
Do stable networks with recovery guarantees exist?

Can compressed sensing shed light on neural networks?

Matthew Colbrook
DAMTP, University of Cambridge



Setup
Image x ∈ CN , we are given access to measurements of the form

y = Ax+ e,

where A ∈ Cm×N represents sampling modality, m� N .

Task: reconstruct x from the noisy measurements y.

Without additional assumptions, such as sparsity of x, this
problem is highly ill-posed.

Might try to solve via a solution of

min
z∈CN

‖z‖1 s.t. ‖Az − y‖2 ≤ ν,

or
min
z∈CN

‖z‖1 + ‖Az − y‖22.

Or neural networks...
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A growing problem

Most “state-of-the-art” neural networks are unstable. Now
well-known for image classification:
I Universal small perturbations

[Moosavi-Dezfooli et al., 2017]
I Across different networks [Szegedy et al., 2013]
I Unrecognisable images confidently classified

[Nguyen et al., 2015]



Figure: Source: Explaining and harnessing adversarial examples
[Goodfellow et al., 2014].

BUT can also happen with image denoising/reconstruction...
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A stability test (see [Antun et al., 2019])
Consider a neural network (or in general a map) φ : Cm → CN
which aims to reconstruct the image φ(y) ≈ x from the (noisy)
measurements y = Ax+ e.

Algorithm seeks a vector r ∈ RN such that

‖φ(y +Ar)− φ(y)‖2 is large, while ‖r‖2 is small.

Consider the optimisation problem

r∗(y) ∈ argmax
r

1
2‖φ(y +Ar)− x‖22 −

λ

2 ‖r‖
2
2.

Test aims to locate local maxima by using a gradient ascent
with momentum on

Qφy (r) = 1
2‖φ(y +Ar)− x‖22 −

λ

2 ‖r‖
2
2
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Example
Simple example for the AUTOMAP network, reported in
Nature as a “state-of-the-art” network:

“Furthermore, AUTOMAP reconstructions exhibit superior
noise immunity compared to those from conventional methods,
as quantified by image signal-to-noise ratio and
root-mean-squared error (RMSE) metrics.”

Not so state-of-the-art in terms of stability...

Figure: Stability test for AUTOMAP taken from [Antun et al., 2019],
and where A is a subsampled Fourier transform. Top row: original
image with perturbations. Bottom row: reconstructions using
AUTOMAP.
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Question: Can stability be hard-wired into the networks or,
more generally, methods of reconstruction at all?

This is subtle, preliminary results suggest that this can’t be
done by simply unfolding FISTA on LASSO or Chambolle-Pock
on basis pursuit...
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Solving LASSO with FISTA



Solving basis pursuit with Chambolle-Pock



Neural networks are FANTASTIC approximators!
Consider the following mapping ϕA,ν :M→ CN where

M = {yj}rj=1 ⊂ Cm, r <∞, m < N

given by

ϕA,ν(y) = w, w ∈ argmin
z
‖z‖1 subject to ‖Az − y‖2 ≤ ν.

Theorem ([Pinkus, 1999])
Let ν, δ > 0. If the non-linear function ρ in each layer is
continuous and not a polynomial, there exists a neural network
Φ, depending on A and M, such that

‖Φ(y)− ϕA,ν(y)‖2 ≤ δ, ∀y ∈M.

Also true for single hidden layer networks.
But: need a constructive training model.
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Constructive?

In reality, given approximations {yj,n}rj=1, {φj,n}rj=1 and An
such that:

‖yj,n − yj‖, ‖φj,n − ϕAn,ν(yj,n)‖, ‖An −A‖ ≤ 2−n.

This is what we can store on a computer in real life, models
irrational A etc. Also models a type of numerical stability.

Training set must be

T := {(yj,n, φj,n, An) | j = 1, . . . , r, n ∈ N}.

Can we train a neural network that can approximate Φ based
on the training set T ?

Again, maybe we expect to be able to do this by unfolding
standard (iterative) optimisation algorithms? Like ISTA,
FISTA, NESTA,...
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Theorem (Impossible in general)
Let K > 2, L ∈ N and d be any norm on CN where N ≥ 2. Then there
exists a well conditioned class Ω of elements (A,M), such that we
have the following three conditions. Consider the neural network Φ
from Theorem 1.

(i) There does not exist any algorithm with T as input that produces
a neural network Ψ that approximates Φ on (A,M) ∈ Ω to K
correct digits in the norm d.

(ii) There exists an algorithm with T as input that produces a neural
network Ψ that approximates Φ on (A,M) ∈ Ω to K − 1 correct
digits in the norm d. However, any algorithm producing such a
network will need arbitrary many samples of elements from T .

(iii) There exists an algorithm using L samples from T as input that
produces a neural network Ψ that approximates Φ on (A,M) ∈ Ω
to K − 2 correct digits in the norm d.



It is NOT enough to just “unfold” your favourite algorithm.
Unsurprisingly the theorem tells us extra assumptions need to
be made on the problem at hand.

Theorem also holds for other popular optimisation problems
such as LASSO.

NB: Compressed sensing type results always assume we can
compute the minimiser. Convergence guarantees on iterative
algorithms tend to be given in terms of the objective function
instead.

Questions: Can we solve this type of problem in a stable and
constructive manner? What assumptions do we need?
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A result saying when we can...



