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• Solvability Complexity Index Hierarchy and spectral problems.

• Example: Spectra with error control.

• Example: Smale’s 18th problem on limits of AI.

• Concluding remarks

Outline

Broad goal: classify difficulty of problems, prove optimality of algorithms, 
figure out what can and cannot be done computationally.
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A "="
𝑎11 𝑎12 ⋯
𝑎21 𝑎22 ⋯
⋮ ⋮ ⋱

, 𝐴 

𝑘=1

∞

𝑥𝑘𝑒𝑘 =

𝑗=1

∞



𝑘=1

∞

𝑎𝑗𝑘𝑥𝑘 𝑒𝑗

Also deal with PDEs, integral operators etc. 

Finite-dimensional            ⟹ Infinite-dimensional

Eigenvalues of 𝐵 ∈ ℂ𝑛×𝑛 ⟹ Spectrum, Sp(𝐴)

𝜆𝑗 ∈ ℂ: det 𝐵 − 𝜆𝑗𝐼 = 0       ⟹ 𝜆 ∈ ℂ:𝐴 − 𝜆𝐼 is not invertible  

Canonical basis vectors of 𝑙2(ℕ)

Classical infinite-dimensional spectral problem
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Also deal with PDEs, integral operators etc. 

“Most operators that arise in practice are not presented in a representation in which
they are diagonalized, and it is often very hard to locate even a single point in the
spectrum. Thus, one often has to settle for numerical approximations. Unfortunately,
there is a dearth of literature on this basic problem and, so far as we have been able to
tell, there are no proven [general] techniques.” W. Arveson, Berkeley (1994)
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Typical approach:

• Matrix case (𝑙2(ℕ)): truncate to 𝒫𝑛𝐴𝒫𝑛
∗ ∈ ℂ𝑛×𝑛.

• PDE on unbounded domain: truncate domain then discretise.

Some key issues:

• Spectral pollution (evals accumulate at points not in Sp(𝐴) as 𝑛 → ∞)

• Spectral invisibility.

• Dealing with essential spectra and continuous spectra.

• Stability, non-normality etc.

• Verification – can we compute spectral properties with error bounds?

What can go wrong?

two sources of error
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• Applications: Quantum mechanics, structural mechanics, optics, acoustics, 
statistical physics, number theory, matter physics, PDEs, data analysis, neural 
networks and AI, nuclear scattering, optics, computational chemistry, …

• Specific open problems, e.g., computational quantum mechanics  
   (Schwinger 1960), (Digernes, Varadarajan, Varadhan, 1994):

Given a self-adjoint Schrödinger operator −∆ + 𝑉 on ℝ,

can we approximate its spectrum from sampling 𝑉?

• Verified computations: Many computer-assisted proofs involve spectra. E.g., 

𝐸 𝑍 = ground state energy of𝐻 = σ𝑘=1
𝑁 −∆𝑥𝑘 − 𝑍 𝑥𝑘

−1 +σ𝑗≤𝑘 𝑥𝑗 − 𝑥𝑘
−1
.

   Dirac-Schwinger conjecture: asymptotics of 𝐸(𝑍) (Fefferman, Seco 1996)

• Foundations: What is computationally possible? Beyond spectra etc.

Motivation
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Not all spectral problems
are equally hard …
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A =
𝑎1

𝑎2
⋱

Assumption: Algorithm can query entries of 𝐴

Algorithm: Γ𝑛 𝐴 = 𝑎1, 𝑎2, … , 𝑎𝑛 → Sp 𝐴 = 𝑎1, 𝑎2, … in Haus. Metric.

One-sided error control: Γ𝑛 𝐴 ⊂ Sp(𝐴)

Optimal: Can’t obtain Γ𝑛 𝐴 → Sp 𝐴  with Sp(𝐴) ⊂ Γ𝑛 𝐴 .

