Residual Dynamic Mode Decomposition Robust and verified Koopmanism!

Matthew Colbrook (m.colbrook@damtp.cam.ac.uk)
 University of Cambridge

Joint work with
Lorna Ayton (Cambridge), Máté Szőke (Virginia Tech), Alex Townsend (Cornell)

Maths

C., Townsend, "Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems," preprint. C., Ayton, Szőke, "Residual Dynamic Mode Decomposition," preprint. 4 Applications

Data-driven dynamical systems

- State $x \in \Omega \subseteq \mathbb{R}^{d}$, unknown function $F: \Omega \rightarrow \Omega$ governs dynamics

$$
x_{n+1}=F\left(x_{n}\right)
$$

- Goal: Learn about system from data $\left\{x^{(m)}, y^{(m)}=F\left(x^{(m)}\right)\right\}_{m=1}^{M}$
- Data: experimental measurements or numerical simulations
- E.g., used for forecasting, control, design, understanding
- Applications: chemistry, climatology, electronics, epidemiology, finance, fluids, molecular dynamics, neuroscience, plasmas, robotics, video processing, etc.

Operator viewpoint

- Koopman operator \mathcal{K} acts on functions $g: \Omega \rightarrow \mathbb{C}$

$$
[\mathcal{K} g]\left(x_{n}\right)=g\left(F\left(x_{n}\right)\right)=g\left(x_{n+1}\right)
$$

- \mathcal{K} is linear but acts on an infinite-dimensional space.

- Work in $L^{2}(\Omega, \omega)$ for positive measure ω, with inner product $\langle\cdot, \cdot\rangle$.
- Koopman, "Hamiltonian systems and transformation in Hilbert space," Proc. Natl. Acad. Sci. USA, 1931.
- Koopman, v. Neumann, "Dynamical systems of continuous spectra," Proc. Natl. Acad. Sci. USA, 1932.

Why is linear (much) easier?

- Suppose $F(x)=A x, A \in \mathbb{R}^{d \times d}, A=V \Lambda V^{-1}$.
- Set $\xi=V^{-1} x$,

$$
\xi_{n}=V^{-1} x_{n}=V^{-1} A^{n} x_{0}=\Lambda^{n} V^{-1} x_{0}=\Lambda^{n} \xi_{0}
$$

- Let $w^{\mathrm{T}} A=\lambda w$, set $\varphi(x)=w^{\mathrm{T}} x$,

$$
[\mathcal{K} \varphi](x)=w^{\mathrm{T}} A x=\lambda \varphi(x)
$$

Much more general (non-linear and even chaotic F).

Koopman mode decomposition

$$
\begin{aligned}
& g(x)=\sum_{\text {eigs } \lambda_{j}} c_{\lambda_{j}} \varphi_{\lambda_{j}}(x)+\int_{[-\pi, \pi]_{\mathrm{per}}} \phi_{\theta, g}(x) \mathrm{d} \theta \\
& g\left(x_{n}\right)=\left[\mathcal{K}^{n} g\right]\left(x_{0}\right)=\sum_{\operatorname{eigs} \lambda_{j}} c_{\lambda_{j}} \lambda_{j}{ }^{n} \varphi_{\lambda_{j}}\left(x_{0}\right)+\int_{[-\pi, \pi]_{\mathrm{per}}} e^{i n \theta} \phi_{\theta, g}\left(x_{0}\right) \mathrm{d} \theta
\end{aligned}
$$

Encodes: geometric features, invariant measures, transient behavior, long-time behavior, coherent structures, quasiperiodicity, etc.

GOAL: Data-driven approximation of \mathcal{K} and its spectral properties.

[^0]
Koopmania*: A revolution in the big data era?

$\approx 35,000$ papers over last decade!

