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Outline

GOAL: compute spectral properties of operators in infinite-dimensions

Many applications: quantum mechanics, chemistry, matter physics, stat.
mechanics, optics, number theory, PDEs, math. of info., quasicrystals,...

BUT: typically much harder and more subtle than finite dimensions!

§ Problem Main References for Algorithms

I Spectra “How to compute spectra with error control”
C., Roman, Hansen, Physical Review Letters, 2019

II Spectral Measures “Computing spectral measures of self-adjoint operators”
C., H., Townsend, SIAM Review, to appear
“Computing spectral measures and spectral types”
C., Communications in Mathematical Physics, to appear



Program on Infinite-Dimensional Spectral Computations
How: Deal with operator A directly, instead of ‘truncate-then-solve’

⇒ Compute many spectral properties for the first time.

Common tool: Compute properties of (A− z)−1

Finite-dimensional NLA  Infinite-dimensional NLA

Foundations: Classify problems in a computational hierarchy measuring
their intrinsic difficulty and the optimality of algorithms.1

⇒ Optimal algorithms realising boundaries of what computers can achieve.

Have foundations for: spectral type (pure point, absolutely continuous,
singularly continuous), Lebesgue measure and fractal dimensions of
spectra, discrete spectra, essential spectra, eigenvectors + multiplicity,
spectral radii, essential numerical ranges, geometric features of spectrum
(e.g. capacity), spectral gap problem, ...

1Papers and details: http://www.damtp.cam.ac.uk/user/mjc249/home.html



GOAL of this talk: convince you that these
methods for infinite-dimensional problems

can now be used in applications



Part I:
How to compute spectra with error control

With a case study on quasicrystals



The infinite-dimensional spectral problem

In many applications, we are given an operator acting on `2(N)
(`2(N) = canonical infinite-dimensional Hilbert space):

A =


a11 a12 a13 . . .
a21 a22 a23 . . .
a31 a32 a33 . . .

...
...

...
. . .

 ,

A


x1

x2

x3
...



j

=
∑
k∈N

ajkxk .

Finite Case ⇒ Infinite Case
Eigenvalues ⇒ Spectrum, Sp(A)

{z ∈ C : det(A− zI ) = 0} ⇒ {z ∈ C : A− zI not invertible}

GOAL: compute spectrum of A from matrix elements



Things that typically go wrong
Fundamental challenges:

Miss parts of the spectrum.

Approximate false z /∈ Sp(A) - “spectral pollution”.

Open problem (even for Schrödinger operators) for > 50 years:
Can we overcome these issues in the general case?

Even if a method converges, still face:

How do we know what part of approximation to trust?

Methods can be inefficient and slow to converge.

Method of this talk:

Converges without missing parts of spectrum. 3
Avoids spectral pollution. 3
Provides error control (guaranteed certificate of accuracy)

⇒ computations reliable and useful in applications. 3
Computationally efficient. 3
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Case study: Quasicrystals

Quasicrystals: aperiodic structures with long-range order.

Left: D. Shechtman, Nobel Prize in Chem. 2011 for discovering quasicrystals.
Right: Penrose tile, a canonical model used in physics.

Vertex model: site at each vertex and bonds along edges of tiles.



Case study: Quasicrystals

Motivation:

We understand periodic systems really well but not aperiodic.

Long range order & short range disorder everywhere in nature.

What’s the analogy of periodic physics for aperiodic systems?

Many exotic physical properties and beginning to be used in

heat insulation
LEDs, solar absorbers, and energy coatings
reinforcing materials, e.g. low-friction gears
bone repair (hardness, low friction, corrosion resistance)...

Understanding spectral properties key for physical insight.

BUT: Aperiodic nature of quasicrystals has made it a considerable
challenge to approximate spectrum of full infinite-dimensional operator.
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Case study: Quasicrystals

Vertex model: site at each vertex and bonds along edges of tiles.

Model 1: Perpendicular magnetic field (of strength B).

