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Koopman operators and
a programme on the foundations of infinite-
dimensional spectral computations

Matthew Colbrook (m.colbrook@damtp.cam.ac.uk)

University of Cambridge + Ecole Normale Supérieure

C., Townsend, “Rigorous data-driven computation of spectral
properties of Koopman operators for dynamical systems”

C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition: Robust and
verified Koopmanism”

http://www.damtp.cam.ac.uk/user/mjc249/home.html: slides, papers, and code
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Data-driven dynamical systems

e State x € Q € RY, unknown function F: Q — Q governs dynamics
Xn+1 = F(xn)
M
* Goal: Learn about system from data {x(m),y(m) = F(x(m))}m=1

e E.g., data from trajectories, experimental measurements, simulations, ...
* E.g., used for forecasting, control, design, understanding, ...

* Applications: chemistry, climatology,
electronics, epidemiology, finance,
fluids, molecular dynamics,
neuroscience, plasmas, robotics,
video processing, ...
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Data-driven dynamical systems

Carleman linearisation: Carleman, "Application de la théorie des équations intégrales linéaires aux systémes
d'équations différentielles non linéaires,"” Acta Mathematica, 1932.

Filtering: Kalman, “A new approach to linear filtering and prediction problems,” Journal of Basic Engineering, 1960.
Ulam’s method: Ulam, “A Collection of Mathematical Problems,” 1P, 1960.

Model order reduction: Benner, Gugercin, Willcox, “A survey of projection-based model reduction methods for
parametric dynamical systems,” SIAM Review, 2015.

Sparse identification of F: Brunton, Proctor, Kutz, “Discovering governing equations from data by sparse
identification of nonlinear dynamical systems,” Proceedings of the National Academy of Sciences, 2016.

Kernel analog forecasting: Burov, Giannakis, Manohar, Stuart, “Kernel analog forecasting: Multiscale test
problems,” Multiscale Modeling & Simulation, 2021.

Deep learning: Lu, Jin, Pang, Zhang, Karniadakis, “Learning nonlinear operators via DeepONet based on the
universal approximation theorem of operators,” Nature Machine Intelligence, 2021.

Machine learning: Schmidt, Lipson, “Distilling free-form natural laws from experimental data,” Science, 2009.

Can we develop general verified methods?
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Operator viewpoint

* Koopman operator K acts on functions g: Q) — C

[Kgl(x) = g(F(x))
* K is linear but acts on an infinite-dimensional space.

State x xz x xn Non linear
|

Functlons \ \ \ \ Lmear

of state g(x1) (xz) (x3) g(xn)

« Work in L*(Q, w) for positive measure w, with inner product {,-).

e Koopman, “Hamiltonian systems and transformation in Hilbert space,” Proceedings of the National Academy of Sciences, 1931.
e Koopman, v. Neumann, “Dynamical systems of continuous spectra,” Proceedings of the National Academy of Sciences, 1932.
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Why is linear (much) easier?

Dynamics become trivial!

e Suppose F(x) = Ax,A € R%, A = VAV L /
e Set & =V 1y,
€Tl —_ V_lxn —_ V_lAnxO — AnV_le — An€O

e Letw!A = Aw, set p(x) = w'x,

[Ko](x) = wlAx = 1p(x) ‘Eigenfunction ‘

Much more general (non-linear and even chaotic F) ...
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Koopman mode decomposition

eigenfunction of X generalised

J " eigenfunction of K
9= ) e+ | doglo) do

eigenvalues 4; T

T
g0 = K"l = D b es, )+ [ e (xo) dO
eigenvalues 4; —TT

Encodes: geometric features, invariant measures, transient behaviouir,
long-time behaviour, coherent structures, quasiperiodicity, etc.

GOAL: Data-driven approximation of X and its spectral properties.

* Mezi¢, “Spectral properties of dynamical systems, model reduction and decompositions,” Nonlinear Dynamics, 2005.
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Koopmania*: a revolution in the big data era

Number of New Papers on
“Koopman Operators”
6000

~35,000 papers over last decade. /

5000
Very little on convergence guarantees or verification. 4000 /\/

3000

Why is this lacking?

