot be dropped

dCC:N,M (/1) — Z vj U;G5(/1 o A])d/‘[ in general!

J=1

Theorem: Suppose that the quadrature rule converges, K is* unitary,
lim dist(h,Vy) =0 for any h € L*(Q,w). Then for any continuous

N —>o00

function @: T - C, g € L*(Q, w) and gy € CV with lim lg — Wgnll =0,

lim limsup [[r p(A1)dEN)g —‘PfT @DdEN (D gn|| =0

N—-o M0

K: mpEDMD matrix

A;: eigenvalues of K

Key ingredients:

v;: eigenvectors of K

 Strong convergence of Galerkin approximation. Vy = span {{y, ..., Yy}

* Polar decomposition = normal operators (allow Stone-Weierstrass).
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Convergence of scalar-valued measures

. . 2 Captures weak
'u'(gN,M)(U) =g GgN,M(U)g — Z vj Ggl convergence of

measures

f A;€U /
Wy (u,v) = sup <] @(A)d(u —v)(A) : @ Lipschitz 1}
T

\

Theorem: Suppose quad. rule converges, Al’im dist(h,Vy) = 0 forany h €
L%(Q, w). Then for g € L?(Q, ) and gy € CN with lim lg — Wgnll =0,

lim limsup W; (,ug,,ugv'M)) = 0.

N—-oo  peo

— N—1 —
fVy =19, Xg, .., K g}and g = Wg, then K: mpEDMD matrix
lOg(N) A;j: eigenvalues of K
Matching - | : (N,M) < j
autocorrelations! IIEI_S);IOP W1 ('ug’ [.lg ~ N . v;: eigenvectors of K
I Vy = span {4, ..., Py}
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Approximate all the spectrum

Specap () = {A: Juy, lluyll = 1, Tim [|(K — Dl = 0} = Spec(#) N T

(This is all the spectrum if K unitary.)

Theorem: Suppose quad. rule converges, Al,im dist(h,Vy) = 0 forany h €

L*(Q, w). Then

lim limsup  sup  dist(4, Spec(K)) = 0.
N—oo Moo A€Spec,p (X)

K: mpEDMD matrix
A;j: eigenvalues of K

v;: eigenvectors of K
Vy = span {Y4, ..., Yy}
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Approximate all the spectrum

Specap () = {A: Juy, lluyll = 1, Tim [|(K — Dl = 0} = Spec(#) N T

(This is all the spectrum if K unitary.)

Theorem: Suppose quad. rule converges, Al,im dist(h,Vy) = 0 forany h €

L*(Q, w). Then

lim limsup  sup  dist(4, Spec(K)) = 0.
N—oo Moo A€Spec,p (X)

. . K: mpEDMD matrix
Are there spurious eigenvalues? A, eigenvalues of KK

v;: eigenvectors of K
Vy = span {Y4, ..., Yy}
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Residuals = avoid spurious eigenvalues!
G = LIJX*I/I/LI’I)(, A= "IJX*W"IJY

(¥ - DPgll*

KK =1

(K —D¥g, (KX —1)¥g) )
]\}Il_r)réo g |1+ 226G — 14— 1A% g

Suitable conditions = Allim Irel‘l/n 1K — DWgll/ llgll = dist(4, Spec,p (X))
—> 00 g N

Two methods:

Specap(H) = {2: uy, lluyll = 1, lim I(K = Ayl = 0}
* Clean up procedure for tolerance ¢. L

* Local minimization algorithm converges to Spec,,(X). Generalizes to general X.

* C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” CPAM,2024.
e C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.