Definition (Sparsity in levels)
For r ∈ N, let M = (M1, ...,Mr), where
1 ≤M1 < ... < Mr = N , and s = (s1, ..., sr), where
sk ≤Mk −Mk−1 for k = 1, ..., r and M0 = 0. A vector x ∈ CN
is (s,M)-sparse in levels if

|supp(x) ∩ {Mk−1 + 1, ...,Mk}| ≤ sk, k = 1, ..., r.

We denote the set of (s,M)-sparse vectors by Σs,M.

‖x‖l1w =
N∑
i=1

wi |xi| ,

σs,M(x)l1w = inf{‖x− z‖l1w : z ∈ Σs,M}.



Why is this reasonable?

Figure: An image and its wavelet coefficients, where a brighter colour
corresponds to a larger value.

In practice, if W denotes wavelet transform, expect σs,M(Wx)l1w
to be small if we use wavelet levels.



Definition (Robust nullspace property in levels)
We say that A has the weighted robust nullspace property in
levels (w-RNSPL) of order (s,M) if there exists δ ∈ (0, 1) and
τ > 0 such that for any (s,M)-sparse set S and x ∈ CN ,

‖xS‖l2 ≤
δ√∑
i si
‖xSc‖l1w + τ‖Ax‖l2 .



Some final quantities...

Assume that if Mj−1 + 1 ≤ i ≤Mj then wi = w(j) (i.e. constant
in each level).

λ(w, s) =
∑r
j=1 sjw

2
(j)

minj=1,...,r sjw2
(j)
, η(w, s) =

r∑
j=1

sjw
2
(j).



Theorem (Stable Methods Exist)
Suppose that A has the w-RNSPL of order (s,M). Then, there exists a
(computable1) iterative algorithm φA

n (that can be unfolded as a neural
network with 3n layers) such that the following uniform recovery
guarantee holds. For any x ∈ CN with ‖x‖l2 . 1 and any y ∈ Cm,

‖φA
n (y)− x‖l2 .

λ(w, s) 1
4√

η(w, s)
σs,M(x)l1

w
+ λ(w, s) 1

4 ‖A‖
n

+ λ(w, s) 1
4 ‖Ax− y‖l2 .

For large n, well behaved (effectively small local Lipschitz constant)
near manifold of sparse vectors.

1Discussion of computability beyond scope of talk, but means I can use
the setup T , and everything can be made to work on rationals Q etc.



Example of when this occurs

Sparsifying transform: Haar wavelets with matrix W . Take
sparsity in levels to correspond to wavelet levels.

Definition (Multilevel random sampling)
Let l ∈ N,N = (N1, . . . , Nl) ∈ Nl with 1 ≤ N1 < . . . < Nl,
m = (m1, . . . ,ml) ∈ Nl, with mk ≤ Nk −Nk−1, k = 1, . . . , l, and
suppose that

Ωk ⊂ {Nk−1 + 1, . . . , Nk} , |Ωk| = mk, k = 1, . . . , l,

are chosen uniformly at random, where N0 = 0. We refer to the
set Ω = ΩN,m = Ω1 ∪ . . . ∪Ωl as an (N,m)- multilevel sampling
scheme.
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Case 1: Fourier measurements

U corresponds to the d-dimensional discrete Fourier transform.

We divide the different frequencies into dyadic bands Bk, where
B1 = {0, 1} and for k = 2, ..., r

Bk = {−2k−1 + 1, ...,−2k−2} ∪ {2k−2 + 1, ..., 2k−1}.

In d dimensions set

B
(d)
k = Bk1 × ...×Bkd

, k = (k1, ..., kd) ∈ Nd.

Multilevel random sampling with (mk=(k1,...,kd))rk1,...,kd=1,
|mk| ≤

∣∣∣B(d)
k

∣∣∣.
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Case 1: Fourier measurements
Take measurement A to be subsampled U , change basis to AW ∗
so results stated in terms of σs,M(Wx)l1w which we expect to be
small.

One horrible looking formula...

MF (s,k) =
‖k‖∞∑
l=1

sl

d∏
i=1

2−|ki−l| +
r∑

l=‖k‖∞+1
sl2−2(l−‖k‖∞)

d∏
i=1

2−|ki−l|.

Let εP ∈ (0, 1), r, d ∈ N, N = 2r·d and suppose

mk &MF (s,k) · L,
L = d · r2 · log(m) · log2(sλ(w, s)) + log(ε−1

P ).

Then conditions of theorem met with probability at least 1− εP.
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How to interpret?

I Up to log-factors, equivalent to oracle estimator (as n→∞).
I Number of samples required in each annular region

∑
‖k‖=k

mk &

(
sk +

k−1∑
l=1

sl2−(k−l) +
r∑

l=k+1
sl2−3(l−k)

)
· L.

is (up to logarithmic factors) proportional to sk + exponentially
decaying terms.



Case 2: Binary measurements

U corresponds to Walsh-Hadamard transform with tensor
product basis.

MB(s,k) = s‖k‖∞

d∏
i=1

2−|ki−‖k‖∞|

Theorem then the same but now∑
‖k‖=k

mk & 2ddskL,

and there are no terms from the sparsity levels sl, l 6= k.
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Numerical Example

Figure: Stability test for new networks. Top row: original image with
perturbations. Bottom row: reconstructions.



Conclusions

I Given the last fifty years of inverse problems, stability
should not be overlooked.

I There is likely a rich classification theory, stating limits on
the performance of stable methods - trade-off.

I One such example was presented with explicitly
constructed stable neural networks.

I Further study: can we use these ideas in trained models?
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