2000

X

Dealing with infinite dimensions is notoriously hard ... 109

2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021

—number of papers

doubles every 5 yrs

*Wikipedia: “its wild surge in popularity is sometimes jokingly called ‘Koopmania’”
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Can we compute spectral properties ininf. dim.?
kll k12

K "=" k:21 k:22 : zgzlpl ZZ(zzlkﬂgl)‘/’j

ba5|s expansion of g: 1 - C

Finite-dimensional = Infinite-dimensional
Eigenvalues of B € C"*" = Spectrum, Spec(XK)
{,11. e C: det(B — Aj[) — 0} — {1 € C: KX — Al isnotinvertible}

“Most operators that arise in practice are not presented in a representation in which
they are diagonalized, and it is often very hard to locate even a single point in the
spectrum. Thus, one often has to settle for numerical approximations [...] Unfortunately,
there is a dearth of literature on this basic problem and, so far as we have been able to
tell, there are no proven [general] techniques.” W. Arveson, Berkeley (1994)
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Four key challenges

ki1 K1z
K "="|ky k,, - | naive:truncateto K € C"*NK + compute e-values

1) Too little: Miss parts of Spec(XK)
2) Too much: Approximate spurious modes A & Spec(XK) - “spectral pollution”

3) Lose continuous spectra.

4) Verification: Which part of an approximation can we trust?

* Arveson, “The role of C*-algebras in infinite dimensional numerical linear algebra,” Contemp. Math., 1994.
* Davies, “Linear operators and their spectra,” CUP, 2007.
* Brunton, Kutz, “Data-driven Science and Engineering: Machine learning, Dynamical systems, and Control,” CUP, 2019.
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Example of “too much” (spectral pollution)

B: perpendicular

(1] ‘l [ [ L] L] ”
magnetic field Naive method Infinite-dimensional” method
. m 1r 1 = S-BTET
quasicrystal = ol
.'6,00.8— 0.8
C
8 0.7 - 0.7
-";; 06 06
% o5t Spectral
G= pollution
Q
..... -IG-S 03 0.3
C 0.2 0.2
o0
M M M M @© 0.1 0.1
Infinite matrix: discrete = e . N
Schrodinger operator Approx. of spectrum (energy) Approx. of spectrum (energy)
Spectral pollution Convergent computation
No error control Error control

 C., Roman, Hansen, “How to compute spectra with error control,” Physical Review Letters, 2019.
* (., Horning, Townsend, “Computing spectral measures of self-adjoint operators,” SIAM Review, 2021.
 Johnstone, C., Nielsen, Ohberg, Duncan, “Bulk Localised Transport States in Infinite and Finite Quasicrystals via Magnetic Aperiodicity.”



Example of “too much” (spectral pollution)
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Volume 63 Number 3
| P HYSICAL £=200J/"  x107  t=500J"1
qL REVIEW 4
. LLETTERS
Articles published week ending 28 JUNE 2019
a publication of the
x Society for Industrial and Applied Mathematics

E.g., new states and phenomena:

In{
bulk localised transport states

Sc

Fublished by ?‘ég Volume 122, Number 25 E.g., Cco ntinuous SpECtra
of graphene

American Physical Society

E.g., ground state of quasicrystal

C., Roman, Hansen, “How to compute spectra with error control,” Physical Review Letters, 2019.

C., Horning, Townsend, “Computing spectral measures of self-adjoint operators,” SIAM Review, 2021.
 Johnstone, C., Nielsen, Ohberg, Duncan, “Bulk Localised Transport States in Infinite and Finite Quasicrystals via Magnetic Aperiodicity.”
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£=200/" X107 t-

.l

Example of “too much” (spectral pollution)

Volume 63 Number 3

PHYSICAL
REVIEW
[LLETTERS

REVIEW

28 Junk 2019
a publication of the
Society for Industrial and Applied Mathematics

Articles published week ending

In{

Sc 2o
Now back to data-driven dynamical systems ...