[Aψ]i = −
∑
i∼j

e iθij (B)ψj ,

Model 2: Graph Laplacian (electronic properties)

[Aψ]i =
∑
i∼j

(ψj − ψi ) ,

Very hard problems - no previous method even converges to spectrum.



Model 1: Magnetic field

Finite truncations
Spectral pollution.

Unreliable
Does not converge

No error control

New method
First convergent computation.

Reliable
Converges

Error control



Idea I: Rectangular truncations

A



Idea I: Rectangular truncations

PnAPn



Idea I: Rectangular truncations

Pf (n)APn



Idea II: Locally compute distance function and minimisers

Step 1: Smallest singular value of rectangular truncations:

γn(z) := σ1(Pf (n)(A− zI )Pn).

This converges locally uniformly down to ‖(A− zI )−1‖−1.

Step 2: Bound the distance to the spectrum:

dist(z ,Sp(A)) = ‖(A− zI )−1‖−1 ≤ γn(z).

Step 3: Find ‘local minimisers’ and output Γn(A) with

Γn(A)→ Sp(A), dist(z , Sp(A)) ≤ γn(z)︸ ︷︷ ︸
E(n,z) (error bound)

, sup
z∈Γn(A)

E (n, z)→ 0



Model 2: Graph Laplacian (electronic properties)



Model 2: Graph Laplacian (electronic properties)
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Advantages

First method that always converges to
correct solution.
(e.g. no spectral pollution)

Local and parallelisable ⇒ FAST!

Explicitly bounds the error:

Error ≤ En ↓ 0.

Can prove it is OPTIMAL (see paper).

Rigorously compute approximate
states...

HYSICAL
EVIEW
ETTERS

P
R
L

American Physical Society

28 JUNE  2019

Volume 122, Number 25
Published by 

Articles published week ending

Made the frontcover of Physical Review Letters
- American Physical Society’s flagship publication

Extends to unbounded operators and PDEs with coefficients of locally
bounded total variation (e.g. algorithms point sample coefficients).

NB: Open problem since Schwinger’s work in the 1960s to do this for
general Schrödinger operators (even without error control).
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Background

Periodic systems have extended states (not localised), but add disorder...

Left: P. Anderson, Nobel Prize in Phys. 1977 for discovering Anderson
localisation. Right: Examples in 1D and 2D photonic lattices.

What happens in aperiodic systems? Do we need disorder?



Bulk Localised States: A new state for quasicrystals

Bulk Localised States (BLSs): New states for magnetic quasicrystals

localised
“in-gap” (confirmed via comp. of inf-dim (topological) Chern numbers)
support transport

Cause (also confirmed with toy models): Interplay of magnetic field
with incommensurate areas of building blocks of quasicrystal.

Not due to an internal edge, impurity or defect in the system.

 NEW EXCITING PHYSICS!



Transport (|ψ|2 shown)



Conclusion of Part I

Can now compute spectra of large class of operators.

Computation has explicit error control.

New method does not suffer from spectral pollution.

New algorithm is fast, local and parallelisable.

Extensions: non-Hermitian operators, general infinite matrices, PDEs, etc.

(Method extends to computing semigroups with error control.)

New type of Bulk Localised State (BLS) for magnetic quasicrystals that
support localised transport within the bulk.

We’ll investigate BLSs further in part II...



Part II:
Computing spectral measures and projections



Spectral measures

Finite-dimensional: A ∈ Cn×n self-adjoint, o.n. basis of e-vectors {vj}nj=1

v =

(
n∑

k=1

vkv
∗
k

)
v , v ∈ Cn Av =

(
n∑

k=1

λkvkv
∗
k

)
v , v ∈ Cn.

Infinite-dimensional: Self-adjoint operator L : D(L)→ H with spectrum

Λ(L) = {z ∈ C : L − z not bounded invertible}.

Bad news: Typically, no longer an o.n. basis of e-vectors.

Spectral Theorem: Projection-valued spectral measure E (assigns an
orthogonal projector to each Borel-measurable set) with

f =

(∫
R
dE(y)

)
f , f ∈ H Lf =

(∫
R
y dE(y)

)
f , f ∈ D(L).

