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Recall the set-up
Image x ∈ CN , we are given access to measurements of the form

y = Ax+ e,

where A ∈ Cm×N represents sampling modality, m� N .

Task: reconstruct x from the noisy measurements y.

Without additional assumptions, such as sparsity, problem is
highly ill-posed.

Might try to solve via

min
z∈CN

‖z‖1 s.t. ‖Az − y‖2 ≤ ν,

or
min
z∈CN

λ‖z‖1 + ‖Az − y‖22,

or etc.



Neural networks are FANTASTIC approximators!
Consider the following mapping ϕA,ν :M→ RN where

M = {yj}rj=1 ⊂ Rm, r <∞, m < N

given by

ϕA,ν(y) = w, w ∈ argmin
z
‖z‖1 subject to ‖Az − y‖2 ≤ ν.

Theorem ([Pinkus, 1999])
Let ν, δ ≥ 0. If the non-linear function ρ in each layer is not a
polynomial, there exists a neural network Φ, depending on A
and M, such that

‖Φ(y)− ϕA,ν(y)‖2 ≤ δ, ∀y ∈M.

But: need a constructive training model.
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Constructive?

In reality, given approximations {yj,n}rj=1, {φj,n}rj=1 and An
such that:

‖yj,n − yj‖, ‖φj,n − ϕAn,ν(yj,n)‖, ‖An −A‖ ≤ 2−n.

This is what we can store on a computer in real life, models
irrational A etc. Also models a type of numerical stability.

Training set must be

T := {(yj,n, φj,n, An) | j = 1, . . . , r, n ∈ N}.

Can we train a neural network that can approximate Φ based
on the training set T ?

Maybe we expect to be able to do this by unravelling standard
(iterative) optimisation algorithms? Like ISTA, FISTA,
NESTA,...
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Theorem (Impossible in general)
Let K > 2, L ∈ N and d be any norm on CN where N ≥ 6. Then there
exists a well conditioned class Ω of elements (A,M), such that we
have the following three conditions. Consider the neural network Φ
from Theorem 1.

(i) There does not exist any algorithm with T as input that produces
a neural network Ψ that approximates Φ on (A,M) ∈ Ω to K
correct digits in the norm d.

(ii) There exists an algorithm with T as input that produces a neural
network Ψ that approximates Φ on (A,M) ∈ Ω to K − 1 correct
digits in the norm d. However, any algorithm producing such a
network will need arbitrary many samples of elements from T .

(iii) There exists an algorithm using L samples from T as input that
produces a neural network Ψ that approximates Φ on (A,M) ∈ Ω
to K − 2 correct digits in the norm d.



It is NOT enough to just “unravel” your favourite algorithm.

Theorem also holds for other popular optimisation problems
such as LASSO.

Question: Which functions can be approximated by a neural
network that can be computed by an algorithm?

This is only half the story. For numerical purposes and
robustness to attack we must have stability!



Solving LASSO with FISTA



Solving basis pursuit with Chambolle-Pock



PΩ : CN → Cm projection onto canonical basis ej indexed by Ω.

A = PΩU

where U measurement matrix (d-dimensional discrete FT).



Some ideas from compressed sensing

Figure: An image and its wavelet coefficients, where a brighter colour
corresponds to a larger value.

Idea: Fully sample rows that correspond to the coarser wavelet
levels and subsample the rows that correspond to the finer
wavelet levels.



(s)-sparse vectors have sk non-zero elements in each wavelet
level. Denote these by Σs.

‖x‖l1w =
N∑
i=1

wi |xi| ,

σs(x)l1w = inf{‖x− z‖l1w : z ∈ Σs}.

In practice, expect σs(Wx)l1w to be small for images.

N = 2r·d, r wavelet levels

Subsample randomly in dyadic Fourier bands

(mk=(k1,...,kd))rk1,...,kd=1.



Theorem (Stable Neural Networks Exist)
Let εP ∈ (0, 1) and s = (s1, ..., sr) describe (s)-sparse vectors
corresponding wavelet scales (d-dimensional). Suppose

mk &


‖k‖∞∑
l=1

sl

d∏
i=1

2−|ki−l| +
r∑

l=‖k‖∞+1

sl2−2(l−‖k‖∞)
d∏

i=1
2−|ki−l|

 · L,
L = r3 · log(m) · log2(rs) + log(ε−1

P ).

Then, for each n ∈ N, we construct a computable neural network φA
n

from T with 3n layers such that with probability at least 1− εP, the
following stable uniform recovery guarantee holds. For any x ∈ CN

with ‖x‖l2 . 1 and any y ∈ Cm,

‖φA
n (y)− x‖l2 .

σs,M(Wx)l1
w√

s
√
r

+ r
1
4 ‖A‖
n

+ r
1
4 ‖Ax− y‖l2 .



How to interpret?

I Up to log-factors, equivalent to oracle estimator (as n→∞).
I For sparse vectors and large n, neural networks are locally

Lipschitz so stable.
I Number of samples required in each annular region

∑
‖k‖=k

mk &

(
sk +

k−1∑
l=1

sl2−(k−l) +
r∑

l=k+1
sl2−3(l−k)

)
· L

is (up to logarithmic factors) proportional to sk + exponentially
decaying terms.



Numerical Example

Figure: Stability test for new networks. Top row: original image with
perturbations. Bottom row: reconstructions.

STABLE!



Conclusions

I The awesome performance of neural networks may come at
a high price in terms of stability. Given the last fifty years
of the studying stability via inverse problems, this is an
important issue that should not be overlooked.

I There is likely a rich classification theory, stating limits on
the performance of stable methods - trade-off.

I One such example was presented with explicitly
constructed stable neural networks.

I Current state in compressed sensing only tells half the
story. Even standard optimisation methods are susceptible
to adversarial attacks!

I Next steps: extensively assessing the performance of these
new neural networks, applying these ideas to other
problems.
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