 

Warm-up: bounded diagonal operators

𝑑H 𝑋, 𝑌 = max sup
𝑥∈𝑋

𝑑(𝑥, 𝑌) , sup
𝑦∈𝑌

𝑑(𝑦, 𝑋)
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A =
𝑎11 𝑎12 ⋯
𝑎21 𝑎22 ⋯
⋮ ⋮ ⋱

Algorithm: Γ𝑛 𝐴 = Sp 𝒫𝑛𝐴𝒫𝑛
∗  converges to Sp(𝐴) in Haus. Metric.

Question: Can we verify the output?

i.e., Does there exist some alg. Γ𝑛(𝐴) → Sp 𝐴  with Γ𝑛 𝐴 ⊂ Sp 𝐴 + 𝐵2−𝑛?

Warm-up: compact self-adjoint operators

classic method
“finite section”
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∗  converges to Sp(𝐴) in Haus. Metric.
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i.e., Does there exist some alg. Γ𝑛(𝐴) → Sp 𝐴  with Γ𝑛 𝐴 ⊂ Sp 𝐴 + 𝐵2−𝑛?

Answer: No algorithm can do this on whole class!

Warm-up: compact self-adjoint operators

classic method
“finite section”

8/37



A =

𝑎1 𝑏1
𝑏1 𝑎2 𝑏2

𝑏2 𝑎3 ⋱

⋱ ⋱

, 𝑏𝑘 > 0, 𝑎𝑘 ∈ ℝ

Non-trivial, e.g., spurious eigenvalues.

 

What about Jacobi operators?
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Non-trivial, e.g., spurious eigenvalues.

Enlarge class to sparse normal operators - surely now much harder?!

 

What about Jacobi operators?

Sparse: finitely many
non-zeros in each column
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A =

𝑎1 𝑏1
𝑏1 𝑎2 𝑏2

𝑏2 𝑎3 ⋱

⋱ ⋱

, 𝑏𝑘 > 0, 𝑎𝑘 ∈ ℝ

Non-trivial, e.g., spurious eigenvalues.

Enlarge class to sparse normal operators - surely now much harder?!

Answer: ∃{Γ𝑛} s.t. lim
𝑛→∞

Γ𝑛 𝐴 = Sp(𝐴) and Γ𝑛 𝐴 ⊂ Sp 𝐴 + 𝐵2−𝑛,

       for any sparse normal operator 𝐴

What about Jacobi operators?

• C., Roman, Hansen, “How to compute spectra with error control,” Phys. Rev. Lett.,2019.

Sparse: finitely many
non-zeros in each column
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A curious case of limits

General bounded: A =
𝑎11 𝑎12 ⋯
𝑎21 𝑎22 ⋯
⋮ ⋮ ⋱

Algorithm: ∃{Γ𝑛3,𝑛2,𝑛1} s.t. lim
𝑛3→∞

lim
𝑛2→∞

lim
𝑛1→∞

Γ𝑛3,𝑛2,𝑛1 𝐴 = Sp(𝐴) 

Question: Can we do better?

• Hansen, “On the solvability complexity index, the 𝑛-pseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.
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A curious case of limits

General bounded: A =
𝑎11 𝑎12 ⋯
𝑎21 𝑎22 ⋯
⋮ ⋮ ⋱

Algorithm: ∃{Γ𝑛3,𝑛2,𝑛1} s.t. lim
𝑛3→∞

lim
𝑛2→∞

lim
𝑛1→∞

Γ𝑛3,𝑛2,𝑛1 𝐴 = Sp(𝐴) 

Question: Can we do better?

Answer: No! Canonically embed problems such as:

Given 𝐵 ∈ 0,1 ℕ×ℕ, does 𝐵 have a column with infinitely many 1’s?

⟹ lower bound on number of “successive limits” needed (indep. of comp. model).

Explains Arveson’s lament!

• Hansen, “On the solvability complexity index, the 𝑛-pseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.
• C., “On the computation of geometric features of spectra of linear operators on Hilbert spaces,” Found. Comput. Math., 2022.
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General algorithm: beyond recursion theory

Computational problem:

• Class of objects Ω (e.g., operators).

• Metric space ℳ,𝑑  (e.g., Hausdorff metric).

• Thing we want to compute Ξ:Ω → ℳ.

