Discretization woes for NLEVPs

Matthew Colbrook University of Cambridge 24/05/2023

www.damtp.cam.ac.uk/user/mic249/home.html

Joint work with
Alex Townsend (Cornell)

Nonlinear spectral problems (NEPs)

Many* NEPs are set in infinite-dimensional spaces. $\frac{\text { Infinite-dimensional }}{\text { Hilbert space }}$

$$
\begin{aligned}
& T(\lambda): \mathcal{D}(T) \mapsto \mathcal{H}, \quad \lambda \in \Omega \subset \mathbb{C} \\
& \lambda \rightarrow T(\lambda) u \quad \text { holomorphic for all } \quad u \in \mathcal{D}(T) \\
& \operatorname{Sp}(T)=\{\lambda \in \Omega: T(\lambda) \text { is not invertible }\} \\
& \operatorname{Sp}_{\mathrm{d}}(T)=\{\lambda \in \operatorname{Sp}(T): \lambda \text { isolated, } T(\lambda) \text { Fredholm }\} \\
& \operatorname{Sp}_{\mathrm{ess}}(T)=\operatorname{Sp}(T) \backslash \operatorname{Sp}_{\mathrm{d}}(T)
\end{aligned}
$$

* $25 / 52$ problems from NLEVP collection are discretized infinite-dimensional problems.
*A vast majority of applications of NEPs involve differential operators.
- Güttel, Tisseur, "The nonlinear eigenvalue problem," Acta Numerica, 2017.
- Betcke, Higham, Mehrmann, Schröder, Tisseur, "NLEVP: A collection of nonlinear eigenvalue problems," ACM Trans. Math. Soft., 2013.

Discretization woes (examples later)

Often, we discretize to a matrix NEP

$$
\lambda \mapsto F(\lambda) \in \mathbb{C}^{n \times n}, \quad \lambda \in \Omega \subset \mathbb{C}
$$

But can cause serious issues:

- Spectral pollution (spurious eigenvalues).
- Spectral invisibility.
- Super-slow convergence (nonlinearity can make this even worse!)
- Ill-conditioning, even if $T(\lambda)$ is well-conditioned.
- Essential spectra, accumulating eigenvalues etc.
- Ghost essential spectra.
 solved, regardless of computational power, time or model.
- C., "The foundations of infinite-dimensional spectral computations," PhD diss., University of Cambridge, 2020.

Computational tool \#1: Pseudospectra

$$
\mathcal{A}(\varepsilon)=\left\{E: \Omega \rightarrow \mathcal{B}(\mathcal{H}) \text { holomorphic: } \sup _{\lambda \in \Omega}\|E(\lambda)\|<\varepsilon\right\}
$$

$$
\operatorname{Sp}_{\varepsilon}(T)=\bigcup_{E \in \mathcal{A}(\varepsilon)} \operatorname{Sp}(T+E)=\left\{\lambda \in \Omega:\left\|T(\lambda)^{-1}\right\|^{-1}<\varepsilon\right\}
$$

Stability of spectrum

Characterization through resolvent

Computational tool \#1: Pseudospectra

$\mathcal{A}(\varepsilon)=\left\{E: \Omega \rightarrow \mathcal{B}(\mathcal{H})\right.$ holomorphic: $\left.\sup _{\lambda \in \Omega}\|E(\lambda)\|<\varepsilon\right\}$

$$
\operatorname{Sp}_{\varepsilon}(T)=\bigcup_{E \in \mathcal{A}(\varepsilon)} \operatorname{Sp}(T+E)=\left\{\lambda \in \Omega:\left\|T(\lambda)^{-1}\right\|^{-1}<\varepsilon\right\}
$$

FACT: $\left\|T(\lambda)^{-1}\right\|^{-1}=\min \left\{\sigma_{\mathrm{inf}}(T(\lambda)), \sigma_{\mathrm{inf}}\left(T(\lambda)^{*}\right)\right\}$

