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Data-driven dynamical systems

e State x € Q € R%, unknown function F: Q — Q governs dynamics
Xn+1 = F(xn)
* Goal: Learn about system from data {x(m),y(m) = F(x(m))}j:i=1

* Data: experimental measurements or numerical simulations
* E.g., used for forecasting, control, design, understanding

* Applications: chemistry, climatology,
electronics, epidemiology, finance,
fluids, molecular dynamics,
neuroscience, plasmas, robotics,
video processing, etc.

Poincaré
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Ope rator VieWpOint KOpmn von Neuann
* Koopman operator X acts on functions g: 2 — C '

[5‘(9] (x) = g(F(xn)) — g(xn+1)
* K is linear but acts on an infinite-dimensional space.

State x1 x x xn Non linear
I

Functlons \ \ \ \ Lmear

of state g (X1) g (xz) g (x3) : g (Xn)

« Work in L?(Q, w) for positive measure w, with inner product {,-).

* Koopman, “Hamiltonian systems and transformation in Hilbert space,” Proc. Natl. Acad. Sci. USA, 1931.
e Koopman, v. Neumann, “Dynamical systems of continuous spectra,” Proc. Natl. Acad. Sci. USA, 1932.
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Why is linear (much) easier?

Long-time dynamics
become trivial!

* Suppose F(x) = Ax, A € R¥*%¢, 4 = VAV L. /
e Set & =V 1y,
€Tl —_ V_lxn — V_lAnxO — AnV_le — A’I’Lé’o

e LetwlA = Aw, set o(x) = wlx,

[Ko](x) = wlAx = 1p(x) ‘Eigenfunction‘

Much more general (non-linear and even chaotic F).
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Koopman mode decomposition  generisea

eigenfunction of K / eigenfunction of X

9= ) e+ | deg(x)do
eigs 4; =TT per
g(x,) = [K"gl(xo) = CA-Ajnfpa-(xo) + ein9¢9,g(xo) dé
j j
eigs 4; [—TT,]per

Encodes: geometric features, invariant measures, transient behaviour,
long-time behaviour, coherent structures, quasiperiodicity, etc.

GOAL: Data-driven approximation of K and its spectral properties.

* Mezi¢, “Spectral properties of dynamical systems, model reduction and decompositions,” Nonlinear Dynam., 2005.
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Koopmania*: A revolution in the big data era?

New Papers on
“Koopman Operators”

~35,000 papers over last decade!

BUT: Very little on verified methods!

Computing spectra in infinite
5558585858888 dimensions is notoriously hard!

—number of papers

—doubles every 5 yrs

*Wikipedia: “its wild surge in popularity is sometimes jokingly called ‘Koopmania™
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Challenges of computing
Spec(K) = {A € C: K — Al isnotinvertible}

Truncate: K K € CNk*Nk

1) “Too much”: Approximate spurious modes 4 & Spec(K)
2) “Too little”: Miss parts of Spec(K)

3) Continuous spectra.

Verification: Is it right?
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Build the matrix: Dynamic Mode Decomposition (DMD)

Given dictionary {1/)1, - leK} of functions ¥;: Q - C,

(Wi, ;) = Ty Wi () (V) =

(Kpi, ;) = ZM_ i wint; (x (M) 4 (y)) =
[Hpr] (x (™)

H—> K= (¥, W)W ‘WW, e CNc*Nk

Recall open problems: too much, too little, continuous spectra, verification

(m
)}
m=1
/11 (xD) Py O\ (wy iy (x D) P, xO)\]
Pr ™) ey () wi) \pr (eD) oy (xOD)
T W P Ly
_ ¢1(x(1)) ¢NK(x(1)) Wq 1.01()’(1)) 1/JNK()’(1)) |
Pr ™) ey () wa) \Y1 D) oy ()
Uy - w Yy djk

Schmid, “Dynamic mode decomposition of numerical and experimental data,” J. Fluid Mech., 2010.
Rowley, Mezi¢, Bagheri, Schlatter, Henningson, “Spectral analysis of nonlinear flows,” J. Fluid Mech., 2009.