C., Roman, Hansen, “How to compute spectra with error control,” Physical Review Letters, 2019.

C., Horning, Townsend, “Computing spectral measures of self-adjoint operators,” SIAM Review, 2021.
 Johnstone, C., Nielsen, Ohberg, Duncan, “Bulk Localised Transport States in Infinite and Finite Quasicrystals via Magnetic Aperiodicity.”
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Build the matrix: Dynamic Mode Decomposition (DMD)

Given dictionary {1/)1, ) ¢NK} of functions 1;: (1 - C ‘ {ox (M), (M) = F(X(m))}Zzl

b (D) o Py D)\ [y P (x®) Py (xD) )
: : : : > (l/)kr l/}])
1/J1(x(M)) ¢NK(x(M)) Wy ¢1(X(M)) wsz(x(M)) L Approximate

—

G : — K by

P (xD) e leK(x(l)) ' wq P y®) ¢NK(Y(1)) K = G—1K1 e CNkXNk
: : : : ~ (K, ;)
1/’1(9C(M)) l/JNK(x(M)) Wy l/J1(y(M)) 1/JNK(Y(M))

_]k

K

Open problems: 1) too little, 2) too much, 3) lose continuous spectra, 4) verification.

* Schmid, “Dynamic mode decomposition of numerical and experimental data,” Journal of fluid mechanics, 2010.

e Kutz, Brunton, Brunton, Proctor, “Dynamic mode decomposition: data-driven modeling of complex systems,” SIAM, 2016.

* Williams, Kevrekidis, Rowley “A data-driven approximation of the Koopman operator: Extending dynamic mode
decomposition,” Journal of Nonlinear Science, 2015.
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Key idea: Residual DMD (ResDMD)

P (D) o Py D\ fwy P (D) Py (D)
: : : : ~ <l/)k:1/)j)
¢1(x(M)) l/JNK(X(M)) Wy ¢1(x(M)) l/JNK(X(M)) "
]
_ G -
P (x) U )\ fwy | L) Y ) N Approximate
: . : . : " : ~ kWi
PrEODY oy (00 W) \ ) ]| T KandK*K
- -]
_ K -
YD) Yy DN [y YD) Py, YD)
: : : s ~ (Ky, Kp;)
i 1/J1(V(M)) 1/JNK(3’(M)) WM 1/J1(Y(M)) wNK(y(M)) ki
K,

Residuals: g = Z?’fl g, 1Kg —Agll* ~ g"[K, — AK," — AK; + |A|°Glg

C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,”
Communications on Pure and Applied Mathematics, under review.

C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” Journal of Fluid Mechanics, under review.
* Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition (MATLAB and Python)
C., “Rigorous and data-driven Koopmanism,” Proceedings of the XXI Householder Symposium (invited plenary).



https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
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ResDMD: avoiding spectral pollution
g*|K, — AK," — AK; + |11%G|g
g'Gg

res(4, g)* =

Algorithm:

1. Compute K = G~1K; € CNk*NK jts eigenvalues and eigenvectors.
2. For each eigenpair (4, g), compute res(4, g).

3. Discard pairs with res(4, g) > ¢ (input tolerance &).

Theorem (no spectral pollution): Suppose the quadrature rule converges.
Let A, denote the eigenvalue output of above algorithm. Then

lim sup max|[|(X — D)7 1 <¢
M—oo AE€EAN
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ResDMD: avoiding spectral pollution
g*|K, — AK," — AK; + |11%G|g
g'Gg

res(4, g)* =

Algorithm:

1. Compute K = G~1K; € CNk*NK jts eigenvalues and eigenvectors.
2. For each eigenpair (4, g), compute res(4, g).

3. Discard pairs with res(4, g) > ¢ (input tolerance &).

Theorem (no spectral pollution): Suppose the quadrature rule converges.
Let A, denote the eigenvalue output of above algorithm. Then

lim sup max|[|(X — D)7 1 <¢
M—oo AE€EAN

BUT: Typically, does not capture all of spectrum!
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ResDMD: computing pseudospectra and spectra

Spec.(K) = U Spec(K + B), lgiH)I Spec.(K) = Spec(K)

IBll<e
Algorlthm: First convergent method for general X
1. Compute G, K;, K, € CNk*Nk,
2. For z, in comp. grid, compute 7, = min  res(zg, g), corresponding g, (gen. SVD).
9=X3 18
3. Output {z,: 7, < &} (approx. of Spec.(K)), {gx: T < €} (e-pseudo-eigenfunctions).