Computational tool \#1: Pseudospectra

$$
\mathcal{A}(\varepsilon)=\left\{E: \Omega \rightarrow \mathcal{B}(\mathcal{H}) \text { holomorphic: } \sup _{\lambda \in \Omega}\|E(\lambda)\|<\varepsilon\right\}
$$

$$
\operatorname{Sp}_{\varepsilon}(T)=\bigcup_{E \in \mathcal{A}(\varepsilon)} \operatorname{Sp}(T+E)=\left\{\lambda \in \Omega:\left\|T(\lambda)^{-1}\right\|^{-1}<\varepsilon\right\}
$$

FACT: $\left\|T(\lambda)^{-1}\right\|^{-1}=\min \left\{\sigma_{\text {inf }}(T(\lambda)), \sigma_{\text {inf }}\left(T(\lambda)^{*}\right)\right\}$
APPROXIMATION: $\gamma_{n}(\lambda)=\min \left\{\sigma_{\mathrm{inf}}\left(T(\lambda) \mathcal{P}_{n}^{*}\right), \sigma_{\mathrm{inf}}\left(T(\lambda)^{*} \mathcal{P}_{n}^{*}\right)\right\}$

$$
\sigma_{\inf }(A)=\inf \{\|A v\|: v \in \mathcal{D}(A),\|v\|=1\}
$$

Computational tool \#1: Pseudospectra

$$
\mathcal{A}(\varepsilon)=\left\{E: \Omega \rightarrow \mathcal{B}(\mathcal{H}) \text { holomorphic: } \sup _{\lambda \in \Omega}\|E(\lambda)\|<\varepsilon\right\}
$$

$$
\operatorname{Sp}_{\varepsilon}(T)=\bigcup_{E \in \mathcal{A}(\varepsilon)} \operatorname{Sp}(T+E)=\left\{\lambda \in \Omega:\left\|T(\lambda)^{-1}\right\|^{-1}<\varepsilon\right\}
$$

FACT: $\left\|T(\lambda)^{-1}\right\|^{-1}=\min \left\{\sigma_{\mathrm{inf}}(T(\lambda)), \sigma_{\mathrm{inf}}\left(T(\lambda)^{*}\right)\right\}$
APPROXIMATION: $\gamma_{n}(\lambda)=\min \left\{\sigma_{\mathrm{inf}}\left(T(\lambda) \mathcal{P}_{n}^{*}\right), \sigma_{\mathrm{inf}}\left(T(\lambda)^{*} \mathcal{P}_{n}^{*}\right)\right\}$

Rectangular sections

$\sigma_{\mathrm{inf}}\left(\mathcal{P}_{f(n)} T(\lambda) \mathcal{P}_{n}^{*}\right)$

Folding
$\sqrt{\sigma_{\mathrm{inf}}\left(\mathcal{P}_{n} T(\lambda)^{*} T(\lambda) \mathcal{P}_{n}^{*}\right)}$

- C., Hansen, "The foundations of spectral computations via the solvability complexity index hierarchy," J. Eur. Math. Soc., 2022.
- C., Townsend, "Rigorous data-driven computation of spectral properties

$$
\sigma_{\mathrm{inf}}(A)=\inf \{\|A v\|: v \in \mathcal{D}(A),\|v\|=1\}
$$

Computational tool \#1: Pseudospectra

$$
\begin{gathered}
\mathcal{A}(\varepsilon)=\left\{E: \Omega \rightarrow \mathcal{B}(\mathcal{H}) \text { holomorphic: } \sup _{\lambda \in \Omega}\|E(\lambda)\|<\varepsilon\right\} \\
\operatorname{Sp}_{\varepsilon}(T)=\bigcup_{E \in \mathcal{A}(\varepsilon)} \operatorname{Sp}(T+E)=\left\{\lambda \in \Omega:\left\|T(\lambda)^{-1}\right\|^{-1}<\varepsilon\right\}
\end{gathered}
$$

$$
\text { FACT: }\left\|T(\lambda)^{-1}\right\|^{-1}=\min \left\{\sigma_{\mathrm{inf}}(T(\lambda)), \sigma_{\mathrm{inf}}\left(T(\lambda)^{*}\right)\right\}
$$