BUT: Computing spectra in infinite dimensions is notoriously hard!

$$
\begin{aligned}
& \text { —number of papers } \\
& \text { —doubles every } 5 \text { yrs }
\end{aligned}
$$

*Wikipedia: "its wild surge in popularity is sometimes jokingly called 'Koopmania""

Challenges of computing

$\operatorname{Spec}(\mathcal{K})=\{\lambda \in \mathbb{C}: \mathcal{K}-\lambda I$ is not invertible $\}$

Truncate: $\mathcal{K} \longrightarrow \mathbb{K} \in \mathbb{C}^{N_{K} \times N_{K}}$

1) "Too much": Approximate spurious modes $\lambda \notin \operatorname{Spec}(\mathcal{K})$
2) "Too little": Miss parts of $\operatorname{Spec}(\mathcal{K})$
3) Continuous spectra.

Verification: Is it right?

Build the matrix: Dynamic Mode Decomposition (DMD)

Given dictionary $\left\{\psi_{1}, \ldots, \psi_{N_{K}}\right\}$ of functions $\psi_{j}: \Omega \rightarrow \mathbb{C}$,
$\left\{x^{(m)}, y^{(m)}=F\left(x^{(m)}\right)\right\}_{m=1}^{M}$

$$
\left\langle\psi_{k}, \psi_{j}\right\rangle \approx \sum_{m=1}^{M} w_{m} \overline{\psi_{j}\left(x^{(m)}\right)} \psi_{k}\left(x^{(m)}\right)=[\underbrace{\left(\begin{array}{cccc}
\psi_{1}\left(x^{(1)}\right) & \cdots & \psi_{N_{K}}\left(x^{(1)}\right) \\
\vdots & \ddots & \vdots \\
\psi_{1}\left(x^{(M)}\right) & \cdots & \psi_{N_{K}}\left(x^{(M)}\right)
\end{array}\right)^{*}}_{\Psi_{X}} \underbrace{\left(\begin{array}{ccc}
w_{1} & & \\
& \ddots & \\
& & w_{M}
\end{array}\right)}_{W} \underbrace{\left(\begin{array}{ccc}
\psi_{1}\left(x^{(1)}\right) & \cdots & \psi_{N_{K}}\left(x^{(1)}\right) \\
\vdots & \ddots & \vdots \\
\psi_{1}\left(x^{(M)}\right) & \cdots & \psi_{N_{K}}\left(x^{(M)}\right)
\end{array}\right)}_{\Psi_{X}}]_{j k}
$$

$$
\left\langle\mathcal{K} \psi_{k}, \psi_{j}\right\rangle \approx \sum_{m=1}^{M} w_{m} \overline{\psi_{j}\left(x^{(m)}\right)} \underbrace{\psi_{k}\left(y^{(m)}\right)}_{\left[\mathcal{K} \psi_{k}\right]\left(x^{(m)}\right)}=[\underbrace{\left(\begin{array}{ccc}
\psi_{1}\left(x^{(1)}\right) & \cdots & \psi_{N_{K}}\left(x^{(1)}\right) \\
\vdots & \ddots & \vdots \\
\psi_{1}\left(x^{(M)}\right) & \cdots & \psi_{N_{K}}\left(x^{(M)}\right)
\end{array}\right)}_{\Psi_{X}} \underbrace{*}_{W} \begin{array}{ccc}
w_{1} & & \\
& \ddots & \\
& w_{M}
\end{array}) \underbrace{\left(\begin{array}{ccc}
\psi_{1}\left(y^{(1)}\right) & \cdots & \psi_{N_{K}}\left(y^{(1)}\right) \\
\vdots & & \ddots \\
\psi_{1}\left(y^{(M)}\right) & \cdots & \psi_{N_{K}}\left(y^{(M)}\right)
\end{array}\right)}_{j k}]_{\Psi_{Y}}^{\left(\begin{array}{cc}
y^{(M)}
\end{array}\right]}
$$

$$
\mathcal{K} \longrightarrow \mathbb{K}=\left(\Psi_{X}^{*} W \Psi_{X}\right)^{-1} \Psi_{X}^{*} W \Psi_{Y} \in \mathbb{C}^{N_{K} \times N_{K}}
$$

Recall open problems: too much, too little, continuous spectra, verification

- Schmid, "Dynamic mode decomposition of numerical and experimental data," J. Fluid Mech., 2010.
- Rowley, Mezić, Bagheri, Schlatter, Henningson, "Spectral analysis of nonlinear flows," J. Fluid Mech., 2009.
- Kutz, Brunton, Brunton, Proctor, "Dynamic mode decomposition: data-driven modeling of complex systems," SIAM, 2016.
- Williams, Kevrekidis, Rowley "A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition," J. Nonlinear Sci., 2015.

