
▪ Suppose we have an algorithm (e.g. neural network) 𝜙 which seeks to recover images 𝑥.

We use the stability test of [1] which searches for a perturbation 𝑟 so that 𝑟 2 is small yet

𝜙 𝑦 + 𝐴𝑟 − 𝜙(𝑦) 2 is large.

▪ This is done through a search for local maxima of

𝜙 𝑦 + 𝐴𝑟 − 𝜙(𝑦) 2
2 − 𝜆 𝑟 2

2

via gradient ascent with momentum.

Example: 𝜙 taken as AUTOMAP network [2] used for MRI reconstruction with 60%

subsampling (considered state-of-the-art). The results shown in Figure 1 demonstrate severe

instability to adversarial (tiny) noise.
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▪ Existence of stable, accurate and fast methods for image reconstruction from incomplete

noisy measurements is a crucial problem in applications.

▪ Over the last decade compressed sensing and sparse regularisation have become standard

tools in imaging, providing reduced scanning time and enhanced image resolution.

▪ Deep learning has emerged as a competitive new tool in image reconstruction, yet many

questions remain open regarding stability and robustness to noise (a serious safety concern).

Model: recover image 𝑥 ∈ ℂ𝑁 from noisy measurements with modality 𝐴 ∈ ℂ𝑚×𝑁, 𝑚 ≪ 𝑁:

𝑦 = 𝐴𝑥 + 𝑒
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Introduction

A Stability Test

Figure 1: Stability test for AUTOMAP. Top: Image plus adversarial perturbation w.r.t

network (original image on left). Bottom: Output of neural network.

▪ Two standard optimisation problems used in compressed sensing are LASSO (L) and Basis

Pursuit (BP) defined respectively as

min 𝜆 ෤𝑥 1 + 𝐴෤𝑥 − 𝑦 2
2 𝐿

min ෤𝑥 1 𝑠. 𝑡. 𝐴 ෤𝑥 − 𝑦 2≤ 𝜀 (𝐵𝑃)

▪ Perhaps surprisingly, these are susceptible to instabilities too!

▪ Figure 2 shows the instability of using FISTA [3] to solve (L). The instability of using

Chambolle and Pock’s primal-dual algorithm [4] to solve (BP) is similar.

▪ Let 𝜑𝐴 denote solution map for (𝐿) or (𝐵𝑃). Given a finite set 𝑀 = 𝑦𝑗 𝑗=1

𝑟
, there exists a

neural network Φ such that Φ 𝑦𝑗 = 𝜑𝐴 𝑦𝑗 for 𝑗 = 1,… , 𝑟.

▪ Suppose as training data we can access 𝐴, 𝜑𝐴 𝑦𝑗 , 𝑦𝑗 to 𝑛 digits:

𝒯 = 𝐴𝑛, 𝜑𝑗,𝑛, 𝑦𝑗,𝑛 𝑛∈ℕ
.

This models computer storage and a form of numerical stability.

Methods from Compressed Sensing

Figure 2: Stability test for FISTA solving (L) Top: Image plus adversarial perturbation w.r.t

iterative solver FISTA (original image on left). Bottom: Reconstruction of algorithm.

▪ Use the framework of sparsity in levels [5]: Σ𝒔 set of vectors with 𝑠𝑘 non-zero entries in 𝑘th

wavelet level.

𝜎𝒔(𝑥)𝑙𝑤1 = min 𝑥 − 𝑣 𝑙𝑤
1 : 𝑣 ∈ Σ𝒔 , 𝑞 𝑙𝑤

1 =෍
𝑗=1

𝑁

𝑤𝑗 𝑞𝑗 ,

Where weights are constant and equal to 𝑤(𝑗) in 𝑗th level, and s = σ𝑠𝑗.

▪ Let 𝑊𝑥 be wavelet coefficients of 𝑥, then we expect 𝜎𝒔(𝑊𝑥)𝑙𝑤1 to be small.

▪ Consider the case where 𝐴 is a subsampled discrete FT in 𝑑 dimensions (modelling MRI),

𝑁 = 2𝑟∙𝑑 with 𝑟 levels. Subsample 𝑚𝒌 frequencies uniformly at random from tensor product

of dyadic band indexed by 𝒌 = 𝑘1, 𝑘2, … , 𝑘𝑑 , so that m = σ𝑚𝒌.

▪ Define the quantities 𝛼 =
σ 𝑠𝑗𝑤(𝑗)

2

min 𝑠𝑗𝑤(𝑗)
2 , 𝛽 = σ 𝑠𝑗𝑤(𝑗)

2 ,

ℳ(𝒔, 𝒌) = ෍

𝑙=1

𝒌 ∞

𝑠𝑙ෑ

𝑖=1

𝑑

2− 𝑘𝑖−𝑙 + ෍

𝑙= 𝒌 ∞+1

𝑟

𝑠𝑙2
−2(𝑙− 𝒌 ∞) ෑ

𝑖=1

𝑑

2− 𝑘𝑖−𝑙 .

A Stability Theorem

THEOREM: Let 𝜀ℙ > 0 and suppose that

𝑚𝒌 ≿ 𝛼 ∙ℳ(𝒔, 𝒌) ∙ log 𝑚 ∙ 𝑟2 ∙ log2 𝛼𝑠 + log 𝜀ℙ
−1 .

Then for each 𝑛 ∈ ℕ, we construct, using 𝒯, an explicit neural network 𝜙𝑛 with 3𝑛 layers

such that the following stable uniform recovery guarantee holds with probability at least

1 − 𝜀ℙ. For any input 𝑦 ∈ ℂ𝑚 and image 𝑥 ∈ ℂ𝑁 (assumed to be in some bounded ball):

𝜙𝑛 𝑦 − 𝑥 2 ≾
𝛼
1
4

𝛽
𝜎𝒔 𝑊𝑥 𝑙𝑤

1 +
𝛼
1
4 𝐴

𝑛
+ 𝛼

1
4 𝑦 − 𝐴𝑥 2.

▪ Hence for large 𝑛, we obtain stable reconstruction near the manifold of sparse vectors.

▪ Up to log-factors, equivalent to oracle estimator (as 𝑛 → ∞).

▪ Given instability results for (L) and (BP), and the impossibility theorem, more subtle than

unravelling your favourite optimisation solver.

▪ This stability is demonstrated in Figure 3, for the same instability test (search for network

dependent adversarial perturbations) is shown.

▪ Can be extended to other modalities such as binary measurements.

THEOREM: Let 𝐾 > 2, 𝐿 ∈ ℕ and 𝑑 be a norm on ℂ𝑁 with 𝑁 > 3. Then there exists a

well-conditioned class (𝐴,𝑀) such that:

1. No algorithm can use 𝒯 to reconstruct Φ to 𝐾 correct digits (measured in 𝑑) on 𝑀.

2. There exists a recursive algorithm that uses 𝒯 to reconstruct a neural network

approximating Φ to 𝐾 − 1 correct digits (measured in 𝑑) on 𝑀, but any algorithm

producing such a network will need arbitrary many samples of elements from 𝒯.

3. There exists a recursive algorithm that uses 𝒯 to reconstruct a neural network

approximating Φ to 𝐾 − 2 correct digits (measured in 𝑑) on 𝑀, using 𝐿 samples of

elements from 𝒯.

QUESTION: Is there an algorithm computing stable reconstructions?
Figure 3: Stability test for new neural networks. Top: Image plus adversarial perturbation

w.r.t network (original image on left). Bottom: Reconstruction of algorithm.