Kutz, Brunton, Brunton, Proctor, “Dynamic mode decomposition: data-driven modeling of complex systems,” SIAM, 2016.
Williams, Kevrekidis, Rowley “A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition,” J. Nonlinear Sci., 2015.



Residual DMD (ResDMD): Approx. K and KK

(Wi ) = i Winth; (x (™) e (x ™)) = [wx WWX]

m=1 jk
M
(Kb, ) = > with; (x) iy (y) = [LPX W%]
m=1 (K] (x (™) jk
M
(Kipie, Kpj) = > w1 () i (y)) = FJY*W‘PZ]
m=1 K jk

Residuals: g = Z 18V, IKXg —2glI” = g"[K, — AK," — 2Ky + |1A]°Glg
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* C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.
e C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” ). Fluid Mech., to appear.
* Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition


https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
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ResDMD: avoiding “too much”

g* (K, — AKy" — 2K, + |A1%Gg
2 _
reS(/L g) — g* Gg eigenvectors

eigenvalues
Algorithm 1: A//

1. Compute G,K;, K, € CNk*NK and eigendecomposition K;V = GVA.
2. For each eigenpair (4,v), compute res(4,v).

3. Output: subset of e-vectors V) & e-vals A;ywithres(4,v) < & (¢ = input tol).

Theorem (no spectral pollution): Suppose quad. rule converges. Then

lim sup max (K =Dt <¢
M—oo AEAE)

* C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.
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ResDMD: avoiding “too much”

g* (K, — AKy" — 2K, + |A1%Gg
2 _
reS(/L g) — g* Gg eigenvectors

eigenvalues
Algorithm 1: A//

1. Compute G,K;, K, € CNk*NK and eigendecomposition K;V = GVA.
2. For each eigenpair (4,v), compute res(4,v).

3. Output: subset of e-vectors V) & e-vals A;ywithres(4,v) < & (¢ = input tol).

Theorem (no spectral pollution): Suppose quad. rule converges. Then

lim sup max (K =Dt <¢
M—oo AEAE)

BUT: Typically, does not capture all of spectrum! (“too little”)

* C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.
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ResDMD: avoiding “too little”

Spec.(K) = U Spec(K + B), lgiPoi Spec.(K) = Spec(K)

IBl|<e
Algorlthm 2: First convergent method for general X
1. Compute G, K, K, € CNk*Nk,
2. For z, in comp. grid, compute 7, = min  res(z, g), corresponding g (gen. SVD).

N
9=X ;% 8j¥j

3. Output: {z;: 1), < €} (approx. of Spec.(K)), {gx: Tx < €} (e-pseudo-eigenfunctions).

Theorem (full convergence): Suppose the quadrature rule converges.
* Error control: {z;: 7, < £} € Spec.(K) (as M — o)
* Convergence: Converges locally uniformly to Spec.(K) (as Ny = )

* C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.
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Quadrature with trajectory data

E.g., <~7€1/Jk'l/)1> o hm ZM 1Wml/)](x(m)) l/} (y(m))
(K] (x(m))

Three examples:

» High-order quadrature: {x("™), Wm} . M-point quadrature rule.

Rapid convergence. Requires free ch0|ce of {x(m)} and small d.

* Random sampling: {x(m)} 1 selected at random. <« Most common
Large d. Slow Monte Carlo O(M 1/2Y rate of convergence. /

* Ergodic sampling: x "+ = F(x (™),
Single trajectory, large d. Requires ergodicity, convergence can be slow.



12/34
Example: non-linear pendulum
X1 = Xy, X, = —sin(xy), Q= [-7m,7]perx R

Nk =3
157

1t

05+

0r

Im(\)

-0.5¢

At

-1.5
15 A -0.5 0 0.5 1 1.5

Re(\)
Computed pseudospectra (¢ = 0.25). Eigenvalues of IK shown as dots (spectral pollution).
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Approximate eigenfunctions

Colour represents complex argument, constant modulus shown as shadowed steps.
All residuals smaller than € = 0.05 (made smaller by increasing N).
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The Challenges

“ a¥a aa ”' A
) - [ ]

lous-modes A& opectt /
2) “Too little”s Mi £ g % /

3) Continuous spectra.