Residual DMD (ResDMD): Approx. \mathcal{K} and $\mathcal{K}^{*} \mathcal{K}$

$$
\begin{aligned}
&\left\langle\psi_{k}, \psi_{j}\right\rangle \approx \sum_{m=1}^{M} w_{m} \overline{\psi_{j}\left(x^{(m)}\right)} \psi_{k}\left(x^{(m)}\right)=[\underbrace{\Psi_{X}^{*} W \Psi_{X}}_{G}]_{j k} \\
&\left\langle\mathcal{K} \psi_{k}, \psi_{j}\right\rangle \approx \sum_{m=1}^{M} w_{m} \overline{\psi_{j}\left(x^{(m)}\right)} \underbrace{\psi_{k}\left(y^{(m)}\right)}_{\left[\mathcal{K} \psi_{k}\right]\left(x^{(m)}\right)}=[\underbrace{\Psi_{X}^{*} W \Psi_{Y}}_{K_{1}}]_{j k} \\
&\left\langle\mathcal{K} \psi_{k}, \mathcal{K} \psi_{j}\right\rangle \approx \sum_{m=1}^{M} w_{m} \overline{\psi_{j}\left(y^{(m)}\right)} \psi_{k}\left(y^{(m)}\right)=[\underbrace{\Psi_{Y}^{*} W \Psi_{Y}}_{K_{2}}]_{j k}
\end{aligned}
$$

Residuals: $g=\sum_{j=1}^{N_{K}} \mathbf{g}_{j} \psi_{j},\|\mathcal{K} g-\lambda g\|^{2} \approx \mathbf{g}^{*}\left[K_{2}-\lambda K_{1}{ }^{*}-\bar{\lambda} K_{1}+|\lambda|^{2} G\right] \mathbf{g}$

- C., Townsend, "Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems," preprint. - C., Ayton, Szőke, "Residual Dynamic Mode Decomposition," J. Fluid Mech., under minor rev.
- Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

Quadrature with trajectory data

$$
\text { E.g., }\left\langle\mathcal{K} \psi_{k}, \psi_{j}\right\rangle=\lim _{M \rightarrow \infty} \sum_{m=1}^{M} w_{m} \overline{\psi_{j}\left(x^{(m)}\right)} \underbrace{\psi_{k}\left(y^{(m)}\right)}_{\left[\mathcal{K} \psi_{k}\right]\left(x^{(m)}\right)}
$$

Three examples:

- High-order quadrature: $\left\{x^{(m)}, w_{m}\right\}_{m=1}^{M} M$-point quadrature rule.

Rapid convergence. Requires free choice of $\left\{x^{(m)}\right\}_{m=1}^{M}$ and small d.

- Random sampling: $\left\{x^{(m)}\right\}_{m=1}^{M}$ selected at random. \longleftarrow Most common Large d. Slow Monte Carlo $O\left(M^{-1 / 2}\right)$ rate of convergence.
- Ergodic sampling: $x^{(m+1)}=F\left(x^{(m)}\right)$.

Single trajectory, large d. Requires ergodicity, convergence can be slow.

ResDMD: avoiding "too much"

$$
\operatorname{res}(\lambda, \mathbf{g})^{2}=\frac{\mathbf{g}^{*}\left[K_{2}-\lambda K_{1}{ }^{*}-\bar{\lambda} K_{1}+|\lambda|^{2} G\right] \mathbf{g}}{\mathbf{g}^{*} G \mathbf{g}}
$$

eigenvectors

Algorithm 1:

1. Compute $G, K_{1}, K_{2} \in \mathbb{C}^{N_{K} \times N_{K}}$ and eigendecomposition $K_{1} V=G V \Lambda$.
2. For each eigenpair (λ, \mathbf{v}), compute $\operatorname{res}(\lambda, \mathbf{v})$.
3. Output: subset of e-vectors $V_{(\varepsilon)} \& \mathrm{e}$-vals $\Lambda_{(\varepsilon)}$ with $\operatorname{res}(\lambda, \mathbf{v}) \leq \varepsilon \quad(\varepsilon=$ input tol $)$.

