

On the existence of stable and accurate neural networks for image reconstruction Matthew Colbrook*, Vegard Antun**, Anders Hansen*

*DAMTP, University of Cambridge

**Department of Mathematics, University of Oslo

(E-mail: m.colbrook@damtp.cam.ac.uk)

Introduction

- Existence of stable, accurate and fast methods for image reconstruction from incomplete noisy measurements is a crucial problem in applications.
- Over the last decade compressed sensing and sparse regularisation have become standard tools in imaging, providing reduced scanning time and enhanced image resolution.
- Deep learning has emerged as a competitive new tool in image reconstruction, yet many questions remain open regarding stability and robustness to noise (a serious safety concern).

Model: recover image $x \in \mathbb{C}^N$ from noisy measurements with modality $A \in \mathbb{C}^{m \times N}$, $m \ll N$:

$$y = Ax + e$$

A Stability Test

- Suppose we have an algorithm (e.g. neural network) ϕ which seeks to recover images x. We use the stability test of [1] which searches for a perturbation r so that $||r||_2$ is small yet $||\phi(y+Ar)-\phi(y)||_2$ is large.
- This is done through a search for local maxima of

$$\|\phi(y+Ar)-\phi(y)\|_2^2-\lambda\|r\|_2^2$$

via gradient ascent with momentum.

Example: ϕ taken as AUTOMAP network [2] used for MRI reconstruction with 60% subsampling (considered state-of-the-art). The results shown in Figure 1 demonstrate severe instability to adversarial (tiny) noise.

Figure 1: Stability test for AUTOMAP. Top: Image plus adversarial perturbation w.r.t network (original image on left). Bottom: Output of neural network.

Methods from Compressed Sensing

■ Two standard optimisation problems used in compressed sensing are LASSO (L) and Basis Pursuit (BP) defined respectively as

min
$$\lambda \|\tilde{x}\|_{1} + \|A\tilde{x} - y\|_{2}^{2}$$
 (L)
min $\|\tilde{x}\|_{1} s.t. \|A\tilde{x} - y\|_{2} \le \varepsilon$ (BP)

- Perhaps surprisingly, these are susceptible to instabilities too!
- Figure 2 shows the instability of using FISTA [3] to solve (L). The instability of using Chambolle and Pock's primal-dual algorithm [4] to solve (BP) is similar.
- Let φ_A denote solution map for (L) or (BP). Given a finite set $M = \{y_j\}_{j=1}^r$, there exists a neural network Φ such that $\Phi(y_j) = \varphi_A(y_j)$ for j = 1, ..., r.
- Suppose as training data we can access A, $\varphi_A(y_i)$, y_i to n digits:

$$\mathcal{T} = \left\{ A_n, \varphi_{j,n}, y_{j,n} \right\}_{n \in \mathbb{N}}.$$

This models computer storage and a form of numerical stability.

References:

THEOREM: Let K > 2, $L \in \mathbb{N}$ and d be a norm on \mathbb{C}^N with N > 3. Then there exists a well-conditioned class (A, M) such that:

- 1. No algorithm can use \mathcal{T} to reconstruct Φ to K correct digits (measured in d) on M.
- 2. There exists a recursive algorithm that uses \mathcal{T} to reconstruct a neural network approximating Φ to K-1 correct digits (measured in d) on M, but any algorithm producing such a network will need arbitrary many samples of elements from \mathcal{T} .
- 3. There exists a recursive algorithm that uses \mathcal{T} to reconstruct a neural network approximating Φ to K-2 correct digits (measured in d) on M, using L samples of elements from \mathcal{T} .

QUESTION: Is there an algorithm computing stable reconstructions?

Figure 2: Stability test for FISTA solving (L) Top: Image plus adversarial perturbation w.r.t iterative solver FISTA (original image on left). Bottom: Reconstruction of algorithm.

A Stability Theorem

• Use the framework of sparsity in levels [5]: Σ_s set of vectors with s_k non-zero entries in kth wavelet level.

$$\sigma_{s}(x)_{l_{w}^{1}} = \min\{\|x - v\|_{l_{w}^{1}} : v \in \Sigma_{s}\}, \qquad \|q\|_{l_{w}^{1}} = \sum_{j=1}^{N} w_{j} |q_{j}|,$$

Where weights are constant and equal to $w_{(j)}$ in jth level, and $s = \sum s_j$.

- Let Wx be wavelet coefficients of x, then we expect $\sigma_s(Wx)_{l_w^1}$ to be small.
- Consider the case where A is a subsampled discrete FT in d dimensions (modelling MRI), $N = 2^{r \cdot d}$ with r levels. Subsample m_k frequencies uniformly at random from tensor product of dyadic band indexed by $k = (k_1, k_2, ..., k_d)$, so that $m = \sum m_k$.
- Define the quantities $\alpha = \frac{\sum s_j w_{(j)}^2}{\min s_j w_{(j)}^2}$, $\beta = \sum s_j w_{(j)}^2$,

$$\mathcal{M}(\boldsymbol{s}, \boldsymbol{k}) = \sum_{l=1}^{\|\boldsymbol{k}\|_{\infty}} s_l \prod_{i=1}^{d} 2^{-|k_i - l|} + \sum_{l=\|\boldsymbol{k}\|_{\infty} + 1}^{r} s_l 2^{-2(l - \|\boldsymbol{k}\|_{\infty})} \prod_{i=1}^{d} 2^{-|k_i - l|}.$$

THEOREM: Let $\varepsilon_{\mathbb{P}} > 0$ and suppose that

$$m_{\mathbf{k}} \gtrsim \alpha \cdot \mathcal{M}(\mathbf{s}, \mathbf{k}) \cdot \left(\log(m) \cdot r^2 \cdot \log^2(\alpha s) + \log(\varepsilon_{\mathbb{P}}^{-1})\right).$$

Then for each $n \in \mathbb{N}$, we construct, using \mathcal{T} , an explicit neural network ϕ_n with 3n layers such that the following stable uniform recovery guarantee holds with probability at least $1 - \varepsilon_{\mathbb{P}}$. For any input $y \in \mathbb{C}^m$ and image $x \in \mathbb{C}^N$ (assumed to be in some bounded ball):

$$\|\phi_n(y) - x\|_2 \lesssim \frac{\alpha^{\frac{1}{4}}}{\sqrt{\beta}} \sigma_s(Wx)_{l_w^1} + \frac{\alpha^{\frac{1}{4}} \|A\|}{n} + \alpha^{\frac{1}{4}} \|y - Ax\|_2.$$

- \blacksquare Hence for large n, we obtain stable reconstruction near the manifold of sparse vectors.
- Up to log-factors, equivalent to oracle estimator (as $n \to \infty$).
- Given instability results for (L) and (BP), and the impossibility theorem, more subtle than unravelling your favourite optimisation solver.
- This stability is demonstrated in Figure 3, for the same instability test (search for network dependent adversarial perturbations) is shown.
- Can be extended to other modalities such as binary measurements.

Figure 3: Stability test for new neural networks. Top: Image plus adversarial perturbation w.r.t network (original image on left). Bottom: Reconstruction of algorithm.

[5] B. Adcock, A. Hansen, C. Poon, and B. Roman. Breaking the coherence barrier: A new theory for compressed sensing. In Forum of Mathematics, Sigma, 2017.