Verification: Is it right?
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Setup for continuous spectra

Suppose system is measure preserving (e.g., Hamiltonian, ergodic, post-transient etc.)

& K*K =1 (isometry)

= Spec(K) S {z:|z| < 1}
~~ spectral

(NB: we consider unitary extensions via Wold decomposition.) measure
supp. on

boundary
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Spectral decomposition of operators

A € C"*" normal = O.N. basis of eigenvectors v, ..., Uy:

n n
v = (2 Vi Vg )v, Av = (Z Akvkv,*Q) v, veCt
= =L

Projector onto Span(vy) eigenvalues




Spectral decomposition of operators

A € C"*™ normal

k=1

n
k

1

Projector onto Span(vy) eigenvalues

= O.N. basis of eigenvectors vy, ..., Uy:

n
)v, Av = (Z )lkvkv,";> v, v eC
=¥

o, . n

Energy of “v” in each eigenvector: ,uv(lj) = (vjv;v, v) = |v;v|2

This is called the spectral measure with respect to a vector v.

16/34
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Spectral decomposition of operators

A € C"*" normal = O.N. basis of eigenvectors vy, ..., Vy:

n n
v = (2 Vi Vg )v, Av = (Z Akvkv,";> v, veCt
= =L

Projector onto Span(vy) eigenvalues

o, . n

Energy of “v” in each eigenvector: ,uv(lj) = (vjv;v, v) = |v;v|2

This is called the spectral measure with respect to a vector v.

0.2 Eigenvalues
0.15]
0.1
0.05¢
Ol oo o wee 0o oo wee oo o |

-n —2n/3-n/3 O n/3 2n/3 =w
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Spectral decomposition of operators

A € C"*" normal = O.N. basis of eigenvectors vy, ..., Vy:

n n
v = (2 Vi Vg )v, Av = (Z Akvkv,*Q) v, veCt
= =L

Projector onto Span(vy) eigenvalues

o, . n

k k 2
Energy of “v” in each eigenvector: ,uv(lj) = (vjvj v, v) = |vj v|
This is called the spectral measure with respect to a vector v.

o2t Spectrfal measure

0.15¢
0.1

0.05¢

bl

-n —2n/3-n/3 O n/3 2n/3 =w
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Spectral decomposition of operators

A € C"*" normal = O.N. basis of eigenvectors vy, ..., Vy:

n n
v = (2 Vi Vg )v, Av = (Z )lkvkv,";> v, veCt
= =L

Projector onto Span(vy) eigenvalues

o, . n

k k 2
Energy of “v” in each eigenvector: ,uv(lj) = (vjvj v, v) = |vj v|
This is called the spectral measure with respect to a vector v.

02| Spectral measure

0.15¢
0.1y

0.05+¢

iy D) ||m.l|.l.nllu.

-n —2n/3-n/3 O n/3 2n/3 =w




Spectral decomposition of operators

A € C"*™ normal =

=i

Projector onto Span(vy,)

O.N. basis of eigenvectors vy, ..., Uy:

n n
v = (2 Vi Vg )v, Av = (Z Akvkv,";> v, veCt
=¥

eigenvalues

o, . n

Energy of “v” in each eigenvector:

* * 2
iy (%) = {vjvjv,v) = |vjv]

This is called the spectral measure with respect to a vector v.

02} Sﬁ)eci
0.15!

0.1

0.05

0 . .
- —2n/3 —m/3

| measure

0 n/3 2n/3 =w

16/34
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Spectral decomposition of operators

A € C"*" normal = O.N. basis of eigenvectors vy, ..., Vy:

n n
v = (2 Vi Vg )v, Av = (Z )lkvkv,";> v, veCt
= =L

Projector onto Span(vy) eigenvalues

o, . n

Energy of “v” in each eigenvector: ,uv(lj) = (vjv;v, v) = |v;v|2

This is called the spectral measure with respect to a vector v.