Theorem (no spectral pollution): Suppose quad. rule converges. Then $\limsup _{M \rightarrow \infty} \max _{\lambda \in \Lambda_{(\varepsilon)}}\left\|(\mathcal{K}-\lambda)^{-1}\right\|^{-1} \leq \varepsilon$

ResDMD: avoiding "too much"

$$
\operatorname{res}(\lambda, \mathbf{g})^{2}=\frac{\mathbf{g}^{*}\left[K_{2}-\lambda K_{1}{ }^{*}-\bar{\lambda} K_{1}+|\lambda|^{2} G\right] \mathbf{g}}{\mathbf{g}^{*} G \mathbf{g}}
$$

eigenvectors

Algorithm 1:

1. Compute $G, K_{1}, K_{2} \in \mathbb{C}^{N_{K} \times N_{K}}$ and eigendecomposition $K_{1} V=G V \Lambda$.
2. For each eigenpair (λ, \mathbf{v}), compute $\operatorname{res}(\lambda, \mathbf{v})$.
3. Output: subset of e-vectors $V_{(\varepsilon)} \& \mathrm{e}$-vals $\Lambda_{(\varepsilon)}$ with $\operatorname{res}(\lambda, \mathbf{v}) \leq \varepsilon \quad(\varepsilon=$ input tol $)$.

Theorem (no spectral pollution): Suppose quad. rule converges. Then $\limsup _{M \rightarrow \infty} \max _{\lambda \in \Lambda_{(\varepsilon)}}\left\|(\mathcal{K}-\lambda)^{-1}\right\|^{-1} \leq \varepsilon$

BUT: Typically, does not capture all of spectrum! ("too little")

ResDMD: avoiding "too little"

$$
\operatorname{Spec}_{\varepsilon}(\mathcal{K})=\bigcup_{\|\mathcal{B}\| \leq \varepsilon} \operatorname{Spec}(\mathcal{K}+\mathcal{B}), \quad \lim _{\varepsilon \downarrow 0} \operatorname{Spec}_{\varepsilon}(\mathcal{K})=\operatorname{Spec}(\mathcal{K})
$$

Algorithm 2:
First convergent method for general \mathcal{K}

1. Compute $G, K_{1}, K_{2} \in \mathbb{C}^{N_{K} \times N_{K}}$.
2. For z_{k} in comp. grid, compute $\tau_{k}=\min _{N_{k}} \operatorname{res}\left(z_{k}, g\right)$, corresponding g_{k} (gen. SVD) $g=\sum_{j=1}^{N_{K}} \mathbf{g}_{j} \psi_{j}$
3. Output: $\left\{z_{k}: \tau_{k}<\varepsilon\right\}$ (approx. of $\left.\operatorname{Spec}_{\varepsilon}(\mathcal{K})\right),\left\{g_{k}: \tau_{k}<\varepsilon\right\}$ (ε-pseudo-eigenfunctions).

Theorem (full convergence): Suppose the quadrature rule converges.

- Error control: $\left\{z_{k}: \tau_{k}<\varepsilon\right\} \subseteq \operatorname{Spec}_{\varepsilon}(\mathcal{K}) \quad$ (as $M \rightarrow \infty$)
- Convergence: Converges locally uniformly to $\operatorname{Spec}_{\varepsilon}(\mathcal{K}) \quad$ (as $N_{K} \rightarrow \infty$)

Example: non-linear pendulum

$$
\dot{x}_{1}=x_{2}, \quad \dot{x}_{2}=-\sin \left(x_{1}\right), \quad \Omega=[-\pi, \pi]_{\mathrm{per}} \times \mathbb{R}
$$

$$
N_{K}=3
$$

Computed pseudospectra $(\varepsilon=0.25)$. Eigenvalues of \mathbb{K} shown as dots (spectral pollution).

