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Background

Hilbert space l2(N) with ‖x‖2 =
√∑∞

j=1 |xj |
2, 〈x , y〉 =

∑∞
j=1 xj ȳj

Bounded linear operator T : l2(N)→ l2(N) realised as matrix
t11 t12 t13 . . .
t21 t22 t23 . . .
t31 t32 t33 . . .
...

...
...

. . .


Denote these by B(l2(N)).

Want to compute spectrum (generalistion of eigenvalues)

σ(T ) := {z ∈ C : T − zI not invertible}.

from the matrix elements. What about eigenvectors etc.?



Well Studied

Quantum mechanics, quasicrystals

Figure: Left: Dan Shechtman, Nobel Prize in Chemistry 2011. Right:
Electron diffraction pattern of quasicrystal.

Intensely investigated since the 1950s, still very active today.

Figure: Left: Artur Avila, Fields Medal 2014. Right: Hofstadter butterfly.



Hierarchy of complexity

Definition (Tower of Algorithms)

A tower of algorithms of height k is a family of sequences of functions

Γnk ,...,n1 : Ω→M,

where nk , . . . , n1 ∈ N and Γnk ,...,n1 are “algorithms”. Moreover,

σ(T ) = lim
nk→∞

... lim
n1→∞

Γnk ,...,n1(T ).

Definition (Solvability Complexity Index (SCI))

Solvability Complexity Index, SCI(σ,Ω) is the smallest integer k for
which there exists a tower of algorithms of height k . If no such tower
exists then SCI(σ,Ω) =∞.
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Example Results

1 General spectral problem has SCI = 3.

2 Self-adjoint/Normal spectral problem has SCI = 2.

3 Compact spectral problem has SCI = 1 but no error control.

4 Splitting the discrete spectrum from essential spectrum (as sets) in
generally harder.

Methods based on approximating pseudospectrum:

σε(T ) = {z :
∥∥(T − zI )−1

∥∥ ≥ ε−1},

where we interpret
∥∥S−1

∥∥ as +∞ if S does not have a bounded inverse.
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Motivation

1 Above method can’t detect isolated eigenvalues and their
multiplicity.

2 Due to taking square root, above method can only gain precision√
εmach.

3 Can we generalise staple finite matrix algorithms to infinite
dimensions?

4 Can we gain error control and classification results in the
hierarchy?
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Classical QR

T = Q1R1

T1 = R1Q1 = Q2R2

T2 = R2Q2 = Q3R3

...

Tn = Q∗n ...Q
∗
1TQ1...Qn
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Classical Result

Theorem

Let T ∈ CN×N be a normal matrix with eigenvalues satisfying
|λ1| > . . . > |λN |. Let {Qm} be a Q-sequence of unitary operators.
Then (up to re-ordering of the basis)

Q∗mTQm −→
N⊕
j=1

λjej ⊗ ej , m→∞.

Numerical Example ...
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Questions

1 Does the QR algorithm exist in infinite dimensions?

2 When do we gain convergence to a diagonal operator and in what
sense?

3 Can we prove anything for non normal operators in infinite
dimensions?

4 Can we even compute this beast on a finite machine?
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The QR Decomposition

Definition

A Householder reflection is an operator S ∈ B(H) of the form

S = I − 2

‖ψ‖2
ψ ⊗ ψ̄, ψ ∈ H,

where ψ̄ denotes the associated functional in H∗ given by x → 〈x , ψ〉.

In
the case where H = H1 ⊕H2 and Ii is the identity on Hi then

U = I1 ⊕
(
I2 −

2

‖ψ‖2
ψ ⊗ ψ̄

)
ψ ∈ H2,

is called a Householder transformation.
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The QR Decomposition

Theorem (Hansen 2008)

Let T be a bounded operator on a separable Hilbert space H and let
{ej}j∈N be an orthonormal basis for H ∼= l2(N). Then there exist an
isometry Q such that T = QR where R is upper triangular with respect
to {ej}. Moreover,

Q = SOT-lim
n→∞

Vn

where Vn = U1 · · ·Un are unitary and each Uj is a Householder
transformation.