K is unitary = projection-valued measure ¢

g= (ers‘(y) )g, Ky = (Lydf(y))g

Spectral measure  v,(B) = (¢(B)g, 9)




Spectral decomposition of operators

A € C"*™ normal

/ n

\

White light contains a continuous spectra

=S 0]
v, A1
N (V)

cigenvector:

This is ca

g= ( des(y) )g,

=

Irradiance (W/m?/nm)

Often interesting to look at
the intensity of each wavelength

Spectrum of Solar Radiation (Earth)

1.5

0.5

UV | Visible| Infrared »

i Sunlight without atmospheric absorption

5778K blackbody

Sunlight at sea level

HO
Atmospheric
absorption bands

KO cq o

250

500 750 1000 1250 1500 1750 2000 2250 2500

Wavelength (nm)

Spectral measure

vg(B) = (£(B)g, 9)

16/34



N0(e)

_________________

“smoothing parameter”

N
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Evaluating spectral measure

Smoothing convolution

Pyl = [ PG~ 0)dvy(6)

[T, ]per

Poisson kernel for 1 (1+e)? -1
unit disk P.(6o) = 2
21+ (1 + &) —2(1 + €)cos(6y)




_________________

& = “smoothing parameter”

N

Evaluating spectral measur

Smoothing cc

Pyl = [ R -0
Poisso |

17/34



17/34

Evaluating spectral measure

/b(g) Smoothing convolution

Pyl = [ PG~ 0)dvy(6)

_________________

[T, ]per

“smoothing parameter”

\—/ Poisson kernel for P (6. — 1 (1+e)? -1
unit disk =(00) = 21+ (1+ €)% —2(1+ £)cos(8y)

[P, *v,|(60) = Cy(eo(1+ &)™) — ¢, (ei90(1 + e))

1) _ i _
4(2) = f - -dv‘g(e):{m_z{) 9H9) if 2| > 1

C
et — 7 —z g, (K —-—z"1D"1g), if0<|z| <1

[—T, ] per
ResDMD computes

with error control
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Spectral measures of seIf—ad Jomt operators

Horizontal slice = spectral measure at constant magnetic field strength.

Software package

SpecSolve available at https://github.com/SpecSolve
Capabilities: ODEs, PDEs, integral operators, discrete operators.

C., Horning, Townsend “Computing spectral measures of self-adjoint operators,” SIAM Rev., 2021.


https://github.com/SpecSolve

(T Tabo
Po —A1&
W = azpP1

P2pP1

\

Example

PoP1

—doP1 \

—Qp0;  A3pPy  P3P2

P2 —aza; —p3a;
aup3 —auaz ™ /

a; = (—1)70.950+D/2, p,-:\/l—\aj\z

Generalised shift, typical building block of many dynamical systems.

19/34
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Fix Nk, vary &: unstable!

Ng = 40,e = 1.000000

or o o

Im(z)
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Fix €, vary Ng: too smooth!

N =1,e =0.100000

25
1r 2y
SO 1.5+
E
1t
0.
qr B
0 051
-0
0.95 1 1.05
2 0
2 1 0 1 2 -3 2 1 0 1 2 3



Adaptive: new matrix to compute residuals crucial

2.5

1.5}

051

Ng = 10,e = 0.100000

22/34
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But ... slow convergence
Problem: As € | 0, erroris O(elog(1/¢)) and Nk (g) — o.