Approximate eigenfunctions

Colour represents complex argument, constant modulus shown as shadowed steps. All residuals smaller than $\varepsilon=0.05$ (made smaller by increasing N_{K}).

The Challenges

1) "Foo much": Approximate spurious modes $\lambda \notin \operatorname{Spec}(\mathcal{K})$
2) "Too little": Miss parts of $\operatorname{Spec}(\mathcal{K})$
3) Continuous spectra.

Verification: Is it right?

Setup for continuous spectra

No such assumption
was made in first part of talk!
Suppose system is measure-preserving (e.g., Hamiltonian, ergodic, post-transient etc.)
$\Leftrightarrow \mathcal{K}^{*} \mathcal{K}=I$ (isometry)
$\Rightarrow \operatorname{Spec}(\mathcal{K}) \subseteq\{z:|z| \leq 1\}$

(NB: we consider unitary extensions via Wold decomposition.) measure supp. on boundary

Spectral decomposition of operators

$$
\begin{array}{cc}
A \in \mathbb{C}^{n \times n} \text { normal } \quad \Longrightarrow \quad \text { O.N. basis of eigenvectors } v_{1}, \ldots, v_{n}: \\
v=\left(\sum_{k=1}^{n} v_{k} v_{k}^{*}\right) v, \quad A v=\left(\sum_{k=1}^{n} \lambda_{k} v_{k} v_{k}^{*}\right) v, \quad v \in \mathbb{C}^{\prime} \\
\text { Projector onto } \operatorname{Span}\left(v_{k}\right) & \text { eigenvalues }
\end{array}
$$

Spectral decomposition of operators

$$
\begin{array}{cc}
A \in \mathbb{C}^{n \times n} \text { normal } \quad \Rightarrow \quad \text { O.N. basis of eigenvectors } v_{1}, \ldots, v_{n}: \\
v=\left(\sum_{k=1}^{n} v_{k} v_{k}^{*}\right) v, \quad A v=\left(\sum_{k=1}^{n} \lambda_{k} v_{k} v_{k}^{*}\right) v, \quad v \in \mathbb{C}^{n} \\
\text { Projector onto } \operatorname{Span}\left(v_{k}\right) & \text { eigenvalues }
\end{array}
$$

Energy of " v " in each eigenvector: $\quad \mu_{v}\left(\lambda_{j}\right)=\left\langle v_{j} v_{j}^{*} v, v\right\rangle=\left|v_{j}^{*} v\right|^{2}$
This is called the spectral measure with respect to a vector v.

Spectral decomposition of operators

$$
\begin{array}{cc}
A \in \mathbb{C}^{n \times n} \text { normal } \quad \Rightarrow \quad \text { O.N. basis of eigenvectors } v_{1}, \ldots, v_{n}: \\
v=\left(\sum_{k=1}^{n} v_{k} v_{k}^{*}\right) v, \quad A v=\left(\sum_{k=1}^{n} \lambda_{k} v_{k} v_{k}^{*}\right) v, \quad v \in \mathbb{C}^{n} \\
\text { Projector onto } \operatorname{Span}\left(v_{k}\right) & \text { eigenvalues }
\end{array}
$$

Energy of " v " in each eigenvector: $\quad \mu_{v}\left(\lambda_{j}\right)=\left\langle v_{j} v_{j}^{*} v, v\right\rangle=\left|v_{j}^{*} v\right|^{2}$
This is called the spectral measure with respect to a vector v.