Numerical examples
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Lorenz system

x1 = 10(xy — x41), X, = x1(28 — x3) — x5, X3 = X1X, — 8/3 x3, A =

g(xq1,%x5,x3) = ¢ tanh((xyx, — 3x3)/5), Vy = span{g, Kg, ...,%N‘lg}
Cdf: F,(0) = u({exp(it) : —m < t < 6})

F 0 (6 F' 00 (0 (V)
| o0 (0) | oo (9) 0 Wi (11, 1)
' ' ‘ ' 107 ¢ - '
107}
0.5} 1 05} j \\
1072¢ O(\; N
; / ~
3 /I/)
. . 1 : l l 10° ' '
0 P 0 5 0 2 0 5 10° 10" 102 10°

0 0 N

0.1
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Nonlinear pendulum

X1 = X, X, = —sin(xy), O =[-7,m]per X R, A = 0.5
g(x) = exp(ixy) x5 exp(—x5/2), Vy = span{g, Xg, ..., X*°g}

mpEDMD, \ ~ e?™/4

0
0.2
= -0.4

1-0.6

EDMD, \ ~ ei37f/04

— 0.2
—
-0.4
v( \ ‘ ‘
)

1-08
1 E

112




0.5

Im(\)

-0.5

Nonlinear pendulum

Noise free 10% Gauss. noise for Wy,

T

1 1t
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0.8

0.7+
0.6+
0.5+
0.4+
0.3+
0.2¢

0.1r

Robustness to noise: Gauss. noise for Wy, Wy

Mean residual (EDMD)

s

e V[ = 200

e V] = 250 | 7

e V1 = 300

M, =350 -

M, =400

e V] = 450

M; = 500

0.2

0.4

0.6

0.8

Noise level

0.8

0.7

0.6

0.5

0.4r

0.3

0.2

0.17¢

Mean residual (mpEDMD)

e [\[1 = 200
. V1 = 250
s V[ = 300
]1/[1 = 350
M, = 400
e V] = 45()
M; = 500

strongly consistent

estimation

/

0.2

0.4

0.6

Noise level

08 1
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* Reynolds number = 6.4 x 10*
 Ambient dimension (d) = 100,000

e b, et Ty (velocity at measurement points)
plate / *PIV data provided by Maté Sz6ke (Virginia Tech)

Time-avg. K.E.
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 Baddoo, Herrmann, McKeﬂjtz, Brunton, “Physics-informed dynamic mode
*  Williams, Kevrekidis, Rowley “A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition,” J. Nonlinear Sci., 2015.

%ﬁposition (piDMD),” preprint.
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Turbulence statistics unstable

stable but
Flow mpEDMD piDMD wrong EDMD

time=0.001000 time=0.001000 time=0.00100

40 ) 10 407 s.v-‘ 10 407 s.v-‘ 10
8 ‘ 8 ‘ 8
35 - 1 = 1
6 g < 6 P < 6
~/~30M . N3 = b ~~30% . ': h
8 25 % 2 8 25 . I 3 2 8 25 I 3 . 2
a a L ~0
20 9 20+ ¢ 0 ? E 20| ¢ 0
° . o L 8 °
\-i—l'/ . ’ . =5 \-‘-"/ . ’ . 2 . . -2 \-—/ . ’ . 20
15 PN 15 P ‘ 15  JNLY
g b 4 g o‘.‘ b 14 c‘,“ et 4 m o‘.‘ b, T 24
10 S8 1 10F 1 1 10 ¢ 1
‘ -6 -6 \ -6 -6
5r ] -8 54 j‘ 8 5 } 8 54 j‘ 8
e ud el E .10 —zin ad = L (- .10 e e — — -10 . ud = L (- .10

x107 «10-3

1260 1270 1280 1290 1300 1310 1320 1260 1270 1280 1290 1300 1310 1320 1260 1270 1280 1290 1300 1310 1320

x107%

10°

kr (mm™')




Summary : Polar decompositions + DMD

* Convergence of spectral measures, spectra,
Koopman mode decomposition.

* Long-time stability, improved qualitative behavior.
* Increased stability to noise.

* Simple, flexible: easy to combine
with any DMD-type method!

https://github.com/MColbrook/Measure-preserving-Extended-Dynamic-Mode-Decomposition
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Summary : Polar decompositions + DMD

onvergence of spectral measures, spectra,

Koopman mode decomposition.
Long-time stability, improved qualitative behavior.
Increased stability to noise.