Good for numerics - more stable than Gram-Schmidt...
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What’s Really Going On?

Assume T invertible...

T = Q1R1 = Q̂1R̂1,

T 2 = Q1R1Q1R1 = Q1Q2R2R1 = Q̂2R̂2,

T 3 = Q1R1Q1R1Q1R1 = Q1Q2R2Q2R2R1 = Q1Q2Q3R3R2R1 = Q̂3R̂3.

An easy induction gives us that

Tm = Q̂mR̂m.

R̂m upper triangular since Rj , j ≤ m are. By invertibility of T ,
〈Rei , ei 〉 6= 0. Hence

span{Tmej}Jj=1 = span{Q̂mej}Jj=1, J ∈ N.
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A Result for Normal Operators

Assume the following:

(A1) T ∈ B(H) is an invertible normal operator and {ej}j∈N an
orthonormal basis for H. {Qk} and {Rk} are Q- and R-sequences
of T with respect to the basis {ej}j∈N.

(A2) σ(T ) = ω ∪Ψ such that ω ∩Ψ = ∅ and ω = {λi}Ni=1, where the λis
are isolated eigenvalues with (possibly infinite) multiplicity mi .
Let M = m1 + ...+ mN = dim(ranχω(T )) and suppose that
|λ1| > . . . > |λN |. Suppose further that sup{|θ| : θ ∈ Ψ} < |λN |.

Define

ρ = sup{|z | : z ∈ Ψ}, r = max{|λ2/λ1| , ..., |λN/λN−1| , ρ/ |λN |}

then r < 1.



What This Really Means!



A Result for Normal Operators

Theorem

There exists {êj}Mj=1 ⊂ {ej}j∈N, where M = m1 + . . . + mN , so that span{Qk êj} → span{q̂j} where

{q̂j}Mj=1 ⊂ ranχω(T ) is a collection of orthonormal eigenvectors of T and if ej /∈ {êj}Mj=1, then

χω(T )Qk ej → 0. Also:

(i) Every subsequence of {Q∗n TQn}n∈N has a convergent subsequence {Q∗nk TQnk
}k∈N such that

Q∗nk
TQnk

WOT−→

 M⊕
j=1

〈Tq̂j , q̂j 〉êj ⊗ êj

⊕∑
j∈Θ

ξj ⊗ ej ,

as k →∞, where

Θ = {j : ej /∈ {êj}
M
j=1}, ξj ∈ span{ei}i∈Θ

and only
∑

j∈Θ ξj ⊗ ej depends on the choice of subsequence.

(ii)

P̂MQ∗n TQnP̂M
SOT−→

 M⊕
j=1

〈Tq̂j , q̂j 〉êj ⊗ êj

 , as n →∞,

where P̂M denotes the orthogonal projection onto span{êj}Mj=1. For any fixed x ∈ span{êj}Mj=1 we

have the following rate of convergence

∥∥∥∥∥∥P̂MQ∗n TQnP̂M x −

 M⊕
j=1

〈Tq̂j , q̂j 〉êj ⊗ êj

 x

∥∥∥∥∥∥ ≤ O(rn).



Idea of Proof

If we keep applying T to span{ej}Kj=1, expect the span of vectors will
approach the extreme parts of spectrum (projection sense).

Use spectral decomposition:

T =

 M∑
j=1

λj ξj ⊗ ξ̄j

⊕ χΨ(T )T , λj ∈ ω,

where {ξj}Mj=1 is an orthonormal set of eigenvectors of T to make this
precise.
Finally use

Tm = Q̂mR̂m.

Can upgrade for block convergence (eigenvalues not of distinct
magnitude), SOT convergence etc.
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Questions

1 Does the QR algorithm exist in infinite dimensions?

2 When do we gain convergence to a diagonal operator and in what

sense?

3 Can we prove anything for non normal operators in infinite
dimensions?

4 Can we even compute this beast on a finite machine?



Non Normal Operators



Set Up

Assume the following (M now finite):

(A1) T ∈ B(H) is an invertible operator and there is an orthogonal
projection P of finite rank M with image invariant under T .

