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Introduction

» Existence of stable, accurate and fast methods for image reconstruction from incomplete
noisy measurements is a crucial problem in applications.

= Over the last decade compressed sensing and sparse regularisation have become standard
tools In Imaging, providing reduced scanning time and enhanced image resolution.

» Deep learning has emerged as a competitive new tool In image reconstruction, yet many

guestions remain open regarding stability and robustness to noise (a serious safety concern).

Model: recover image x € CV from noisy measurements with modality 4 € C™*¥, m « N:
y=Ax +e

A Stability Test

= Suppose we have an algorithm (e.g. neural network) ¢ which seeks to recover images x.
We use the stability test of [1] which searches for a perturbation r so that ||r||, is small yet

¢Cy + Ar) — oWl Is large.
= This Is done through a search for local maxima of

lp(y + Ar) — dIZ — Allr I3
via gradient ascent with momentum.

Example: ¢ taken as AUTOMAP network [2] used for MRI reconstruction with 60%
subsampling (considered state-of-the-art). The results shown in Figure 1 demonstrate severe
Instability to adversarial (tiny) noise.

Figure 2: Stability test for FISTA solving (L) Top: Image plus adversarial perturbation w.r.t
iterative solver FISTA (original image on left). Bottom: Reconstruction of algorithm.

Figure 1: Stability test for AUTOMAP. Top: Image plus adversarial perturbation w.r.t
network (original image on left). Bottom: Output of neural network.

Methods from Compressed Sensing

» Two standard optimisation problems used in compressed sensing are LASSO (L) and Basis
Pursuit (BP) defined respectively as

min Al|%[l; + |A% — ylI3 (L)
min [|X||; s.t. ||[AX —yl|l,< & (BP)
= Perhaps surprisingly, these are susceptible to instabilities too!

= Figure 2 shows the instability of using FISTA [3] to solve (L). The instability of using
Chambolle and Pock’s primal-dual algorithm [4] to solve (BP) is similar.

= et ¢, denote solution map for (L) or (BP). Given a finite set M = {yj} , there exists a

r
j=1
neural network @ such that ®(y;) = @4(v;) forj =1, ..., 7.
= Suppose as training data we can access A4, ¢ (yj), y; to n digits:

J = {A‘ru Pjino Yj,n}neN-

This models computer storage and a form of numerical stability.

THEOREM: Let K > 2, L € N and d be a norm on CV with N > 3. Then there exists a
well-conditioned class (4, M) such that:

1. No algorithm can use J" to reconstruct @ to K correct digits (measured in d) on M.

2. There exists a recursive algorithm that uses J° to reconstruct a neural network
approximating @ to K — 1 correct digits (measured in d) on M, but any algorithm
producing such a network will need arbitrary many samples of elements from 7.

3. There exists a recursive algorithm that uses J° to reconstruct a neural network
approximating @ to K — 2 correct digits (measured in d) on M, using L samples of
elements from T.

References:

A Stability Theorem

= Use the framework of sparsity in levels [5]: X set of vectors with s; non-zero entries in kth

wavelet level.
N
lally, = ). wilayl,
j=1

Where weights are constant and equal to w(y In jth level, and s = }. s;.
" Let Wx be wavelet coefficients of x, then we expect ag(Wx);:1 to be small.
= Consider the case where A Is a subsampled discrete FT in d dimensions (modelling MRI),

N = 2% with r levels. Subsample m;, frequencies uniformly at random from tensor product
of dyadic band indexed by k = (k, k5, ..., kg), sothatm = Y, my,.

2
% SjW(j

0s(xX);1 = min {llx — vlllvlv: v E ZS},

= Define the quantities @ = B=Ysiwh,

min s;w2. "’
777 ()

Iklleo _d r Q
M(s, k) = Z s, Hz—uci—u i Z 5,220 lkllo) Hz—uci—u_
=1 i=1 [=]||k|lo+1 i=1

THEOREM: Let ¢p > 0 and suppose that
my = a-M(s, k) - (log(m) .12 - log?(as) + log(e@l)).

Then for each n € N, we construct, using 77, an explicit neural network ¢,, with 3n layers
such that the following stable uniform recovery guarantee holds with probability at least
1 — &p. For any input y € C™ and image x € C" (assumed to be in some bounded ball):
1 1Al
o’ a4||A
pn(y) —xllz; 3 —=0s(Wx),1 A

VB

1
Fat|ly — Ax||,.

= Hence for large n, we obtain stable reconstruction near the manifold of sparse vectors.
= Up to log-factors, equivalent to oracle estimator (as n — o).

= Given Instability results for (L) and (BP), and the impossibility theorem, more subtle than
unravelling your favourite optimisation solver.

» This stability i1s demonstrated in Figure 3, for the same instability test (search for network
dependent adversarial perturbations) is shown.

» Can be extended to other modalities such as binary measurements.

Figure 3: Stability test for new neural networks. Top: Image plus adversarial perturbation
w.r.t network (original image on left). Bottom: Reconstruction of algorithm.
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