Theorem (full convergence): Suppose the quadrature rule converges.
 Error control: {z;: 7, < &} € Spec.(K) (as M — o)
* Convergence: Converges locally uniformly to Spec.(¥) (as Ny — o)

NB: Local optimisation strategy shrinks &€ to compute Spec(XK)
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Example: non-linear pendulum
X1 = Xy, X, = —sin(xy), Q=[-mr]XR

Ng =3
151

it

05+

0r

Im(\)

-0.5¢

-1 F

-1.5
15 A -0.5 0 0.5 1 1.5

Re(\)
Computed pseudospectra (¢ = 0.25). Eigenvalues of IK shown as dots (spectral pollution).
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Example: non-linear pendulum

A = exp(0.49327)

Colour represents complex argument, constant modulus shown as shadowed steps.
All residuals smaller than € = 0.05 (made smaller by increasing N).
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Large d (recall Q0 € R%)

Error control — Rigorously verify learnt dictionary {1/)1, e leK}
E.g., kernel methods, neural networks, etc.

Deal with high-dimensional state-space (), robust and scalable...
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Example: pressure field of turbulent flow

Inlet

Periodic

conditions
S »/, Blade Outlet

 Reynolds number = 3.9 x 10°
* Ambient dimension = 300,000
(number of measurement points*)

*Raw measurements provided by Stephane Moreau (Sherbrooke)

404 mm
Outlet
Rel. Error =7 Rel. Error = ? Rel. Error =7
g J 0.25 A — O7ll o
2'25 Z\VI'acoustic source? "

-0.08
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Example: pressure field of turbulent flow

Inlet

Periodic

conditions
S »/, Blade Outlet

 Reynolds number = 3.9 x 10°
* Ambient dimension = 300,000

(number of measurement points*)

*Raw measurements provided by Stephane Moreau (Sherbrooke)

404 mm

Outlet

Rel. Error < 0.0128 Rel. Error < 0.0196

1 . . 0.08
— ,0.511 0.25 * — ,0.711
A=c¢e L A=c¢e€
0.2 0.06
0.6 turbulent
. fluctuations 0-15 0.04
104 Lot
0.02
§ 0.2 1 10.05
|
4 O : 4 0 T 0
14 -0.2 é 1-0.05
4 -0.02
7 -0.4 101
i -0.04
0.6 i -0.15
s -0.2 -0.06
-0.8
g -0.25
-1 -0.08

acoustic vibrations
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Example: laser-induced plasma

b) 7 = 10 us d) 1 = 20 us
true —residual ordering
o modulus ordering 1 —modulus ordering
o residual ordering | | l
uy 107
l n
| =
i AAAAAAAAAAAAAAAAAAAAAAAAA 4 g 1072 ¢
| L [
: L . .
| ) L\ extremely efficient
50t | shockwave e L\ :
| . 107 ¢ compression
| reconstruction 5
1 | from,40 modess
-100 104 . . .
0 2 4 6 8 0 50 100 150 200

-5
time (s) x10 Number of modes
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Setup for continuous spectra

Now assume system is measure preserving
(e.g., Hamiltonian system, ergodic system, . . .)

= K'K =1
Spectrum lives inside unit disk.