APPROXIMATION: $\gamma_{n}(\lambda)=\min \left\{\sigma_{\mathrm{inf}}\left(T(\lambda) \mathcal{P}_{n}^{*}\right), \sigma_{\mathrm{inf}}\left(T(\lambda)^{*} \mathcal{P}_{n}^{*}\right)\right\}$
THEOREM: Let $\Gamma_{n}(T, \varepsilon)=\left\{\lambda \in \Omega: \gamma_{n}(\lambda)<\varepsilon\right\}$, then (in the Attouch-Wets metric)

$$
\lim _{n \rightarrow \infty} \Gamma_{n}(T, \varepsilon)=\operatorname{Sp}_{\varepsilon}(T), \quad \Gamma_{n}(T, \varepsilon) \subset \operatorname{Sp}_{\varepsilon}(T)
$$

$$
\sigma_{\inf }(A)=\inf \{\|A v\|: v \in \mathcal{D}(A),\|v\|=1\}
$$

Example of verification: Orr-Sommerfeld

Poiseuille flow: $U(y)=1-y^{2}, y \in[-1,1]$

$$
R=5772.22, \omega=0.264002
$$

y Spatial stability analysis

$$
A(\lambda) \phi=\left[\frac{1}{R} B(\lambda)^{2}+i(\lambda U(y)-\omega) B(\lambda)+i \lambda U^{\prime \prime}(y)\right] \phi
$$

$$
B(\lambda) \phi=-\frac{\mathrm{d}^{2} \phi}{\mathrm{~d} y^{2}}+\lambda^{2} \phi,\langle\phi, \psi\rangle=\int_{-1}^{1} \phi \bar{\psi}+\frac{d \phi}{d y} \frac{\overline{\bar{\psi}}}{d y} \mathrm{~d} y, T(\lambda)=B(\lambda)^{-1} A(\lambda)
$$

Example of verification: Orr-Sommerfeld

Poiseuille flow: $U(y)=1-y^{2}, y \in[-1,1]$ $R=5772.22, \omega=0.264002$
$T(\lambda)=B(\lambda)^{-1} A(\lambda)$
Cheb. Col., $n=64$

$\left\{\lambda \in \Omega: \gamma_{n}(\lambda)<\varepsilon\right\} \subset \operatorname{Sp}_{\varepsilon}(T)$

y Spatial stability analysis

Which do we trust?

Example of verification: Orr-Sommerfeld

Poiseuille flow: $U(y)=1-y^{2}, y \in[-1,1]$ $R=5772.22, \omega=0.264002$
$T(\lambda)=B(\lambda)^{-1} A(\lambda)$
Cheb. Col., $n=64$

Converged

Example of verification: Orr-Sommerfeld

Poiseuille flow: $U(y)=1-y^{2}, y \in[-1,1]$ $R=5772.22, \omega=0.264002$

Cheb. Col., $n=64$

Converged

NB: Standard method converges in this case but doesn't have verification.

Computational tool \#2: Contour methods

KELDYSH's THEOREM: Suppose $\operatorname{Sp}_{\mathrm{ess}}(T) \cap \Omega=\emptyset$. Then for $z \in \Omega \backslash \operatorname{Sp}(T)$

$$
T(z)^{-1}=V(z-J)^{-1} W^{*}+R(z)
$$

- m is sum of all algebraic multiplicities of eigenvalues inside Ω.
- $\quad V \& W$ are quasimatrices with m cols of right \& left generalized eigenvectors.
- J consists of Jordan blocks.
- $\quad R(z)$ is a bounded holomorphic remainder.
\Rightarrow use contour integration to convert to a linear pencil...

InfBeyn algorithm

Let $\Gamma \subset \Omega$ be a contour enclosing m eigenvalues (and not touching $\operatorname{Sp}(T)$).

$$
A_{0}=\frac{1}{2 \pi i} \int_{\Gamma} T(z)^{-1} \mathcal{V} \mathrm{~d} z, \quad A_{1}=\frac{1}{2 \pi i} \int_{\Gamma} z T(z)^{-1} \hat{\nu} \mathrm{~d} z \quad \begin{aligned}
& \text { Random vectors } \\
& \text { drawn form a } \\
& \text { Gaussian process }
\end{aligned}
$$

Computed with adaptive discretization sizes (e.g., ultraspherical spectral method)
Approximate through quadrature to obtain \tilde{A}_{0} and \tilde{A}_{1}.
Truncated SVD: $\tilde{A}_{0} \approx \tilde{U} \Sigma_{0} \tilde{V}_{0}^{*}$.