Pointwise error for spectral density

Error due to discretization
100 ¢ . . -

10°

€=0.01 |

10|

10—10 B

3 2 i 0 107" |
10 10 10 10 0 50 100 150 200

Small Ng critical in data-driven computations. Can we improve convergence rate?




mth order rational kernels: 5 m=6

K, (6) =

24/34

High-order rational kernels

Kernels

C; d]

o6 i [
—i0 _
21 e (

] —
1+ez)™t e 0 —(1+ez)

ResDMD computes
with error control

&

“smoothing parameter”

D

D [ea(e® @ +ez)) — dic, (e (1 + )]
j=1



25/34

Smaller N (larger &)

e = 1.000000
2 "o © ' 25
PO o ‘ ‘ ‘
o o
(] o
1 o o 2
(¢} o
; :
307 ° 15¢
E o
— ) 1F
0.050 o
qt 1
0 0.5F
s 1 9019 o© P
2 L o L 0
2 1 0 1 2 -3 2 1 0 1 2 3
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Convergence

Theorem: Automatic selection of N (¢)

with O(e™log(1/¢)) convergence:

* Density of continuous spectrum p,,.
(pointwise and LP)

* Integration against test functions.
(weak convergence)

f R@O)[K. = v,](6) d6

[—TT,T]per

= f h(6) dvy(0) + 0(e™log(1/¢))

[—T,T]per .
Also recover discrete spectrum.

Pointwise error for spectral density

10 107 107" 10Y
E

* C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.
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The Challenges

“ a¥a aa ”' A
eV - [ ]

yproxtmate spurious-modes A& Spectt /
2) “Toe little”: M; E Spec(dC /

Verification: Is it right?
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Example: Trustworthy computation for large d

Periodic

conditions

Inlet
Blade Outlet

/"« Reynolds number = 3.9 x 10°

 Ambient dimension (d) = 300,000
(number of measurement points)

*Raw measurements provided by Stephane Moreau (Sherbrooke)

404 mm
Outlet
ReI Error =7 Rel. Error =7
. . 0.08
0.25 _ A —_ 0.711
0.8 : —
0.2 0.06
06 acoustlc source?
0.15 e\ 1 004
7 04 _ 01 -"-:' -.,
102 o 05 k. 10.02
o 0 i 0 d 0
0.2 jj -0-05 1.0.02
0.4 101
-0.04
i -0.15
-0.2 -0.06
-0.8
5 -0.25
1 i -0.08

 C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.



28/34

Example: Trustworthy computation for large d

Periodic

conditions
N

Inlet
Blade Outlet

/"« Reynolds number = 3.9 x 10°
 Ambient dimension (d) = 300,000

(number of measurement points)

*Raw measurements provided by Stephane Moreau (Sherbrooke)

404 mm
Outlet
Rel. Error < 0. 0054 Rel. Error < 0.0128 Rel. Error 0. 0196
08 | : — 0.511 0.25 0.08
06 turbulent > 006
o4 fluctuations 0.4 oo
::2 i ::os -o.
| = }i 4 -0.05 ..,
-0.6 i -0.15 1-0.04
> i‘i o2 -0.06

-0.25

-0.08

acoustic vibrations

 C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.
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Large d () S R?): robust and scalable

Popular to learn dictionary {1/21, oy 1/JNK}

E.g., DMD with truncated SVD (Ilinear dictionary, most popular),
kernel methods (this talk), neural networks, etc.

Q: Is discretisation span{tpl, . IIJNK} large/rich enough?

Above algorithms:
 Pseudospectra: {z,: 1), < €} € Spec.(K) error control
* Spectral measures: C, (z) and smoothed measures adaptive check

— Rigorously verify learnt dictionary {l/)l, e l/JNK}
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jonary

ify the dicti

1

Ver

Example

res(4;, g;), linear dictionary

res(4;, g;), nonlinear dictionary

05}
-0.5}

Un
e

6.4 x 10%

* Reynolds number =
 Ambient dimension (d) = 100,000

(velocity at measurement points)
*Raw measurements provided by Maté Sz6ke (Virginia Te«

Re(1)

0.8948 + 0.1065i, error < 0.1105

Re(A)

1=

A=

0.9439 + 0.2458i, error < 0.0765

110

NY)

A '