• Info we can access, Λ a set of functions Ω → ℂ (e.g., matrix entries).

General algorithm: map Γ: Ω → ℳ such that for any 𝐴 ∈ Ω, ∃ a finite 
non-empty subset ΛΓ(𝐴) ⊆ Λ such that

𝐵 ∈ Ω, 𝑓 𝐵 = 𝑓 𝐴 ∀𝑓 ∈ ΛΓ 𝐴 ⇒ ΛΓ 𝐴 = ΛΓ 𝐵 , Γ(𝐴) = Γ(𝐵)

A lower bound for general algorithms 
holds in ALL models of computation.
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• ∆0: Solved in finite time (v. rare for cts problems).

• ∆1: Solved in “one limit” with full error control:

𝑑(Γ𝑛 𝐴 , Ξ(𝐴)) ≤ 2−𝑛

• ∆2: Solved in “one limit”:

lim
𝑛→∞

Γ𝑛(𝐴) = Ξ(𝐴)

• ∆3: Solved in “two successive limits”:

lim
𝑛→∞

lim
𝑚→∞

Γ𝑛,𝑚(𝐴) = Ξ(𝐴)

• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
• Hansen, “On the solvability complexity index, the 𝑛-pseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.

Solvability Complexity Index Hierarchy

⋮

Can work in any model. E.g., BSS machine, Turing machine, interval arithmetic, inexact input etc.
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• ∆2: Solved in “one limit”:

lim
𝑛→∞

Γ𝑛(𝐴) = Ξ(𝐴)

• ∆3: Solved in “two successive limits”:

lim
𝑛→∞

lim
𝑚→∞

Γ𝑛,𝑚(𝐴) = Ξ(𝐴)

• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
• Hansen, “On the solvability complexity index, the 𝑛-pseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.
• McMullen, “Families of rational maps and iterative root-finding algorithms,” Ann. of Math., 1987.
• Doyle, McMullen, “Solving the quintic by iteration,” Acta Math., 1989.
• Smale, “The fundamental theorem of algebra and complexity theory,” Bull. Amer. Math. Soc., 1981.

Solvability Complexity Index Hierarchy

⋮

Can work in any model. E.g., BSS machine, Turing machine, interval arithmetic, inexact input etc.

Steve Smale: “Is there 
any purely [rational] 
iterative generally 
convergent algorithm 
for polynomial zero 
finding?”

Curt McMullen: “Yes, if the degree 
is three; no, if the degree is higher.”

Peter Doyle & Curt McMullen: 
“The problem can be solved 
using successive limits for the 
quartic and quintic, but not 
the sextic.”
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Error control for spectral problems

• Σ1: ∃ alg. Γ𝑛 s.t. lim
𝑛→∞

Γ𝑛 𝐴 = Ξ 𝐴 , max𝑧∈Γ𝑛 𝐴 dist 𝑧, Ξ 𝐴 ≤ 2−𝑛

Ξ 𝐴 = Sp(𝐴)

• C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.

𝑑H 𝑋, 𝑌 = max sup
𝑥∈𝑋

𝑑(𝑥, 𝑌) , sup
𝑦∈𝑌

𝑑(𝑦, 𝑋)
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• Σ1: ∃ alg. Γ𝑛 s.t. lim
𝑛→∞

Γ𝑛 𝐴 = Ξ 𝐴 , max𝑧∈Γ𝑛 𝐴 dist 𝑧, Ξ 𝐴 ≤ 2−𝑛

• Π1: ∃ alg. Γ𝑛 s.t. lim
𝑛→∞

Γ𝑛 𝐴 = Ξ 𝐴 , max𝑧∈Ξ(𝐴)dist(𝑧, Γ𝑛 𝐴 ) ≤ 2−𝑛

Such problems can be used in a proof!

Ξ 𝐴 = Sp(𝐴)

• C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.