(A2) There exist α > β > 0 such that

‖Tx‖ ≥ α‖x‖ ∀x ∈ ran(P),

‖(I − P)T (I − P)‖ ≤ β.

(A3) {P̃ej}Mj=1 are linearly independent (P̃ canoncal defined later).

Define for orthogonal projections E ,F onto S1,S2 ⊂ H the distance
between subspaces

δ̂(S1, S2) = ‖E − F‖ ∈ [0, 1]

and the subspace angle

φ(S1, S2) = sin−1
(
δ̂(S1, S2)

)
.



Result

Theorem

There exists a canonical M dimensional T ∗−invariant subspace S with
orthogonal projection P̃ with

(i) The subspace angle φ(span{ej}Mj=1,S) < π/2 and we have

δ̂(span{Qnej}Mj=1, ran(P)) ≤
sin
(
φ(span{ej}Mj=1, ran(P))

)
cos
(
φ(span{ej}Mj=1,S)

) (
1+
‖PT (I − P)‖

α− β

)βn

αn
,

(ii) Every subsequence of {Q∗nTQn}n∈N has a convergent subsequence
{Q∗nkTQnk}k∈N such that

Q∗nkTQnk
WOT−→

M∑
j=1

ξj ⊗ ej
⊕ ∞∑

i=M+1

ζi ⊗ ei ,

ξj ∈ span{ej}Mj=1, ζi ∈ H.
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1 Does the QR algorithm exist in infinite dimensions?

2 When do we gain convergence to a diagonal operator and in what
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How To Compute



Some Definition

Definition

Let T be an infinite matrix acting as a bounded operator on l2(N) with
basis {ej}j∈N. For f : N→ N non-decreasing with f (n) ≥ n we say that
T has quasi-banded subdiagonals with respect to f if 〈Tej , ei 〉 = 0 when
i > f (j).



A Theorem

Theorem

Let T ∈ B(l2(N)) have quasi-banded subdiagonals with respect to f
and let Tn be the n-th element in the QR iteration, i.e.
Tn = Q∗n · · ·Q∗1TQ1 · · ·Qn, where

Qj = SOT-lim
l→∞

U j
1 · · ·U

j
l

and U j
l is a Householder transformation. Let Pm be the usual

projection onto span{ej}mj=1 and denote the a-fold iteration of f by
f ◦ f ◦ ... ◦ f︸ ︷︷ ︸

a times

= fa. Then

PmTnPm = PmU
n
m · · ·Un

1U
n−1
f1(m) · · ·U

n−1
1 · · ·U2

f(n−2)(m) · · ·U
2
1U

1
f(n−1)(m) · · ·U

1
1

· Pfn(m)TPfn(m)

· U1
1 · · ·U1

f(n−1)(m)U
2
1 · · ·U2

f(n−2)(m) · · ·U
n−1
1 · · ·Un−1

f1(m)U
n
1 · · ·Un

mPm.



Why?

In the subcase of invertibility, a consequence of the fact that if T has
quasi-banded subdiagonals with respect to f then

PmT
nPm = Pm(Pfn(m)TPfn(m))nPm.

We can apply Gram-Schmidt (or a more stable modified version) to the
columns of Pfn(m)TPfn(m) and truncate the resulting matrix!

Can also extend to compute the IQR iterates with error control if we
can evaluate an increasing family of increasing functions g j : N→ N
such that defining the matrix T(j) with columns {Pg j (n)Ten} we have
that T(j) is invertible and∥∥∥(Pg j (n) − I )Ten

∥∥∥ ≤ 1

j
.
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Numerical Examples



Example 1

Take unilateral shift U : en → en+1 acting on l2(Z) (with the natural
choice of indexing Z) and perturb by the compact diagonal operator

D(en) =
5 sin(n)2√
|n|+ 1

en.

Hence the spectrum of the full operator T = U + D consists of the unit
circle and a collection of eigenvalues in the discrete spectrum.
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Figure: Left: Error in approximating λ1 (top) and λ2 through taking finite
sections P100Q

∗
nTQn|P100H. We have shown the expected rates of convergence

as references. Right: The spectrum of P100Q
∗
500TQ500|P100H demonstrating

convergence to the extremal parts.