108 109

107

SECSCE Y

——s oy N

N =
. =~ 7 V1§ )
2 -\\-l\f 108 i
?\;:\ g9
\ \\/z
..._, B |
./I}s\\‘///l/_ b .\\ %
10 2 = 1 o
o i o
g/
n o - = g8 8
. 7 7 5

T '- _$*
—
SN e L |

h :Ek\v?\\\ 1

52

110

\\\\\l//,\.\..\\

R,

K W
1.\\\\\:
/A

109

\.~\\.F'\|‘I\\
\-It‘\ 8 o0
- O
L]
,?m‘,},
// ;///, /JS
BN~ ]
= .,.\ f\\.\\_ =
: :%L:\\\w(\u:;
/V. S~ e~ . \\_
/.K \////! / v SN .ﬁ
N _\/\»v// / ////u el o
£ N7 RN N N
J ' VBR LA NS 3
N, //// //,6 8/
NS S N 8/
NN e~ \..M‘UN// »/LW
//_//ar»\\liff ‘\:l//t/l.\,//‘ %
[a\] — o

g

)e/hjet

X\/hjet

77

C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., to appear.
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Example: Spectral measures in large d

Adenylate Kinase
¢ key parts
N

 Ambient dimension (d) = 20,000
(positions and momenta of atoms)
 6th order kernel (spec res 107°)

*Dataset: www.mdanalysis.org/MDAnalysisData/adk_equilibrium.html

o g | b

0.22} /

0.2

0.18 ¢

0.14 ¢

* C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.
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Example: Trustworthy Koopman mode decomposition

b)t =10 us d) t =20 us

—residual ordering
—modulus ordering

true
o modulus ordering
o residual ordering | |

Pressure

. extremely efficient f

Relative MSE

\ unseen shockwi

S0r . . 10-3 L .
prediction compression
from 40 modes
-100 ‘ - . L .
° ° ¢ ° 8 0 50 100 150 200
Time(10~°s) Number of modes

(., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., to appear.
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Wider programme

Inf.-dim. computational analysis = Compute spectral properties rigorously.

Continuous linear algebra — Avoid the woes of discretization

Solvability Complexity Index hierarchy = Classify diff. of comp. problems, prove algs are optimal.

Extends to: Foundations of Al, optimization, computer-assisted proofs, and PDE learning.

C., “On the computation of geometric features of spectra of linear operators on Hilbert spaces,” Found. Comput. Math., to appear.
C., Horning, Townsend “Computing spectral measures of self-adjoint operators,” SIAM Rev., 2021.

C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” ). Eur. Math. Soc., 2022.
C.,, Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learing and Smale’s 18th problem," Proc. Natl. Acad. Sci. USA, 2022
C., “Computing spectral measures and spectral types,” Comm. Math. Phys., 2021.

C., Roman, Hansen, “How to compute spectra with error control,” Phys. Rev. Lett., 2019.

C., “Computing semigroups with error control,” SIAM J. Numer. Anal., 2022.

Boullé, Townsend, “Learning elliptic partial differential equations with randomized linear algebra”, Found. Comput. Math., 2022.
Boullé, Kim, Shi, Townsend, “Learning Green's functions associated with parabolic partial differential equations”, JMLR, to appear.
Gilles, Townsend, “Continuous analogues of Krylov methods for differential operators,” SIAM J. Numer. Anal., 2019.

Horning, Townsend, “FEAST for Differential Eigenvalue Problems,” SIAM J. Numer. Anal., 2020.

Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.

Smale, “The fundamental theorem of algebra and complexity theory,” Bull. Amer. Math. Soc., 1981.

McMullen, “Families of rational maps and iterative root-finding algorithms,” Ann. of Math., 1987.
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Summary: rigorous data-driven Koopmanism!

* “Too much” or “Too little”
Idea: New matrix for residual = ResDMD for computing spectra.
* Continuous spectra and spectral measures:
Idea: Convolution with rational kernels via resolvent and ResDMD.
* Is it right?
Idea: Use ResDMD to verify computations. E.g., learned dictionaries.