(For those interested: we consider canonical unitary extensions.)
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Spectral measures — diagonalisation

n
* Fin.-dim.: B € C™*", B*B = BB, 0.n. basis of e-vectors {Uj}j—l
- _ - _
— * — * n
V= z Vv | v, Bv = z/ljvjvj v, Vv € C
j=1 j=1

* Inf.-dim.: Typically, no basis of e-vectors!
Spectral theorem: (projection-valued) spectral measure E

g=f 1AEQ) | g, %g=f AED|g, Vg
Spec(X) Spec(X)

* Example: v, (U) = (E(U)g, g) prob. measures on [—T, | y¢;
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Plemelj-type formula

e = | " edvy(8) _ {((ﬂc_— 29, Kg), if|z] > 1
. el —z —z Yg, (K —-—z"1D"1g), if0<|z| <1
\ ResDMD computes
Pg(eo) _ 1 (1 n 8)2 1 with error control
Zml+ 1+ 8)2 -2+ g)COS(BO) Poisson kernel for
— unit disk

[Pg * vg](HO) = f P.(6p —0)dv,(8) = C, (ewo(l + 8)_1) —Cy (eieo(l + e))
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Example
/“_0 “_LPO PoP1 \
Po —A1&y —QoP1
W = ap1 —0o azp; P3P2
P2P1 —A1P2 —aza, —p3a, "
\ “_A%P3 —@“3 /

a; = (—1)70.950+D/2, p,-=\/1—\aj\2

Generalised shift, typical building block of many dynamical systems.
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Fix Ny, vary €: unstable!

Ng = 40, e = 1.000000

or o o

Im(z)
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Fix €, vary N : too smooth!

25

1.5}

051

N =1,e =0.100000




24/32

Adaptive: new matrix to compute residuals crucial

Ng = 10,e = 0.100000

2 25
1 2|
30 157
E
i
-1r
05
2 0
2 1 0 1 2 3 2 1 0 1 2 3
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But ... slow convergence
Problem: As € | 0, erroris O(& - log(1/¢)) and Nk (&) — oo.

Pointwise error for spectral density

Error due to discretisation
10° ' . -

109

€=0.07 |

mﬂ 1071

10_10 -

' 10-15 I
0
10 0 50 100 150 200

Small N critical in data-driven computations. Can we improve convergence rate?
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High-order rational kernels

mth order rational kernels:

. m B
6—19

KE(Q) —

j:l N

d;

C
] —
72, e —(1+e) 1 e —(1+¢z)

300 = 3 o0 )~ (49 2)]

J

* Theory providing {cj, d;, Zj}
e Convolution computed with error control.

* O(PNpg) cost for evaluation at P values of 6.

25

m=6 —W |
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Convergence

Theorem: Automatic selection of N (¢)

with O(¢™log(1/¢)) convergence:

* Density of continuous spectrum.
(pointwise and LP)

* |ntegration against test functions.
(weak convergence)

j ’ h() |K. = v,|(0) de
J h(8) dv,(8) + 0(c™log(1/¢))

Also recover discrete spectrum.

Pointwise error for spectral density
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Example: molecular dynamics (Adenylate Kinase)

0 key parts
- )’4 N e All-atom equilibrium simulation
P2 for 1.004 x 107 °s
LID ™ * Ambient dimension = 20,000
s A , (positions and momenta of atoms)
). * 6th order kernel (spec res 107°)
T.\&
CORE | | | . . . ‘ 0.6
0.26 1
0.24 ng ” Cb - 0.5¢
0.22| / 1 0.4
0.2+ : 0.3
0.18 | . 0.2+
0.16 : o1l
0.14 oL
3 2 1 0 1 2 3 -3 2 1 0 1 2 3
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Wider programme: a toolkit

* Infinite-dimensional numerical analysis = Compute spectral properties for the first time.

* Solvability Complexity Index hierarchy = Algorithms realise the boundaries of what’s possible.

* Builds on and extends work of Turing, Smale, and McMullen.

* Extends to: Foundations of Al, PDEs (e.g., time-dep. Schrédinger eq. on L?(R%) with error
control), optimisation (e.g., guarantees), computer-assisted proofs, ...

* C., “On the computation of geometric features of spectra of linear operators on Hilbert spaces,” FOCM, under revisions.

* C., “Computing spectral measures and spectral types,” Communications in Mathematical Physics, 2021.

* C., Horning, Townsend “Computing spectral measures of self-adjoint operators,” SIAM Review, 2021.