Error control for spectral problems
𝑑H 𝑋, 𝑌 = max sup

𝑥∈𝑋
𝑑(𝑥, 𝑌) , sup

𝑦∈𝑌
𝑑(𝑦, 𝑋)
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Π0

Σ0

Δ0

=
=

⊊ Δ1 ⊊

Π1

Σ1 ∪ Π1 ⊊ Δ2 ⊊

Π2

Σ2

Σ2 ∪ Π2 ⊊ Δ3 ⊊

Π3

Σ3

Σ3 ∪ Π3⋯

Σ1

Sampler of results for bounded op. on 𝑙2(ℕ)
increasing difficulty

Error control 2 limits 3 limits1 limit 3 limits
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• C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.
• C., “On the computation of geometric features of spectra of linear operators on Hilbert spaces,” Found. Comput. Math., 2022.
• C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy," J. Eur. Math. Soc., 2023.
• C., “Computing spectral measures and spectral types,” Commun. Math. Phys., 2021.
• C., Horning, Townsend, “Computing spectral measures of self-adjoint operators,” SIAM Rev., 2021.
• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.

Zoo of problems: spectral type (pure point, absolutely continuous, singularly continuous), Lebesgue measure and 
fractal dimensions of spectra, discrete spectra, essential spectra, eigenspaces + multiplicity, spectral radii, essential 
numerical ranges, geometric features of spectrum (e.g., capacity), spectral gap problem, resonances ...

Sampler of results for bounded op. on 𝑙2(ℕ)
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Example 1: 𝛴1 algorithm for spectra
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Two reasons its hard!

𝐴 = ⨁𝑟=1
∞ 𝐽𝑙𝑟 , 𝐽𝑙𝑟 =

0 1
0 ⋱

⋱ 1
0

∈ ℂ𝑙𝑟×𝑙𝑟

Sp(𝐴) = ቊ
0 , sup 𝑙𝑟 < ∞

𝑧: 𝑧 ≤ 1 , otherwise

No algorithm when given 𝑙𝑟 𝑟=1
∞   can determine if it is bounded.

           ⟹ No algorithm computes spectra of gen. tridiagonal operators.
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Sp(𝐴) = ቊ
0 , sup 𝑙𝑟 < ∞

𝑧: 𝑧 ≤ 1 , otherwise

No algorithm when given 𝑙𝑟 𝑟=1
∞   can determine if it is bounded.

           ⟹ No algorithm computes spectra of gen. tridiagonal operators.

Always have:
(𝐴 − 𝑧)−1 −1 ≤ dist(𝑧, Sp(𝐴)) Assume:

𝑔(dist(𝑧, Sp(𝐴))) ≤ (𝐴 − 𝑧)−1 −1

known function
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Two reasons its hard!

𝐴 = ⨁𝑟=1
∞ 𝐴𝑙𝑟 , 𝐴𝑙𝑟 =

1 1
0

1

⋱
0

1

∈ ℂ𝑙𝑟×𝑙𝑟

Sp 𝐴 = 0,2 , Sp diag 1,0, … = 0,1

More involved: choose 𝑙𝑟 𝑟=1
∞  to trick any supposed algorithm (try it!)
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Two reasons its hard!

𝐴 = ⨁𝑟=1
∞ 𝐴𝑙𝑟 , 𝐴𝑙𝑟 =

1 1
0

1

⋱
0

1

∈ ℂ𝑙𝑟×𝑙𝑟

Sp 𝐴 = 0,2 , Sp diag 1,0, … = 0,1

More involved: choose 𝑙𝑟 𝑟=1
∞  to trick any supposed algorithm (try it!)

Assume:
We have access (Λ) to inner products

𝐴𝑒𝑗 , 𝑒𝑖 , 𝐴𝑒𝑗 , 𝐴𝑒𝑖 , 𝐴∗𝑒𝑗 , 𝐴
∗𝑒𝑖
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Sketch of method

𝜎inf 𝑇 = inf 𝑇𝑣 : 𝑣 ∈ 𝔇 𝑇 , 𝑣 = 1

(𝐴 − 𝑧)−1 −1 = min 𝜎inf 𝐴 − 𝑧 , 𝜎inf 𝐴
∗ − ҧ𝑧

𝜎inf 𝒫𝑛 𝐴 − 𝑧 ∗(𝐴 − 𝑧)𝒫𝑛
∗ = 𝜎inf [𝐴 − 𝑧]𝒫𝑛

∗ ↓ 𝜎inf 𝐴 − 𝑧

𝑔−1 𝜎inf 𝒫𝑛[𝐴 − 𝑧]∗[𝐴 − 𝑧]𝒫𝑛
∗ ↓ 𝑔−1 𝐴 − 𝑧 −1 −1 ≥ dist 𝑧, Sp 𝐴

Error control!