Short video summaries

available on YouTube:

(Thanks to Steve Brunton il
for letting me use his channel!) g

Mode Decomposition

",,1;',‘,’.

Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition




Additional slides...



measure-preserving EDMD...
* Polar decomposition of K. Easy to combine with any DMD-type method!

* Converges for spectral measures, spectra, Koopman mode decomposition.

* Measure-preserving discretization for arbitrary measure-preserving systems.

TKE y =~ b5mm . TKE, y ~ 35mm

——mpEDMD : " | ~——mpEDMD

Time-averaged TKE

10° 200

mes MPEDMD
——piDMD A ] | |——piDMD 180 + m— DiDMD
104 L —]I?/IDMDTKE . s ] 104 L —EDMD 160 Mean TKE of flow
— Mean of flow ] i

[ |[=——Mean TKE of flow

140

10% ¢
i 120}

e 100 |

80 -

1010 1 2 3 4 5 1010 5 6OO 10 2IO 3I0 4IO
Time (s) Height y (mm)
Snapshots collected over 1s EDMD unstable!

 C., “The mpEDMD Algorithm for Data-Driven Computations of Measure-Preserving Dynamical Systems,” arXiv 2022.



Solvability Complexity Index Hierarchy

Class ) 3 A, want to compute E: Q) = (M, d) €=——— metric space
* Ay: Problems solved in finite time (v. rare for cts problems).

* A;: Problems solved in “one limit” with full error control:
d(l,(4),2(4) < 27"
* A,: Problems solved in “one limit”:
lim [, (4) = E(4)

* A;: Problems solved in “two successive limits”:
lim lim I3, ,,(4) = £(4)

. Nn—00 Mm—0oo

Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.

Hansen, “On the solvability complexity index, the 7+pseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.
McMullen, “Families of rational maps and iterative root-finding algorithms,” Ann. of Math., 1987.

Doyle, McMullen, “Solving the quintic by iteration,” Acta Math., 1989.

Smale, “The fundamental theorem of algebra and complexity theory,” Bull. Amer. Math. Soc., 1981.



Error control for spectral problems

>.1 convergence

Z(A) = Spec(4)

e ¥ :3alg. {I},} s.t. im[,,(4) = Z2(A4), maxzern(A)dist(z, E(A)) <2"
Nn—>00



Error control for spectral problems

>.1 convergence II; convergence

-

Z(A) = Spec(4)

e ¥ :3alg. {I},} s.t. im[,,(4) = Z2(A4), maxzern(A)dist(z, E(A)) <2"
Nn—>00

e II;: F alg. {I};, } s.t. im [, (A) = E(A), max,ez(q)dist(z,I;,(4)) < 27"
Nn—>00

Such problems can be used in a proof!



Small sample of classification theorems

Increasing difficulty

Error control
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Small sample of classification theorems

Increasing difficulty

Error control
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Spectra of K Continuous spectra of K (different regularity assumptions)



Small sample of classification theorems

Increasing difficulty

Error control Spectra of
A compact operators
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Spectra of K Continuous spectra of K (different regularity assumptions)



Small sample of classification theorems

Increasing difficulty

Error control Spectra of Spectra of Schrodinger*
| compact operators (different potential classes)

Spectra of K Continuous spectra of K (different regularity assumptions)

*Open problem of Schwinger: “The special canonical group,” “Unitary operator bases,” PNAS, 1960.



Small sample of classification theorems

Increasing difficulty

Error control Spectra of Spectra of Schrodinger*
| compact operators (different potential classes)

Spectra of K Continuous spectra of K (different regularity assumptions)

*Open problem of Schwinger: “The special canonical group,” “Unitary operator bases,” PNAS, 1960.



Small sample of classification theorems

Increasing difficulty

Error control Spectra of Spectra of Schrodinger*  Spectral stability
| compact operators (different potential classes)

Spectra of K Continuous spectra of K (different regularity assumptions)

*Open problem of Schwinger: “The special canonical group,” “Unitary operator bases,” PNAS, 1960.
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