Intuition: Diagonalises an infinite-dimensional operator.

GOAL: Compute (scalar versions of) E .



Motivation

Scalar-valued measures (action of projections):

µf (Ω) = 〈E(Ω)f , f 〉

Lebesgue decomposition theorem:

dµf (y) =
∑
λ∈Λp

〈Pλf , f 〉 δ(y − λ)dy︸ ︷︷ ︸
discrete part

+ ρf (y) dy + dµ
(sc)
f (y)︸ ︷︷ ︸

continuous part

.

Crucial in: quantum mechanics, scattering in particle physics, correlation
in stochastic processes/signal-processing, fluid stability, resonances,
density-of-states in materials science, orthogonal polynomials, random
matrix theory, evolution PDEs,...

Example: in quantum mechanics, µf describes the likelihood of different
outcomes when the observable L is measured. Can also solve SE

i
df

dt
= Lf , f (0) = f0, via f (t) =

(∫
R

exp(−ity) dE(y)

)
f0.



A very hard problem!

“Most operators that arise in practice are not presented in a representation
in which they are diagonalized... this raises the question of how to
implement the methods of finite dimensional numerical linear algebra to
compute the spectra of infinite dimensional operators. Unfortunately, there
is a dearth of literature on this basic problem and, so far as we have been
able to tell, there are no proven techniques.” W. Arveson, Berkeley (1994)

Some methods do exist, but treat cases with a lot of structure (e.g.
compact perturbations of tridiagonal Toeplitz, some classes of singular
Sturm–Liouville problems, etc.)

In contrast, want a general method to resolve spectral measures of L
(e.g. PDEs, integral operators, infinite matrices,...) and not an underlying
discretisation or truncation.

Finite-dimensional NLA ⇒ Infinite-dimensional NLA



Ideas from physics

Idea: For z = x + iε, use

µεf (x) = 〈(L − z)−1 − (L − z)−1

2πi
f , f 〉 =

1

π

∫
Λ(L)

ε

(x − λ)2 + ε2
dµf (λ).

Convolution with Poisson kernel: smoothed measure.

Converges weakly to measure as ε ↓ 0:∫
R
φ(y)µεf (y) dy →

∫
R
φ(y) dµf (y), as ε ↓ 0,

for any bounded, continuous function φ.

Approximate µεf via µεf ,N (N = truncation parameter).



Numerical balancing act: Magnetic graphene
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Numerical balancing act: Magnetic graphene



Numerical balancing act: Magnetic graphene



Theorem

If we know rate of off-diagonal decay of infinite matrix, can compute
measure in one limit. Extends to other operators such as PDEs.

This is through a rectangular least squares type problem that computes
(L − z)−1f with (asymptotic) error control. N(ε) chosen adaptively.



Example: Integral operator

Lu(x) = xu(x) +

∫ 1

−1
e−(x2+y2)u(y) dy , x ∈ [−1, 1].

Discretise using adaptive Chebyshev collocation method.

Look at µf with f (x) =
√

3/2 x .

-2 -1 0 1 2
10-4

10-2

100

102
µεf (x)

x

ε =
0.0

01ε = 0.0
1ε = 0.1



Example: Integral operator

0 1000 2000 3000 4000

10-15

10-10

10-5

100
|µεf ,N(x0)− µεf (x0)|/|µεf (x0)|

N

ε
=

0.05
ε

=
0.01

ε =
0.005

10-2 10-1 100

10-2

10-1

100
|ρf (x0)− µεf (x0)|/|ρf (x0)|

O(ε
log(ε
−1 ))

ε

|ρf (x0)− µεf (x0)| = O(ε log(ε−1)) and need N ≈ 20/ε.

⇒ Infeasible to get more than five or six digits!

Q: Can we do better?



