
Diagonalising the infinite:
How to compute spectra with error control

With a case study on quasicrystals

IMA Lighthill-
Thwaites Session

Matthew Colbrook 
University of Cambridge

Paper:
M.J. Colbrook, B. Roman, and A.C. Hansen 
"How to compute spectra with error control" 
Physical Review Letters 122.25 (2019)



The infinite-dimensional spectral problem

In many applications, we are given an operator acting on `2(N)
(`2(N) = canonical inner product space in infinite dimensions):

A =


a11 a12 a13 . . .
a21 a22 a23 . . .
a31 a32 a33 . . .

...
...

...
. . .

 ,

A


x1

x2

x3
...



j

=
∑
k∈N

ajkxk .

Finite Case ⇒ Infinite Case
Eigenvalues ⇒ Spectrum, Sp(A)

{z ∈ C : det(A− zI ) = 0} ⇒ {z ∈ C : A− zI not invertible}

GOAL: compute spectrum of A from matrix elements

Many applications: quantum mechanics, chemistry, matter physics, stat.
mechanics, optics, number theory, PDEs, math. of info., quasicrystals,...

MUCH harder and more subtle than finite dimensions!



London Millennium Bridge:
 When computing spectra goes badly wrong!

• Opened on 10 June 2000.
• Spectra correspond to vibrations or “resonances” of bridge.
• Unexpected resonances caused bridge closure on 12 June.
• Closed for two years and cost several million pounds to fix.



Things that typically go wrong

Fundamental challenges:

Miss parts of the spectrum.
Approximate false z /∈ Sp(A) - “spectral pollution”.

Open problem (even for Schrödinger operators) for > 50 years:
Can we overcome these issues in the general case?

“Most operators that arise in practice are not presented in a representation
in which they are diagonalized, and it is often very hard to locate even a
single point in the spectrum. Thus, one often has to settle for numerical
approximations to compute the spectra of infinite dimensional operators.
Unfortunately, there is a dearth of literature on this basic problem and, so
far as we have been able to tell, there are no proven techniques.”

W. Arveson, Berkeley (1994)

Even if a method converges, still face:

How do we know what part of approximation to trust?
Methods can be inefficient and slow to converge.

Method of this talk:

Converges without missing parts of spectrum. 3
Avoids spectral pollution. 3
Provides error control (guaranteed certificate of accuracy)

⇒ computations reliable and useful in applications. 3
Computationally efficient. 3
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Case study: Quasicrystals

Quasicrystals: aperiodic structures with long-range order.

Left: D. Shechtman, Nobel Prize in Chem. 2011 for discovering quasicrystals.
Right: Penrose tile, canonical model used in physics.

Vertex model: site at each vertex and bonds along edges of tiles.



Case study: Quasicrystals

Motivation:

We understand periodic systems really well but not aperiodic.

Long range order & short range disorder everywhere in nature.

What’s the analogy of periodic physics for aperiodic systems?

Many exotic physical properties and beginning to be used in

heat insulation
LEDs, solar absorbers, and energy coatings
reinforcing materials, e.g. low-friction gears
bone repair (hardness, low friction, corrosion resistance)...

Understanding spectral properties key for physical insight.

BUT: Aperiodic nature of quasicrystals has made it a considerable
challenge to approximate spectrum of full infinite-dimensional operator!
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Case study: Quasicrystals

Model 1: Perpendicular magnetic field (of strength B).A


x1

x2

x3
...



j

= −
∑
j∼k

e iθjk (B)xk ,

Model 2: Graph Laplacian (electronic/vibrational properties)A


x1

x2

x3
...



j

=
∑
j∼k

(xk − xj) ,

Very hard problems - no previous method even converges to spectrum.



Model 1: Magnetic field

Finite truncations
Spectral pollution.

Unreliable
Does not converge

No error control

New method
First convergent computation.