Eigenpairs $\left(\lambda_{j}, x_{j}\right)$
The eigenvectors of original problem are $\approx U \Sigma_{0} x_{j}$

Form the linear pencil: $\tilde{F}(z)=\tilde{U}^{*} \tilde{A}_{1} \tilde{V}_{0}-z \tilde{U}^{*} \tilde{A}_{0} \tilde{V}_{0} \in \mathbb{C}^{m \times m}$.
NB: $m=\operatorname{Trace}\left(\frac{1}{2 \pi i} \int_{\Gamma} T^{\prime}(z) T(z)^{-1} \mathrm{~d} z\right)$ can compute this (another story).

[^0]
Stability and convergence result

Keldysh: $T(z)^{-1}=V(z-J)^{-1} W^{*}+R(z)$, let $M=\sup _{z \in \Omega}\|R(z)\|$.
Suppose that $\left\|\tilde{A}_{j}-A_{j}\right\| \leq \varepsilon$.
THEOREM: For sufficiently oversampled \mathcal{V}, with overwhelming probability, $\left|\sigma_{\text {inf }}(F(z))-\sigma_{\text {inf }}(\tilde{F}(z))\right| \leq 2\left(\varepsilon+\| V J W^{*}| | \varepsilon / \sigma_{m}\left(V W^{*}\right)+|z| \varepsilon\right)$ (quad. err.)

\Longrightarrow converges
no spectral pollution no spectral invisibility method is stable

$$
=
$$

NOT a statement on computing $\mathrm{Sp}_{\varepsilon}(T)$
(the other algorithm does that!)
C., Townsend, "Avoiding discretization issues for nonlinear eigenvalue problem", preprint. \qquad Stability bound Horning, Townsend, "FEAST for differential eigenvalue problems," SIAM J. Math. Anal., 2020. How to control quad error

Proof sketch

Keldysh: $T(z)^{-1}=V(z-J)^{-1} W^{*}+R(z)$, let $M=\sup _{z \in \Omega}\|R(z)\|$. Introduce: $L_{1}=\left(V W^{*}\right)^{\dagger}, L_{2}=\left(V W^{*} \mathcal{V} V_{0}\right)^{\dagger}$.

$$
\begin{gathered}
T(z)^{-1} L_{1} F(z)=-V W^{*} \mathcal{V} V_{0}+R(z) L_{1} F(z) \\
\sigma_{\mathrm{inf}}(F(z))<\varepsilon \Rightarrow\left\|T(z)^{-1}\right\|>\frac{\sigma_{m}\left(V W^{*}\right) \sigma_{m}\left(V W^{*} \mathcal{V}\right)}{\varepsilon}-M
\end{gathered}
$$

$$
F(z) L_{2}\left[T(z)^{-1}-R(z)\right]=-V W^{*}
$$

$$
\left\|T(z)^{-1}\right\|>\varepsilon \Rightarrow \sigma_{\mathrm{inf}}(F(z))<\frac{\left\|V W^{*}\right\|\left\|V W^{*} \mathcal{V}\right\|}{1-M \varepsilon} \varepsilon
$$

Use results from inf dim randomized NLA to bound terms with a \mathcal{V}.