Accelerating convergence

Let m ∈ N, K ∈ L1(R). We say K is an mth order kernel if:

(i) Normalised:
∫
R K (x)dx = 1,

(ii) Zero moments: K (x)x j integrable,
∫
R K (x)x jdx = 0 for 0 < j < m,

(iii) Decay at ±∞: There is a constant CK , independent of x , such that

|K (x)| ≤ CK (1 + |x |)−(m+1), x ∈ R.

Theorem

If K is mth order, Kε(x) = ε−1K (xε−1) and µf locally absolutely
continuous near x0 with density ρf then

Pointwise: If ρf locally Cn,α near x0 then

|[Kε ∗ µf ](x0)− ρf (x0)| = O(εn+α) +O(εm log(ε−1))

Lp: If ρf locally Wn,p near x0 (1 ≤ p <∞) then

‖[Kε ∗ µf ]− ρf ‖Lploc = O(εn) +O(εm log(ε−1))



Rational kernels  high-order generalised Stone’s formula

Idea: Replace Poisson kernel with rational kernel

K (x) =
1

2πi

m∑
j=1

αj

x − aj
− 1

2πi

m∑
j=1

βj
x − bj

.

Can compute convolution with error control using resolvent

[Kε ∗ µf ](x)

=
−1

2πi

 m∑
j=1

αj〈(L − (x − εaj))−1f , f 〉 −
m∑
j=1

βj〈(L − (x − εbj))−1f , f 〉

 .
Fix aj in UHP, bj in LHP ⇒ unique {αj , βj} s.t. K an mth order kernel.



Integral operator revisited
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Example I: Back to graphene
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Spectral measure of magnetic graphene, computed to high precision (see log scale

- sorry Callum!) using m = 4 kernel.



Example I: Add a defect

Add potential V (x) = cos(‖x‖2π)
(‖x‖2+1)2 . Slice at Φ = 0.25, ε = 0.01:
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Example II: Eigenvalue hunting

Example: Dirac operator.

Describes the motion of a relativistic electron.

Essential spectrum given by R\(−1, 1)⇒ spectral pollution!

Consider radially symmetric potential, coupled system on half-line:

DV =

(
1 + V (r) − d

dr + −1
r

d
dr + −1

r −1 + V (r)

)
, V (r) =

γ

r
.

Map to [−1, 1] and solve shifted linear systems using sparse spectral
methods.



Example II: Eigenvalue hunting
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NB: Previous state-of-the-art achieves a few digits for a few excited states.



Example III: Chern numbers

Finite dimensions Infinite dimensions

P̂n =
∑n

m=1|m〉〈m|, Q̂n = I−P̂n P̂E =
∫

(−∞,E ] dE(λ)

P̂E
ε =

∫ E
−∞[Kε ∗ E ](λ)dλ, Q̂E

ε = I−P̂E
ε

x̂n = Q̂nx̂ P̂n, ŷn = P̂nŷ Q̂n x̂Eε = Q̂E
ε x̂ P̂

E
ε , ŷEε = P̂E

ε ŷ Q̂
E
ε

Cni = −4π
A2
c
Im {〈i |x̂nŷn|i〉} CEi = −4π

A2
c
Im
{
〈i |x̂Eε ŷEε |i〉

}
Take maximal count over site i .

Intuition: Topological index to detect in-gap (conducting) state.



Example III: Chern numbers



Conclusion of Part II

Diagonalisation: General framework for computing spectral
measures and projections of self-adjoint operators.

Convolution with rational kernels:

Can be evaluated using resolvent. ALL you need to be able to do is
solve linear systems and compute inner products.
High-order kernels ⇒ high-order convergence.

Fast, local and parallelisable ⇒ State-of-the-art results for PDEs,
integral operators and discrete operators.

Example: Chern numbers of BLSs showing they are in-gap.

Code: https://github.com/SpecSolve (written with Andrew Horning).
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Contents of extra slides

Extension to PDEs.

Extension to non-Hermitian operators.

BLSs without rotational symmetry.

Fractal dimensions.

