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Do we lose anything when we discretize?

Mg + C(w)q + K(w)q :=
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w wr Wr

Volker Mehrmann

Grabner, Mehrmann, Quraishi, Schroder, von Wagner, Numerical methods for parametric model reduction in the simulation of disk brake squeal. ZAIMIM, 20016.
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A landmark benchmark

NLEVP: A collection of nonlinear eigenvalue problems
T Betcke, NJ Higham, V_ Mehrmann... - ACM Transactions on ..., 2013 - dl.acm.org

... collection of 52 nonlinear eigenvalue problems in the form of a MATLAB toolbox. The collection
contains problems ... A classification is given of polynomial eigenvalue problems according ...

vy Save DY Cite Cited by 345 Related articles All 11 versions

Example Observed discretization woes

spurious eigenvalues

acoustic_wave_1d
slow convergence

Most of the problems in NLEVP

spurious eigenvalues

come from inf-dim problems. acoustic wave 2d wrong multiplicity
spectral pollution
butterfly missed spectra

/ wrong pseudospectra
slow convergence

o o o o d d_b
Some discretization issues. et e

resolved eigenfunctions with inaccurate eigenvalues

loaded_string ill-conditioning from discretization

collapse onto ghost essential spectrum
planar _waveguide failure for accumulating eigenvalues
spectral pollution

Betcke, Higham, Mehrmann, Schroder, Tisseur, “NLEVP: A collection of nonlinear eigenvalue problems,” ACM Trans. Math. Soft., 2013.



Example: Pollution, invisibility...

Ae) = {E:Q — B(H): iIEJEHE(/l)” < e}

Spe(M) = | ] s+ By = e ir@ T <2

Stability of spectrum

Characterization through resolvent



Example: Pollution, invisibility...

Im(A)

butterfly from NLEVP, T(1) = F(4,S)

S bilateral shift on [2(Z), F a rational function

Discretized P, T(A1)P, (n = 500)

.| instability

spectral
- pollution

spectral |
invisibility

(but not for 1

pseudospectral)

11e-02

11e-04

1 1e-06

1e-08

1e-10

1e-12

1e-14

1e-16

Ae) = {E:Q — B(H): TEJEHE(/U” < e}

Spe(M = | | spT+B) = e T@IT < &)

Im(A)

E€EA(e)

Verified method c Sp, (T)

1 1e-02

11e-04

1 1e-06

1e-08

1e-10

1e-12

1e-14

1e-16
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Computational tool: Contour methods

Technical point: Spq(T) = {1 € Sp(T): A isolated, T(A) Fredholm}, Spess(T) = Sp(T)\Spq(T)
KELDYSH’s THEOREM: Suppose Spass(T) N Q = @. Then for z € Q\Sp(T)
assume finite T(Z)_l — V(Z _])—1W* + R(Z)

 m: sum of all algebraic multiplicities of eigenvalues inside ().

« IV & W: quasimatrices with m cols of right & left gen. eigenvectors.

e J:Jordan blocks.

* R(z): bounded holomorphic remainder.

—> use contour integration to convert to a linear pencil...

* Keldysh, “On the characteristic values and characteristic functions of certain classes of non-self-adjoint equations,” Dokl. Akad. Nauk, 1951.
* Keldysh, “On the completeness of the eigenfunctions of some classes of non-self-adjoint linear operators,” UMN, 1971.
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Why is this so useful?

(1) Nonlinear — linear.
(2) Infinite-dimensional — finite-dimensional.

(3) Computing spectra — solving linear systemes.

CANNOT OVERSTATE: Much easier for discretization to converge for
solving linear systems than computing spectra!
This holds in theory and in practice.

18
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InfBeyn algorithm
' € Q contour enclosing m eigenvalues (not touching Sp(T)).
Random vectors
/ drawn form a

1 1
Ap =5 T(Z)_lv dz, A =— ZT(Z)_lv dz Gaussian process

2Tl ) - 2Tl )
Computed with adaptive discretization sizes (e.g., ultraspherical spectral method)
Approximate via quadrature: Ay, A1. Eigenpairs (1, %)
_ _ ~ . The eigenvectors of
Truncated SVD: 4y = UX,V, . / original problem

are = UXpx;

Linear pencil: F(z) = U*4A,V, — zU*A,V, € C"™™*™,

NB: m = Trace (ﬁ fr T'(2)T(2)~1 dz) can compute this (another story).

Beyn, “An integral method for solving nonlinear eigenvalue problems,” Linear Algebra Appl., 2012.
C., Townsend, “Avoiding discretization issues for nonlinear eigenvalue problem”, preprint.
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Stability and convergence result

Keldysh: T(2) 1 =V(z—))"'W* + R(2), let M = sup,cql|R(2)]|.
Suppose that ||4; — 4;|| < e.

THEOREM: For sufficiently oversampled V, with overwhelming probability,

IF@2) ™t = |E@~Y| 7| < 2(e + IVJW*lle/om (VW) + |z]€) (quad. err)

Sp £ (T) c Sp.(F) € Sp £ (T).
VW VW I+ Mz o (VW) o VW V)=ME

—> converges
no spectral pollution
no spectral invisibility
method is stable

* C., Townsend, “Avoiding discretization issues for nonlinear eigenvalue problems”, preprint. <G Stability bound
 Horning, Townsend, “FEAST for differential eigenvalue problems,” SIAM J. Math. Anal., 2020.
e C., “Computing semigroups with error control,” SIAM J. Math. Anal., 2022. A How to control quad error




Proof sketch (probably no time)

Keldysh: T(2)™ =V (z—])"W* + R(2), let M = sup,cqlIR(2)].
Introduce: L, = (VW*)T, L, = (VW*VV,)T.