[^1]
Example 1: One-dimensional acoustic wave

acoustic_wave_1d from NLEVP collection.

$$
\frac{\mathrm{d}^{2} p}{\mathrm{~d} x^{2}}+4 \pi^{2} \lambda^{2} p=0, \quad p(0)=0, \quad \chi p^{\prime}(1)+2 \pi i \lambda p(1)=0
$$

p corresponds to acoustic pressure.
Resonant frequencies: $\lambda_{k}=\frac{\tan ^{-1}(i \chi)}{2 \pi}+\frac{k}{2}, \quad k \in \mathbb{Z}$
Discretized using FEM ($n=$ discretization size)

Example 1: One-dimensional acoustic wave

$$
\lambda_{k}=\frac{\tan ^{-1}(i \chi)}{2 \pi}+\frac{k}{2}, \quad k \in \mathbb{Z}
$$

Min abs of spurious λ

Example 1: One-dimensional acoustic wave

$$
\lambda_{k}=\frac{\tan ^{-1}(i \chi)}{2 \pi}+\frac{k}{2}, \quad k \in \mathbb{Z}
$$

butterfly from NLEVP collection
$T(\lambda)=F(\lambda, S)$
S bilateral shift on $l^{2}(\mathbb{Z})$
F a rational function

Discretized $\mathcal{P}_{n} T(\lambda) \mathcal{P}_{n}^{*}(n=500)$

Example 2: Butterfly

Example 3: Loaded string

damped_beam from NLEVP collection.

$$
-\frac{\mathrm{d}^{2} u}{\mathrm{~d} x^{2}}=\lambda u, \quad u(0)=0, \quad u^{\prime}(1)+\frac{\lambda}{\lambda-1} u(1)=0 .
$$

Example 4: Planar waveguide

planar_waveguide from NLEVP collection.

$$
\begin{gathered}
\frac{\mathrm{d}^{2} \phi}{\mathrm{~d} x^{2}}+k^{2}\left(\eta^{2}-\mu(\lambda)\right) \phi=0 \\
\mu(\lambda)=\frac{\delta_{+}}{k^{2}}+\frac{\delta_{-}}{8 k^{2} \lambda^{2}}+\frac{\lambda^{2}}{k^{2}} \\
\frac{\mathrm{~d} \phi}{\mathrm{~d} x}(0)+\left(\frac{\delta_{-}}{2 \lambda}-\lambda\right) \phi(0)=0 \\
\frac{\mathrm{~d} \phi}{\mathrm{~d} x}(2)+\left(\frac{\delta_{-}}{2 \lambda}+\lambda\right) \phi(2)=0
\end{gathered}
$$

η corresponds to refractive index.
λ correspond to guided and leaky modes.

Discretized using FEM ($n=129$, default)

Example 4: Planar waveguide

Example 4: Planar waveguide

Example 4: Planar waveguide

Bigger picture

- Foundations: Classify difficulty of computational problems.
- Prove that algorithms are optimal (in any given computational model).
- Find assumptions and methods for computational goals.
- A new suite of "infinite-dimensional" algorithms. Solve-then-discretize.
- Methods built on $\sigma_{\text {inf }}(\boldsymbol{T})$, e.g., compute $\sigma_{\text {inf }}\left(T \mathcal{P}_{n}^{*}\right)$ or $\sqrt{\sigma_{\mathrm{inf}}\left(\mathcal{P}_{n} T^{*} T \mathcal{P}_{n}^{*}\right)}$
- Spectra with error control (including essential spectrum).
- Pseudospectra, stability bounds etc.
- More exotic features such as fractal dimensions.
- Methods built on adaptively computing $(A-z I)^{-1}$ or $T(z)^{-1}$
- Contour methods: discrete spectra for linear and nonlinear pencils.
- Convolution methods: spectral measures of self-adjoint and unitary operators.
- Functions of operators with error control.

Summary for NEPs

- Discretization can cause serious issues.

Example	Observed discretization woes
acoustic_wave_1d	spurious eigenvalues slow convergence
acoustic_wave_2d	spurious eigenvalues wrong multiplicity
butterfly	spectral pollution missed spectra wrong pseudospectra
damped_beam	slow convergence
loaded_string	resolved eigenfunctions with inaccurate eigenvalues
planar_waveguide	collapse onto ghost essential spectrum failure for accumulating eigenvalues spectral pollution

More on this program: www.damtp.cam.ac.uk/user/mjc249/home.html Code: https://github.com/MColbrook/infNEP