(𝐴 − 𝑧)−1 −1 ≥ 𝑔(dist(𝑧, Sp(𝐴)))

Spectra through
injection moduli
(smallest singular value)

Final ingredient: adaptive search for local minimisers.
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• Lower bound: embed a problem of known difficulty.

Now have canonical ways to do this.

Holds regardless of computational model.

• Upper bound: build an algorithm.

 Problem dependent.

 Typically involves resolvent (𝐴 − 𝑧)−1 for spectral problems.

NB: One can show without 𝑔 or 𝐴𝑒𝑗 , 𝐴𝑒𝑖 , 𝐴∗𝑒𝑗 , 𝐴
∗𝑒𝑖 , SCI ≥ 2.

What did we do?

Often, infinite-dimensional 
solve-then-discretise needed

See conditions to 
make possible!
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Example: Quasicrystal

Dan Shechtman
(Nobel Prize in 

Chemistry 2011.)

Graph Laplacian

SCI alg.

SCI alg.

Er
ro

r
Er

ro
r

Er
ro

r

spectral pollution

Er
ro

r spectral
pollution
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Example with non-trivial 𝑔

𝑇 = −
𝑑2

𝑑𝑥2
+ 𝑖𝑥3 on ℝ

𝑗 𝐸𝑗 to 30 digits with int. arith.

• C., “INFINITE-DIMENSIONAL SPECTRAL COMPUTATIONS, Foundations, Algorithms, and Modern Applications.,” CUP, to appear.

(𝑇 − 𝑧)−1 −1

Carl Bender

Small even away from evals

Michael Berry
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Theorem: Ω: class of self-adjoint diff. operators on 𝐿2(ℝ𝑑)

𝑇 = σ
𝑘∈ℤ≥0

𝑑 , 𝑘 ≤𝑁
𝑐𝑘 𝑥 𝜕𝑘

• 𝐶0
∞(ℝ𝑑) a core of 𝑇.

• 𝑐𝑘 poly bounded, locally bounded total variation.
Can access (to arbitrary precision):

• 𝑐𝑘(𝑞) for 𝑞 ∈ ℚ𝑑.
• Polynomial that bounds 𝑐𝑘 on ℝ𝑑.

(a) Know 𝑐𝑘 TV( −𝑛,𝑛 𝑑) ≤ 𝑏𝑛 ⟹ Sp,Ω ∈ Σ1.

(b) Know 𝑐𝑘 TV( −𝑛,𝑛 𝑑) = 𝑂(𝑏𝑛)⟹ Sp, Ω ∈ Δ2\(Σ1 ∪ Π1). 

• C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022

Differential operators on 𝐿2(ℝ𝑑)
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Differential operators on 𝐿2(ℝ𝑑)

Not verifiable

Verifiable

Extends to other domains, 
singular coefficients etc.

Sampling schemes
to construct matrix.
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Example 2: Smale's 18th problem
“What are the limits of AI?”

*S. Smale’s list of problems for the 21st century (requested by V. Arnold), inspired by Hilbert’s list

Lower bounds: Use SCI embedding techniques

randomized sequential general algorithms ⇢     

“Very often, the creation of a technological artifact precedes the
science that goes with it. The steam engine was invented before
thermodynamics. Thermodynamics was invented to explain the steam
engine, essentially the limitations of it. What we are after is the
equivalent of thermodynamics for intelligence.”                  Yann LeCun

22/37

capture adaptive and probabilistic 
choice of training data



When can we make AI robust and trustworthy?

“Such hallucinatory features are not acceptable and especially
problematic if they mimic normal structures that are either not
present or actually abnormal.”