Naive approximations for quasicrystals (e.g. periodic approximations)



Extensions to PDEs

Closed operator L on Rd of form

Lu(x) =
∑

k∈Zd
≥0:|k|≤N

ak(x)∂ku(x)

Assume coefficient functions:

polynomially bounded

of bounded total variation on compact balls

(+ some standard technical assumptions)

⇒ Compute Sp(L) locally uniformly on compact subsets with error control

NB: Open problem since Schwinger’s work in the 1960s to do this for
general Schrödinger operators (even without error control)



Executive summary

Build matrix rep. w.r.t. basis of tensorised Hermite functions.

Use bound on total variation and quasi-Monte Carlo integration to
compute matrix entries of L, L∗L and LL∗ with error control.

Use these estimates to directly approximate γn(z).

Apply (roughly) the same algorithm as before.

NB: Can extend technique to other discretisation methods such as FEM.



Example: Eigenvalues with guaranteed error bounds

L = −∆ + x2 + V (x) on L2(R)

V cos(x) tanh(x) exp(−x2) (1 + x2)−1

E0 1.7561051579 0.8703478514 1.6882809272 1.7468178026
E1 3.3447026910 2.9666370800 3.3395578680 3.4757613534
E2 5.0606547136 4.9825969775 5.2703748823 5.4115076464
E3 6.8649969390 6.9898951678 7.2225903394 7.3503220313
E4 8.7353069954 8.9931317537 9.1953373991 9.3168983920



Extension to non-Hermitian operators

Definition (Known off-diagonal decay)

Dispersion of A bounded by function f : N→ N and null sequence {cn} if

max{‖(I − Pf (n))APn‖, ‖PnA(I − Pf (n))‖} ≤ cn.

Definition (Well-conditioned)

Continuous increasing function g : [0,∞)→ [0,∞) with g(x) ≤ x.
Controlled growth of the resolvent by g if

g(dist(z ,Sp(A))) ≤ ‖(A− z)−1‖−1 ∀z ∈ C.
Measures conditioning of the problem through

{z ∈ C : ‖(A− z)−1‖−1 ≤ ε} =: Spε(A) =
⋃
‖B‖≤ε

Sp(A + B).

Normal operators (A commutes with A∗) well-conditioned with∥∥(A− z)−1
∥∥−1

= dist(z ,Sp(A)), g(x) = x .



Idea II: Locally compute distance function and minimisers

Step 1: Smallest singular value of rectangular truncations:

γn(z) := min{σ1(Pf (n)(A− z)Pn), σ1(Pf (n)(A∗ − z)Pn)}.

This converges locally uniformly down to ‖(A− z)−1‖−1.

Step 2: Bound the distance to the spectrum:

‖(A− z)−1‖−1 ≤dist(z , Sp(A)) ≤ g−1(‖(A− z)−1‖−1) ≤ g−1(γn(z)).

For Hermitian operators: take g(z) = z .

Step 3: Find ‘local minimisers’ and output Γn(A) with

Γn(A)→ Sp(A), dist(z , Sp(A)) ≤ g−1(γn(z))︸ ︷︷ ︸
E(n,z) (error bound)

, sup
z∈Γn(A)

E (n, z)→ 0



Example: PT symmetry (non-Hermitian QM)

PT symmetry: invariance w.r.t. simultaneous action of
parity-inversion and time reversal.

Operators with unbroken PT symmetry may poses real spectra,
unitary time evolution etc.

[Ax ]n = xn−1 + xn+1 + (cos(n) + iγ sin(n)), n ∈ Z

Increase γ to get complex spectrum.

Phase transition depends on boundary conditions.

Rigorously compute this at γPT ≈ 1.



Example: PT symmetry (non-Hermitian QM)
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BLS for symmetry broken tilings



Fractal dimension of spectrum (Model 1)
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Naive Approximations

1 Finite section with open boundary conditions: compute eigenvalues of
truncated matrix PnHPn for large n. Similar “Galerkin” methods -
suffer from spectral pollution.

2 Can construct Penrose tile via “Pentagrid”  “Periodic
Approximants”
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