[^2]
References

[1] Colbrook, Matthew J., and Alex Townsend. "Avoiding discretization issues for nonlinear eigenvalue problems." arXiv preprint arXiv:2305.01691 (2023).
[2] Colbrook, Matthew J. "Computing semigroups with error control." SIAM Journal on Numerical Analysis 60.1 (2022): 396-422.
[3] Colbrook, Matthew J., and Lorna J. Ayton. "A contour method for time-fractional PDEs and an application to fractional viscoelastic beam equations." Journal of Computational Physics 454 (2022): 110995.
[4] Colbrook, Matthew. The foundations of infinite-dimensional spectral computations. Diss. University of Cambridge, 2020.
[5] Ben-Artzi, J., Colbrook, M. J., Hansen, A. C., Nevanlinna, O., \& Seidel, M. (2020). Computing Spectra--On the Solvability Complexity Index Hierarchy and Towers of Algorithms. arXiv preprint arXiv:1508.03280.
[6] Colbrook, Matthew J., Vegard Antun, and Anders C. Hansen. "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale's 18th problem." Proceedings of the National Academy of Sciences 119.12 (2022): e2107151119.
[7] Colbrook, Matthew, Andrew Horning, and Alex Townsend. "Computing spectral measures of self-adjoint operators." SIAM review 63.3 (2021): 489-524.
[8] Colbrook, Matthew J., Bogdan Roman, and Anders C. Hansen. "How to compute spectra with error control." Physical Review Letters 122.25 (2019): 250201.
[9] Colbrook, Matthew J., and Anders C. Hansen. "The foundations of spectral computations via the solvability complexity index hierarchy." Journal of the European Mathematical Society (2022).
[10] Colbrook, Matthew J. "Computing spectral measures and spectral types." Communications in Mathematical Physics 384 (2021): 433-501.
[11] Colbrook, Matthew J., and Anders C. Hansen. "On the infinite-dimensional QR algorithm." Numerische Mathematik 143 (2019): 17-83.
[12] Colbrook, Matthew J. "On the computation of geometric features of spectra of linear operators on Hilbert spaces." Foundations of Computational Mathematics (2022): 1-82.
[13] Colbrook, Matthew. "Pseudoergodic operators and periodic boundary conditions." Mathematics of Computation 89.322 (2020): 737-766.
[14] Colbrook, Matthew J., and Alex Townsend. "Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems." arXiv preprint arXiv:2111.14889 (2021).
[15] Colbrook, Matthew J., Lorna J. Ayton, and Máté Szőke. "Residual dynamic mode decomposition: robust and verified Koopmanism." Journal of Fluid Mechanics 955 (2023): A21.
[16] Colbrook, Matthew J. "The mpEDMD algorithm for data-driven computations of measure-preserving dynamical systems." SIAM Journal on Numerical Analysis 61.3 (2023): 1585-1608.
[17] Johnstone, Dean, et al. "Bulk localized transport states in infinite and finite quasicrystals via magnetic aperiodicity." Physical Review B 106.4 (2022): 045149.
[18] Colbrook, Matthew J., et al. "Computing spectral properties of topological insulators without artificial truncation or supercell approximation." IMA Journal of Applied Mathematics 88.1 (2023): 1-42.
[19] Colbrook, Matthew J., and Andrew Horning. "Specsolve: spectral methods for spectral measures." arXiv preprint arXiv:2201.01314 (2022).
[20] Colbrook, Matthew, Andrew Horning, and Alex Townsend. "Resolvent-based techniques for computing the discrete and continuous spectrum of differential operators." XXI Householder Symposium on Numerical Linear Algebra. 2020.
[21] Brunton, Steven L., and Matthew J. Colbrook. "Resilient Data-driven Dynamical Systems with Koopman: An Infinite-dimensional Numerical Analysis Perspective."

[^0]: - Beyn, "An integral method for solving nonlinear eigenvalue problems," Linear Algebra Appl., 2012.
 - C., Townsend, "Avoiding discretization issues for nonlinear eigenvalue problem", preprint.

[^1]: - C., Townsend, "Avoiding discretization issues for nonlinear eigenvalue problem", preprint.

[^2]: - C., Townsend, "Avoiding discretization issues for nonlinear eigenvalue problem", preprint.