Problem: hallucinations and instability 
23/37

“AI hallucination”, from Facebook and NYU’s FastMRI challenge 2020.

Finlayson et al., “Adversarial attacks on medical
machine learning,” Science, 2019.



Example of the limits of deep learning

Paradox: “Nice” linear inverse problems where a stable and accurate neural 
network for image reconstruction exists, but it can never be trained!

E.g., suppose we want to solve (holds for much more general problems)

min
𝑥∈ℂ𝑁

𝑥 𝑙1 + 𝜆 𝐴𝑥 − 𝑦 𝑙2
2

𝐴 ∈ ℂ𝑚×𝑁 modality,𝑚 < 𝑁 , 𝑆 = 𝑦𝐾 𝐾=1
𝑅 samples

Arises when given 𝑦 ≈ 𝐴𝑥 + 𝑒.

Enforce condition numbers bounded by 1.
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𝐴 ∈ ℂ𝑚×𝑁 modality,𝑚 < 𝑁 , 𝑆 = 𝑦𝑘 𝑘=1
𝑅 samples

In practice, 𝐴 not known exactly or stored to finite precision.

Assume access to 𝑦𝑛,𝑘 𝑘=1

𝑅
and 𝐴𝑛 (rational approx, e.g., floats) such that

𝑦𝑛,𝑘 − 𝑦𝑘 ≤ 2−𝑛, 𝐴𝑛 − 𝐴 ≤ 2−𝑛, 𝑛 ∈ ℕ.

Training set for (𝐴, 𝑆) ∈ Ω:
𝜄𝐴,𝑆 = 𝑦𝑛,𝑘, 𝐴𝑛 : 𝑘 = 1,… , 𝑅 and 𝑛 ∈ ℕ .

In a nutshell: allow access to arbitrary precision training data.

Question: Given a collection Ω of (𝐴, 𝑆), does there exist a neural network

approximating the solution map, and can it be trained by an algorithm?

Input data 𝛬
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What could go wrong?

min
𝑥∈ℂ𝑁

𝑥 𝑙1 + 𝜆 𝐴𝑥 − 𝑦 𝑙2
2

What could go wrong?

1. Non-existence: No neural network approximates solution map Ξ.

Question: Given a collection Ω of (𝐴, 𝑆), does there exist a neural network
approximating the solution map, and can it be trained by an algorithm?

26/37



What could go wrong?

min
𝑥∈ℂ𝑁

𝑥 𝑙1 + 𝜆 𝐴𝑥 − 𝑦 𝑙2
2

What could go wrong?

1. Non-existence: No neural network approximates solution map Ξ.

Question: Given a collection Ω of (𝐴, 𝑆), does there exist a neural network
approximating the solution map, and can it be trained by an algorithm?

26/37



What could go wrong?

min
𝑥∈ℂ𝑁

𝑥 𝑙1 + 𝜆 𝐴𝑥 − 𝑦 𝑙2
2

What could go wrong?

1. Non-existence: No neural network approximates solution map Ξ.

2. Non-trainable: ∃ neural network that approximates Ξ, but it can’t be trained.

Question: Given a collection Ω of (𝐴, 𝑆), does there exist a neural network
approximating the solution map, and can it be trained by an algorithm?

26/37



What could go wrong?

min
𝑥∈ℂ𝑁

𝑥 𝑙1 + 𝜆 𝐴𝑥 − 𝑦 𝑙2
2

What could go wrong?

1. Non-existence: No neural network approximates solution map Ξ.

2. Non-trainable: ∃ neural network that approximates Ξ, but it can’t be trained.

3. Not practical: ∃ neural network that approximates Ξ, and training algorithm. 
However, any training algorithm needs prohibitively many samples.

Question: Given a collection Ω of (𝐴, 𝑆), does there exist a neural network
approximating the solution map, and can it be trained by an algorithm?
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Fundamental barriers

Paradox: “Nice” linear inverse problems where a stable and accurate neural 
network for image reconstruction exists, but it can never be trained!