Reliable
Converges

Error control



Idea: Rectangular truncations

A
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Idea: Rectangular truncations

Pf (n)APn



Locally compute distance function and minimisers

Rectangular truncation Pf (n)(A− zI )Pn

⇓ smallest singular values σ1(Pf (n)(A− zI )Pn)

Approximate distance function dist(z ,Sp(A))

⇓ local minimisers

Output Γn(A)→ Sp(A) and error bound supz∈Γn(A) E (n, z)→ 0

Provably OPTIMAL: no algorithm or method can do better.



Model 2: Graph Laplacian (electronic properties)



Model 2: Graph Laplacian (electronic properties)

102 103 104 105

10-2

10-1

100

E
(n

)

102 103 104 105

n

10-2
10-1
100
101
102
103
104
105
106

T
im

e
(s

)

Algorithm
F.S. Periodic B.C.s
F.S. Open B.C.s



Advantages

First method that always converges to
correct solution.
(e.g. no spectral pollution)

Local and parallelisable ⇒ FAST!

Explicitly bounds the error:

Error ≤ En ↓ 0.

Can prove it is OPTIMAL (see paper).

Rigorously compute approximate states...
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Background

Periodic systems have extended states (not localised), but add disorder...

Left: P. Anderson, Nobel Prize in Phys. 1977 for discovering Anderson
localisation. Right: Examples in 1D and 2D photonic lattices.

What happens in aperiodic systems? Do we need disorder?



Bulk Localised States: A new state for quasicrystals

Bulk Localised States (BLSs): New states for magnetic quasicrystals

localised
“in-gap” (confirmed via comp. of inf-dim (topological) Chern numbers)
support transport

Cause (also confirmed with toy models): Interplay of magnetic field
with incommensurate areas of building blocks of quasicrystal.

Not due to an internal edge, impurity or defect in the system.

 NEW EXCITING PHYSICS!



Transport: Error control allows us to be certain of this phenomenon.



Conclusion

Can now compute spectra of large class of operators.

Computation has explicit error control.

New method does not suffer from spectral pollution.

New algorithm is fast, local and parallelisable.

Extensions: non-Hermitian operators, general infinite matrices, PDEs, etc.

New type of Bulk Localised State (BLS) for magnetic quasicrystals that
support localised transport within the bulk.

Future/ongoing work:

What other spectral problems can be computed in infinite dimensions?

Further applications in quantum mechanics.

Further study of BLSs.



Contents of extra slides

Extension to PDEs.

Extension to non-Hermitian operators.

BLSs without rotational symmetry.

Chern number.

Program on infinite-dimensional spectral problems.

Fractal dimensions.

Naive approximations for quasicrystals (e.g. periodic approximations)



Extensions to PDEs

Closed operator L on Rd of form

Lu(x) =
∑

k∈Zd
≥0:|k|≤N

ak(x)∂ku(x)

Assume coefficient functions:

polynomially bounded

of bounded total variation on compact balls

(+ some standard technical assumptions)

⇒ Compute Sp(L) locally uniformly on compact subsets with error control

NB: Open problem since Schwinger’s work in the 1960s to do this for
general Schrödinger operators (even without error control)



Executive summary

Build matrix rep. w.r.t. basis of tensorised Hermite functions.

Use bound on total variation and quasi-Monte Carlo integration to
compute matrix entries of L, L∗L and LL∗ with error control.

Use these estimates to directly approximate dist(z ,Sp(L)).

Apply (roughly) the same algorithm as before.

NB: Can extend technique to other discretisation methods such as FEM.