 C., Roman, Hansen, “How to compute spectra with error control,” Physical Review Letters, 2019.

* C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” JEMS, under revisions.
* C., “Computing semigroups with error control,” SIAM Journal on Numerical Analysis, 2022.

» Software package (MATLAB): https://github.com/SpecSolve for PDEs, integral operators, infinite matrices.

* Smale, “The fundamental theorem of algebra and complexity theory,” Bulletin of the AMS, 1981.

* McMullen, “Families of rational maps and iterative root-finding algorithms,” Annals of Mathematics, 1987.



https://github.com/SpecSolve
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Sample of classification theorems

Increasing difficulty

Error control Spectra of N
l compact operators  Spectral stability
|
[1 Hl HZ H3
0 & Q & Q &
\ A RN X RN X

AZ 22 U HZ ; A3 23 U H3
Time-dependent

G L ..
linear PDEs, e.g.,
za—w = [-V*+ V()] ¢ Spectral gap problem

Spectra of X Continuous spectra of K
Spectra of Schrédinger operators (different regularity assumptions)
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Paradox: “Nice” linear inverse problems where a stable and accurate neural network

for image reconstruction exists, but it can never be trained!

Some Al Systems May Be Impossible to Compute >
New research suggests there are limitations to what deep
neural networks can do

BY CHARLES Q. CHOI | 30 MAR 2022 | 4 MIN READ | [

AVAAAS

EurekAlert!

HOME NEWS RELEASES MULTIMEDIA MEETINGS

NEWS RELEASE 17-MAR-2022

Mathematical paradoxes demonstrate
the limits of Al

Peer-Reviewed Publication
UNIVERSITY OF CAMBRIDGE

GETTY IMAGEEI

YW ewsiounalof the Society for Industial and Appled Mathematics

SidI NEUS

sinews.siam.org

Volume 55/ Issue 4
May 2022

inforntion Gr—TT pUbTE
would violte patiets” privacy and pote-
tially expose them to harm. Similarly, many

Original
Data

Differential Privacy
Preprocessing

Vine Copula
Model

Synthetic
Data

5 can e Cotect ches 0 Ecorsy
mlmnk information and expose research
subjects. “We want (0 generate synthetic
i or public release to replace the origi-
nal data set.” Bei Jiang of the University of
Alberta said. *When we design our frame-
work, we have this main goal in mind: we
want 10 produce the same inference resuls
as in the original data

o cont i i dat, i is
‘one of the deadliest scientific sins, research-
ers can generate syntheric data directly from
original data sets. If the construction process
is done properly. other scientiss can then

Figure 1. I addiion 1o adding rose o
the data set, Sébastien Gambs” differential

the privacy of the people involved. Figure
courtesy of the author.

conclusionsare o diffrent fom wha tey
would have obtained with full acc
orginal raw data — ideally, at east, *

f you want 1o pr
are al a higher e hen You perurb e
data. Bt the utilty will be lowered the more:
you perturb. A better approach is o account
for their risks 10 begin with.”

Unfortunately, malicious actors have aceess
10 the same algorithmic tools as research-
ers. Therefore, protection of
also involves testing synthetc data
the pes o atacks at sch plasersmigh

pracice, this helps one_ really
Undendand e ramdiion etwie o it
privacy parameter and a practcal guarantee.
Gambs sid. In other words, the robustness
of a formal mathematical model i irel-
evant if the model i not well implemented.

o be private yet realistic?” Sébastien Gambs

meetingapp.cai

Extract
h Statistics
n Apply Multiple

Imputation Model

Synthetic
Data

Figure 2. Aesearchers can profect pinvac
by performing a full statistical analysis on

the orgnal data set, then using ¢ missng-
data algorithm called multiple. imputation

to construct a synther

exaclly the same statistical characteristics.

Figure courtesy of the author.