Simple, flexible: easy to combine
with any DMD-type method!

https://github.com/MColbrook/Measure-preserving-Extended-Dynamic-Mode-Decomposition
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Optimization and Learning with
Zeroth-order Stochastic Oracles

By Stefan M. Wild

M athematical optimization is a foun-
tional technology for machine
learning and the solution of design, deci-
sion. and control problems. In most optimi-
zation applications, the principal assump
tion s the_availability of at least the

sequence is that material properties are
only available via in situ and in operando
characterization. In the context of optimiza
tion, this scenario is called a “zeroth-order
oracke™ — our knowledge about a particular
system or property is data driven and limited
by the black-box nature of measurement
procurement. An_additional challenge is

An optimization solver specifies a particular
composition of solvents and bases, an oper-
ating temperature, and reaction times; this
combination s then run through a continu-
ous Now reactor, The material that exils the
v characterized

reactor is then automati

Read more in

derivatives are not available [S).

Given the pervasiveness of sensors
and other experimental and observational
data, these types of Settings are arising in
increasingly more science and engineering
domains. For example. consider the ongoing
search for novel m

erials for encrgy stor-
age, In order o create viable new materi-
als, we must move beyond pure theory and
account for the actual processes that occur
during materials synthesis. A necessa

Nonprofit Org
USS. Postage
PAID
Bellmawr, NJ

variables and & is a random variable (c.g., 3
variable that s associated with the stochastic
synthesis and measurement processes). The
zeroth-order stochastic oracle s /(x:€). We
can specify values for the random vari
only in certain problem settings; in oth-
ers—such as the laboratory environment in
Figure 1—doing s0 is impossible

Figure | displays an instantiation of

tion setting in 4 chem-

By Steven L. Brunton
and Matthew J. Colbrook

namical systems, which describe the
evolution of systems in time. are ubiq
uitous in modern science and engineering
They find use in a wide variety of applica
tions. from mechanics and cireuits 10 cli-
matology. neuroscience, and epidemiology
Consider a discrete-time dynamical system
with state @ in 4 st
is governed by an unknown
nonlinear function F:§2—¢

¢ spuce C R’

The classical. geometric way lo analyze
such systems—which dates back 10 the

seminal work of Henri Poincaré—is based

through an inline nuclear magnetic reso
nance detector that illuminates properties
of the synthesized materials. These sto-
chastic, zeroth-order oracle outpuls return

10 the solver in & closed-loop setting that

Optimization on

solver ParVi00 .

Resilient Data-driven Dynamical Systems
with Koopman: An Infinite-dimensional
Numerical Analysis Perspective

on the local analysis of fixed points. per
odic orbits, stable or unstable manifolds.
and so forth. Although Poincaré’s frame-
work has revolutionized our understandi
of dynamical systems. this approach has at
least two challenges in many modern appli-
cations: (i) Obtaining a global understand-
of the nonlinear dynamics and (ii) han
dling systems that are either too complex
to analyze or offer incomplete information
about the evolution (ic.. unknown, high
dimensional, and highly nonlinear )
Koopman operator theory. which origi
nated with Bernard Koopman and John
von Neumann [6. 7), provides a powerful
alternative 1o the classical geometric view
of dynamical systems because it addresses
nonlinearity: the fundamental issue that
underlies the aforementioned challenges.

(a) Rel. Error=?

A = e011i
1= e051

Rel. Eror=?

R

g

Rel. Error

ResDMD

Rel. Error )19¢

Figu

sted via existing

Matthew Colbrook

We lift the nonlinear system (1) into an infi
nite-dimensional space of observable func
tions 42— C via a Koopman opecator K

Kylz,)=glz, )

The evolution dynamics thus become lin-
ear, allowing us to utilize generic solu
tion techniques that are based on spec-
tral decompositions. In recent decades.
Koopman operators have captivated
researchers because of emerging data-driv
en and numerical implementations that
coincide with the rise of machine learning
and high-pesformance computing (2]

One major goal of modem Koopman
operator theory is to find a coordinate
transformation with which a linear system
may approximate even strongly nonlinear
dynamics; this coordinate system relates to
the spectrum of the Koopman operator. In
2005. Igor Mezié introduced the Koopman

mode decomposition [S]. which provided a
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