T(z) L F(z) = =VW*VV, + R(z)L,F (2)
o, (VIW*)o,,(VIW*V) B

&

M

oine(F(2)) <e = T(2)7| >

F(2)L;[T(2)™" = R(2)] = —-VW"

_ VW[V V||
IT@)7H > & = oine(F(2) < ——F—3——¢

Use results from inf dim randomized NLA to bound terms with a V.

* C., Townsend, “Avoiding discretization issues for nonlinear eigenvalue problems”, preprint.
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Example: E-functions resolved before e-values

d*v ,
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Example: E-functions resolved before e-values

e-vector subspace error =~ 0.001, e-val error =~ 40 (InfBeyn error < 10~12)

1 & & y T = 1
S ke o, 4 InfBeyn - DiscretizedF-
—~ ¢ D . e o 0 ve
~
\G_J/ 0 3 — - —
TR SIS
| _.I v < | @ ¢ | g ..: | L] |$ v
0.8 1 0 0.2 0.4 0.6 0.8 1
2 2
—~ —
= =
09 0
= 5
2 -2
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1



Example: Instability

d?u
—— = Au, u(0) =0, u' (1) + u(1) = 0.
— (0) (1) + 5 u()
1019 — 10° ——— ——
| Condition number Rel. error /
s Chgp n =500 oo00® |
- [ ] J’S.I]Q‘z .CO ]Ocatlo _ 10_5 ° () o ® _
1010} *3esle < : . |
! Ultl“as h -Leg.endr% :
| ~Riericy) Spect ]alerkjﬂ | 1077 .
- Soce r'a : | ° o o
10°¢ F?M \ |
_ e . ©oue, : 1015} .
~ InfBeyn : )
1009 © o o ¢ %0000 —— e ___ 10720 . e
10° 10" 10° 10°

Eval #



Example: Ghost essential spectra

31(/2) + kz(n —u)p =0
p) =5 + 8k62_/12 +l/{1_2

2—¢(0) + (%—A)qb(O) =0

%(2) + (; +A>¢>(2) =0

n corresponds to refractive index.

A correspond to guided and leaky modes.

Discretized using FEM (n = 129, default)

1.7

1

nx) [ _

p >
truncated domain

2 1 0 1 2

X
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Example: Ghost essential spectra

200 r

100 1

Im(A)

-100

-200 |
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Example: Ghost essential spectra

200 r

100 1

Im(A)

-100

-200 |
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Conclusion

Example

e Discretization can cause

Observed discretization woes

serious issues. acousticwave-1ld

spurious eigenvalues
slow convergence

\ acoustic_wave_2d

spurious eigenvalues
wrong multiplicity

* InfBeyn overcomes these in

. . butterfl
regions of discrete spectra: B

spectral pollution
missed spectra
wrong pseudospectra

convergent, stable, efficient.

damped_beam

slow convergence
resolved eigenfunctions with inaccurate eigenvalues

* Compute pseudospectra with

loaded string

ill-conditioning from discretization

explicit error control
(generic pencils, even with planar waveguide

collapse onto ghost essential spectrum
failure for accumulating eigenvalues
spectral pollution

essential spectral)

Code: https://github.com/MColbrook/infNEP

29

C., Townsend, “Avoiding discretization issues for nonlinear eigenvalue problems”, preprint.
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A final shameless plug!

New methods for spectra on surfaces!




30

A final shameless plug!

New methods for spectra on surfaces!

Frb‘l’%ﬂap -PIXAR




30

A final shameless plug!

New methods for spectra on surfaces!

‘Bfswzp - PIXAR

Everybody else’s fav dinosaur

" Gustav’s fav dinosaur

; ‘ f
k/ ‘ |
\.V
“ 7 (orit’s 3000t :

I Laplace—Beltrami efun) Gustav Conradie Dan Fortunato

L___—_—_—_—_—_—_—_—_—_—_—_-
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New methods for spectra on surfaces!

“Bfngp - PIXAR

Everybody else’s fav dinosaur s’ Gustav’s fav dinosaur

e e e e e e e e e e = = = A% (orit’s 3000th

. . . | _ . Gustav Conradie Dan Fortunato
New methods for generalized eigenfunctions! |, _ _ _ _laplace—Beltramiefun) ===<" ==7e8=  =€7 770

TN
~y

Tianyiwa Xie Andrew Horning



30

A final shameless plug!

New methods for spectra on surfaces!

‘Bfswzp - PIXAR

Everybody else’s fav dinosaur s Gustav’s fav dinosaur

A7 (orit’s 3000t

. . . | _ . Gustav Conradie Dan Fortunato
New methods for generalized eigenfunctions! |, _ _ _ _laplace—Beltramiefun) ===<" ==7e8=  =€7 770

0.6

-0.6

Internal wave experiment from Computed generalized eigenfunction
Tianyiwa Xie Andrew Horning Hazewinkel et al., 2010 (note the sharp discontinuity)
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