Nonprofit Org
Bellmawr, NJ

dolphia, PA 131042688 USA

SOCIETY for INDUSTRIAL and APPLIED MATHEMATICS

3600 Market Streat, 6th Floor

Proving Existence Is Not Enough:

Mathematical Paradoxes Unravel the Limits
of Neural Networks in Artificial Intelligence

By Vegard Antun, Matthew J.
Colbrook, and Anders C. Hansen

he impact of decp learning (DL, neural
networks (NN), and artificial intelli-
gence (Al) over the last decade has been
profound. Advances in computer vision and
manra language pocsing have yielded
rt speakers in our homes, driving assis-
wnce in our cars, and automated diagnoses
medicine. Al has also rapidly entered sci-
entific computing. Howeser, overwhelming
amounts of empirical evidence [3, 8] suggest
that modem AL s ofen non-robust (unsiable).
may generate hallucinations, and can produce
nonsensical output with high levels of predic-
tion confidence (see Figure 1), These issues
present a serious concem for AT use within
legal frameworks. As sated by the European
‘Commission’s Joint Research Centre, “In
the light of the recent adsances in Al the
serious negative consequences of i use for
U citizens and organisations have led 10
multiple initatves [..] Among the identified
requirements, the concepts of robustness and
explainability of Al systems have emerged
as key elements for a fuure regulation.”™
Robustness and tn orithms lie
at the heart of numerical analysis [9]. The
lack of robustness and trust in Al is hence
the Achills” heel of DL and has become a
serious politial isue. Classical approxima-
tion theorems show that a continuous func-
n can be approximated arbitrarily well
by a NN [3]. Therefore, stable problems
that are described by stable functions can
be solved stably with a NN. These results
inspire the following fundamental question
Why does DL lead to unstable methods and
Al-generated hallucinations, even in sce-
narios where we can prove that stable and
accurate NN exist?

Our min el eveds 3 s e
while stable and a

ably exist, o training

on approximation qualiies of NNs (e.¢
universal approximation) represent only the
first step towards a complete understanding
of modemn Al Sometimes

fesults about the feasible achievements of
mathematics and digital computers.

A similar program on the boundaries of
Alis necessary. Stephen Smale already
‘gested such a program in the 181h problem
on his list of mathematical problems for the
21stcentury: What are the linis of A1? [11],

ug-

See Mathematical Paradoxes o page 4

they even provide overly
optimistic estimates of pos-
sible NN achievemens.

The Limits of Al:
Smale’s 18th Problem
The strong optimism that
surrounds AT i evident in
computer scientist Geoflrey
Hinton's 2017 quote: “They
shoild sop rining rad-
alogists now
i 1S compuraie 0
confidence that surounded
natemats in e ¢
20t ¢ as summed
wpin Do iber's st
ment: “Wir miisen wissen.
Wir werden wissen”
utinon Wil know]
Hilbert  believed  that
‘mathematics could prove or
disprove any satement, and
that there were 10 festic-
tions on which problems
algorithms could solve. The

Hallucinations in image reconstruction
Original image

Instabilities in medical diagnosis
Original Mole

s

Model confidence

Al reconstruction

(b)

Perturbed Mole

Ben i Benign
Malignant (NESSSS) \falignant

Model confidence

seminal contributions  of
Kurt Godel (7] and Alan

7. Falluomations i
i stcal cagnoses. Ta. The

Troge reconstruction and ISTabITeS
e corect, onginal image from the

Turing [12] wrned Hilbert's - 2020 fastil Challonge. 1b. Reconstruction by an artfical intel-

idealism upside down by

establishing paradoxs that  Paluonaton . Domtoscopc mage of a bongn molnocytc

expedited  impossibility

T hapsivewneyorker,
7

. along with the diagr
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Summary

Rigorous + practical data-driven algorithms for spectral properties of Koopman operators.

e Spectra, pseudospectra and residuals of general Koopman operators (error control).
* ldea: New matrix for residual = ResDMD.

» Spectral measures of measure-preserving systems with high-order convergence.
Continuous spectra, discrete spectra and weak convergence.
* Idea: Convolution with rational kernels via resolvent and ResDMD.

* Dealt with high-dimensional dynamical systems.
* ldea: ResDMD to verify learned dictionaries.

Part of a wider programme on foundations of computation and numerical analysis.
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