Example: Eigenvalues with guaranteed error bounds

L = −∆ + x2 + V (x) on L2(R)

V cos(x) tanh(x) exp(−x2) (1 + x2)−1

E0 1.7561051579 0.8703478514 1.6882809272 1.7468178026
E1 3.3447026910 2.9666370800 3.3395578680 3.4757613534
E2 5.0606547136 4.9825969775 5.2703748823 5.4115076464
E3 6.8649969390 6.9898951678 7.2225903394 7.3503220313
E4 8.7353069954 8.9931317537 9.1953373991 9.3168983920



Extension to non-Hermitian operators

Definition (Known off-diagonal decay)

Dispersion of A bounded by function f : N→ N and null sequence {cn} if

max{‖(I − Pf (n))APn‖, ‖PnA(I − Pf (n))‖} ≤ cn.

Definition (Well-conditioned)

Continuous increasing function g : [0,∞)→ [0,∞) with g(x) ≤ x.
Controlled growth of the resolvent by g if

g(dist(z ,Sp(A))) ≤ ‖(A− z)−1‖−1 ∀z ∈ C.
Measures conditioning of the problem through

{z ∈ C : ‖(A− z)−1‖−1 ≤ ε} =: Spε(A) =
⋃
‖B‖≤ε

Sp(A + B).

Normal operators (A commutes with A∗) well-conditioned with∥∥(A− z)−1
∥∥−1

= dist(z ,Sp(A)), g(x) = x .



Idea II: Locally compute distance function and minimisers

Step 1: Smallest singular value of rectangular truncations:

γn(z) := min{σ1(Pf (n)(A− z)Pn), σ1(Pf (n)(A∗ − z)Pn)}.

This converges locally uniformly down to ‖(A− z)−1‖−1.

Step 2: Bound the distance to the spectrum:

‖(A− z)−1‖−1 ≤dist(z , Sp(A)) ≤ g−1(‖(A− z)−1‖−1) ≤ g−1(γn(z)).

For Hermitian operators: take g(z) = z .

Step 3: Find ‘local minimisers’ and output Γn(A) with

Γn(A)→ Sp(A), dist(z , Sp(A)) ≤ g−1(γn(z))︸ ︷︷ ︸
E(n,z) (error bound)

, sup
z∈Γn(A)

E (n, z)→ 0



Example: PT symmetry (non-Hermitian QM)

PT symmetry: invariance w.r.t. simultaneous action of
parity-inversion and time reversal.

Operators with unbroken PT symmetry may poses real spectra,
unitary time evolution etc.

[Ax ]n = xn−1 + xn+1 + (cos(n) + iγ sin(n)), n ∈ Z

Increase γ to get complex spectrum.

Phase transition depends on boundary conditions.

Rigorously compute this at γPT ≈ 1.



Example: PT symmetry (non-Hermitian QM)
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BLS for symmetry broken tilings



PhD Program: Foundations of Infinite-Dimensional
Spectral Computations

How: Deal with operators directly, instead of previous ‘truncate-then-solve’

⇒ Compute many spectral properties for the first time.

Framework: Classify problems in a computational hierarchy measuring
their intrinsic difficulty and the optimality of algorithms.1

⇒ Algorithms that realise the boundaries of what computers can achieve.

Also have foundations for: spectral type (pure point, absolutely
continuous, singularly continuous), Lebesgue measure and fractal
dimensions of spectra, discrete spectra, essential spectra, eigenvectors +
multiplicity, spectral radii, essential numerical ranges, geometric features
of spectra (e.g. capacity), spectral gap problem, spectral measures, ...

1Holds regardless of model of computation (Turing, analog,...).



Chern numbers



Fractal dimension of spectrum (Model 1)
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Naive Approximations

1 Finite section with open boundary conditions: compute eigenvalues of
truncated matrix PnHPn for large n. Similar “Galerkin” methods -
suffer from spectral pollution.

2 Can construct Penrose tile via “Pentagrid”  “Periodic
Approximants”



Eigenvalue hunting without spectral pollution

Example: Dirac operator.

Describes the motion of a relativistic spin-1/2 particle.

Essential spectrum given by R\(−1, 1)⇒ spectral pollution!

Consider radially symmetric potential...



Eigenvalue hunting without spectral pollution
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