Example 2

Almost Mathieu related to a wealth of mathematical/physical
problems:

(H1x)n = xn−1 + xn+1 + 2 cos(2πnα + ν)xn,

on l2(Z). Hamiltonian represents crystal electron in a uniform

magnetic field and the spectrum the allowed energies of the system. No

discrete spectrum!
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Figure: The spectrum of H1 calculated analytically for rational α and the
output of finite section for m = 100. Note that the finite section method
causes strong spectral pollution.
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Figure: IQR for m = 100, n = 100 and the same for m = 100, n = 5000. IQR
algorithm is more robust, preserving the structure of the spectrum whilst
converging to the boundary of the essential spectrum.



Example 3

Toeplitz operator

N =
1

2
(U3 + U−1)

where Um acts on l2(Z) by the shift ej → ej+m on the standard basis.
Not invertible and has no eigenvalues. With no shift, Q∗nNQn appeared

to converge strongly to the operator

Ñ =

A
A

. . .

 , A =


0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

 .

Spectrum equal to {±1,±1i} which are the extremal points of σ(N).
Shift to Q∗n(N + I )Qn, then we appeared to converge to the diagonal

operator D = 2I . BUT curious case of reduced rate of convergence...
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Figure: Left: Spectrum of the normal operator N and finite section
approximates. Right: Convergence of first five diagonal entries of Q∗n (N + I )Qn

to 2. Convergence of the rate O(1/n) for this part of the essential spectrum as
opposed to the linear convergence rate O(rn) seen in the first example.



Example 4

A =



0 0 0 0 0 0 . . .
1 0 a23 a24 0 0 . . .
0 1 0 0 0 0 . . .
0 0 1 0 a45 a46 . . .
0 0 0 1 0 0 . . .
0 0 0 0 1 0 . . .
...

...
...

...
...

...
. . .


,

where a2j ,2j+1 = i , and a2j ,2j+2 = −i if j is prime and a2j ,2j+2 = 0
otherwise.



Example 4

T =



2.5 + 0.5i 0 0 0 0 0 0 . . .
1 3− 0.5i 0 0 0 0 0 . . .
0 1 1.7 0.05 0 0 0 . . .
0 0 0.05 t4 0 0 0 . . .
0 0 0 0 t5 0 0 . . .
0 0 0 0 1 t6 0 . . .
0 0 0 0 0 1 t7 . . .
...

...
...

...
...

...
...

. . .


,

where tj = 1 + 0.5(sin(j) + i cos(j)) for j ≥ 4.
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Figure: Left: σ(PnA|PnH) for n = 1000 with the false eigenvalue (recall that
σ(A) ⊆ σε(A)). Right: σ(PnT |PnH) for n = 500 along with contours of the
resolvent norm and σε(T ) for ε = 2

√
εmach.
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Figure: The figures show σ(PmQ
∗
nAQn|PmH) (left), σ(PmQ

∗
nTQn|PmH) (right)

for n = 1000,m = 1000 and n = 1500,m = 500 respectively.
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Figure: Left: Absolute values of entries of Q∗1000AQ1000. Right: Absolute
values of entries of Q∗1500TQ1500. We appear to gain convergence to a
diagonally dominated upper triangular matrix.



Conclusion

1 We can compute the IQR algorithm on a finite machine.

2 The IQR algorithm converges to the extremal parts of the
spectrum (other convergence theorems not shown).

3 We can converge to dominant invariant subspaces.

4 These results allow new classification results in SCI hierarchy (not
shown).

5 Looks like it can be effective at avoiding spectral pollution and
appears more robust than finite section.

6 But can’t apply shifts.

7 Paper available soon!
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Future Work

1 Link with IQL algorithm?

2 Writing more efficient code.

3 Many more open computational spectral problems - spectral
measures, IQR for unbounded operators etc.
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Other SCI results: In progress!



Thanks for listening!
Any questions?