• Pick positive integers 𝑛 ≥ 3 and 𝑀. Class of problems such that:
• (Not trainable) No algorithm, even randomised, can produce a neural network with 𝑛 digits 

of accuracy for any member of the dataset with probability greater than 1/2.

• (Not practical) 𝑛 − 1 digits of accuracy is possible over the whole dataset, but any 
algorithm that trains such a neural network requires arbitrarily large training data.

• (Trainable and practical) 𝑛 − 2 digits of accuracy is possible over the whole dataset via an 
algorithm using only 𝑀 training data, regardless of all parameters (e.g., dimension).

Holds for any architecture, any precision of training data.

  ⟹ Classification theory telling us what can and cannot be done

• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.
• Antun, C., Hansen,“Proving Existence Is Not Enough: : Mathematical Paradoxes Unravel the Limits of Neural Networks in Artificial Intelligence,”SIAM News, May 2022.
• Choi, “Some AI Systems May Be Impossible to Compute,” IEEE Spectrum, March 2022.

Theorem: Pick positive integers 𝑛 ≥ 3 and 𝑀. Class of problems such that:
• (Not trainable) No algorithm (even random) can train a neural network with 
𝒏 digits of accuracy over dataset with prob. > 1/2.

• (Not practical) 𝒏 − 𝟏 digits of accuracy possible over dataset, but any 
training algorithm requires arbitrarily large training data.

• (Trainable and practical) 𝒏 − 𝟐 digits of accuracy possible over dataset via 
training algorithm using 𝑴 training data.

Any computational model
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Idea of mechanism

SCI embedding into
well-conditioned problems.

Randomised general algorithm
to capture training.

Workhorse lemma
(applies to other problems).

Low-dimensional
phase transitions

SCI embedding into
well-conditioned
problems

Paradox
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The world of neural networks

Given a problem and conditions, where does it sit in this diagram?
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The world of neural networks

Given a problem and conditions, where does it sit in this diagram?
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Example counterpart theorem
Certain conditions: stable neural networks trained with exponential accuracy. 
E.g., approximate sharpness inequality:

min
𝑥∈ℂ𝑁

𝑓(𝑥) s. t. 𝐴𝑥 − 𝑦 ≤ ε

dist 𝑥, solution set ≤
([𝑓 𝑥 − 𝑓∗] + [ 𝐴𝑥 − 𝑦 − 𝜀] + 𝛿

𝛼

1/𝛽

Fast Iterative REstarted NETworks (FIRENETs)
(unrolled primal-dual with novel restart scheme)

Theorem: Training algorithm under above assumption produces stable neural networks 𝜑𝑛
of width 𝑂(𝑁), depth 𝑂(𝑛), guaranteed worst bound optimal in (𝛼, 𝛽). E.g., 𝛽 = 1,

dist 𝜑𝑛 𝑦 , solution set ≲ 𝑒−𝑛 + 𝛿

• C., Antun, Hansen, “The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem,” PNAS, 2022.
• Adcock, C., Neyra-Nesterenko, “Restarts subject to approximate sharpness: A parameter-free and optimal scheme for first-order methods”, preprint.

(𝛼, 𝛽) unknown
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Example of severe instability

• Zhu et al., “Image reconstruction by domain-transform manifold learning,” Nature, 2018.
• Antun et al., “On instabilities of deep learning in image reconstruction and the potential costs of AI,” PNAS, 2020.

MRI: 2D DFT,
60% subsampling.

Original 𝑥 𝑥 + 𝑒1 𝑥 + 𝑒2 𝑥 + 𝑒3

Ψ(𝐴 𝑥 + 𝑒1 ) Ψ(𝐴 𝑥 + 𝑒2 ) Ψ(𝐴 𝑥 + 𝑒3 )Ψ(𝐴 𝑥 )
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FIRENET: provably stable (even to adversarial examples) and accurate

• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.

Sampling and approximate 
sparseness in levels give 
approximate sharpness

Original 𝑥 𝑥 + 𝑟1 𝑥 + 𝑟2 𝑥 + 𝑟3

𝜑(𝐴 𝑥 + 𝑟1 ) 𝜑(𝐴 𝑥 + 𝑟2 ) 𝜑(𝐴 𝑥 + 𝑟3 )𝜑(𝐴 𝑥 )
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All networks 
trained on 5000 
images of ellipses

Stability vs accuracy

2D DFT,
15% subsampling.

• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.
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U-Net with no noise: accurate but unstable

U-Net: standard 
neural network 
architecture for 
imaging. Approx 4 
million parameters.

• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.

34/37



U-Net with noise: stable but inaccurate

• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.

34/37



FIRENET: balances stability and accuracy?

• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.
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FIRENET: balances stability and accuracy?

Open problem: use the toolkit to discover optimal trade-offs.

• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.
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Why study this hierarchy?

• Optimality: understand boundaries of what’s possible.

• Lower bounds ⟹ spot assumptions needed to lower SCI.

• Upper bounds ⟹ new algorithms and methods.

FOUNDATIONS ⟷ METHODS

• Σ1 ∪ Π1 ⟹ computer-assisted proofs.

• Much of computational literature not sharp!

Remarks:

• Can use any model of computation.

• Existing hierarchies (e.g., arithmetic, Baire etc.) included as particular cases.
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• Resonances (∆2\Σ1 ∪Π1)
• Ben-Artzi, Marletta, Rösler, “Computing scattering resonances,” J. Eur. Math. Soc., 2022.

• Ben-Artzi, Marletta, Rösler, “Computing the sound of the sea in a seashell,” Found. Comput. Math., 2022.

• Optimisation and regularisation
• Bastounis, Hansen, Vlačić, “The extended Smale's 9th problem,” preprint.

• C., Gazdag, Bastounis, Hansen, “On phase transitions and approximation thresholds in semidefinite programs,”preprint.

• Data-driven Koopmanism for dynamical systems (40,000 papers 2013-2023)
• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,”CPAM, to appear.

• C., Ayton, Szőke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.

• Polynomial root finding (∆2, ∆3, ∆4)
• Smale, “The fundamental theorem of algebra and complexity theory,” Bull. Amer. Math. Soc., 1981.

• McMullen, “Families of rational maps and iterative root-finding algorithms,” Ann. of Math., 1987.

• Doyle, McMullen, “Solving the quintic by iteration,” Acta Math., 1989.

SCI throughout computational mathematics 36/37



• Computer-assisted proofs (Σ1 ∪ Π1\∆1)
• Fefferman, Seco, “Aperiodicity of the Hamiltonian flow in the Thomas-Fermi potential,” Rev. Mat. Iberoamericana, 1993.

• Fefferman, Seco, “Interval arithmetic in quantum mechanics,” Applications of interval computations, 1996.

• Hales, “A proof of the Kepler conjecture,” Ann. of Math., 2005.

• Hales et al., “A formal proof of the Kepler conjecture,” Forum Math. Pi, 2017.

• Spectral measures and continuous spectra (∆1 or ∆2 depending on ℳ,𝑑 )
• Webb, Olver, “Spectra of Jacobi operators via connection coefficient matrices,” CIMP, 2021. 

• C., Horning, Townsend, “Computing spectral measures of self-adjoint operators,” SIAM Rev., 2021.

SCI throughout computational mathematics

Andrew Horning delivering plenary on 
computing spectral measures at SIAMCSE23

Shameless plug: tune in tomorrow at 14:30 Room 105 
for NONLINEAR SPECTRAL PROBLEMS!
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Summary
SCI hierarchy is a tool for discovering the foundations of computation.

Example 1: The zoo of spectral problems.

• Many spectral problems in infinite dimensions are impossible. 
Some are more impossible than others!

• New suite of “infinite-dimensional” algorithms for spectral problems.            
Rigorous, optimal, practical.

Example 2: Need for foundations in AI/deep learning (Smale’s 18th prob).

• Paradox: “Nice” problems where stable, accurate NNs exist but can’t be trained! 
Trainability depends on desired accuracy, training data.

• Conditions ⇒ FIRENETs exp. convergence + stable (even w.r.t. adversarial attacks).

Could this framework be useful in your area?
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