Spectral decomposition of operators

$$
A \in \mathbb{C}^{n \times n} \text { normal } \quad \Longrightarrow \quad \text { O.N. basis of eigenvectors } v_{1}, \ldots, v_{n}
$$

$$
\begin{aligned}
& v=\left(\sum_{k=1}^{n} v_{k} v_{k}^{*}\right) v, \\
& \text { Projector onto } \operatorname{Span}\left(v_{k}\right)
\end{aligned}
$$

$$
A v=\left(\sum_{k=1}^{n} \lambda_{k} v_{k} v_{k}^{*}\right) v
$$

$$
v \in \mathbb{C}^{n}
$$

eigenvalues
Energy of " v " in each eigenvector: $\quad \mu_{v}\left(\lambda_{j}\right)=\left\langle v_{j} v_{j}^{*} v, v\right\rangle=\left|v_{j}^{*} v\right|^{2}$
This is called the spectral measure with respect to a vector v.

Spectral decomposition of operators

$$
\begin{array}{cc}
A \in \mathbb{C}^{n \times n} \text { normal } \quad \Rightarrow \quad \text { O.N. basis of eigenvectors } v_{1}, \ldots, v_{n}: \\
v=\left(\sum_{k=1}^{n} v_{k} v_{k}^{*}\right) v, \quad A v=\left(\sum_{k=1}^{n} \lambda_{k} v_{k} v_{k}^{*}\right) v, \quad v \in \mathbb{C}^{n} \\
\text { Projector onto } \operatorname{Span}\left(v_{k}\right) & \text { eigenvalues }
\end{array}
$$

Energy of " v " in each eigenvector: $\quad \mu_{v}\left(\lambda_{j}\right)=\left\langle v_{j} v_{j}^{*} v, v\right\rangle=\left|v_{j}^{*} v\right|^{2}$
This is called the spectral measure with respect to a vector v.

Spectral decomposition of operators

$$
\begin{array}{cc}
A \in \mathbb{C}^{n \times n} \text { normal } \quad \Rightarrow \quad \text { O.N. basis of eigenvectors } v_{1}, \ldots, v_{n}: \\
v=\left(\sum_{k=1}^{n} v_{k} v_{k}^{*}\right) v, \quad A v=\left(\sum_{k=1}^{n} \lambda_{k} v_{k} v_{k}^{*}\right) v, \quad v \in \mathbb{C}^{n} \\
\text { Projector onto } \operatorname{Span}\left(v_{k}\right) & \text { eigenvalues }
\end{array}
$$

Energy of " v " in each eigenvector: $\quad \mu_{v}\left(\lambda_{j}\right)=\left\langle v_{j} v_{j}^{*} v, v\right\rangle=\left|v_{j}^{*} v\right|^{2}$
This is called the spectral measure with respect to a vector v.

Spectral decomposition of operators

$$
A \in \mathbb{C}^{n \times n} \text { normal } \quad \Longrightarrow \quad \text { O.N. basis of eigenvectors } v_{1}, \ldots, v_{n}
$$

$$
\begin{aligned}
& v=\left(\sum_{k=1}^{n} v_{k} v_{k}^{*}\right) v \\
& \text { Projector onto } \operatorname{Span}\left(v_{k}\right)
\end{aligned}
$$

$$
A v=\left(\sum_{k=1}^{n} \lambda_{k} v_{k} v_{k}^{*}\right) v
$$

$$
v \in \mathbb{C}^{n}
$$

eigenvalues
Energy of " v " in each eigenvector: $\quad \mu_{v}\left(\lambda_{j}\right)=\left\langle v_{j} v_{j}^{*} v, v\right\rangle=\left|v_{j}^{*} v\right|^{2}$
This is called the spectral measure with respect to a vector v.
\mathcal{K} is unitary $\quad \Rightarrow \quad$ projection-valued measure ξ

$$
g=\left(\int_{\mathbb{T}} d \xi(y)\right) g, \quad \mathcal{K} g=\left(\int_{\mathbb{T}} y d \xi(y)\right) g
$$

$$
\text { Spectral measure } \quad v_{g}(B)=\langle\xi(B) g, g\rangle
$$

Spectral decomposition of operators

Spectral measure $\quad v_{g}(B)=\langle\xi(B) g, g\rangle$

Evaluating spectral measure

$\varepsilon=$ "smoothing parameter"
Poisson kernel for unit disk

$$
P_{\varepsilon}\left(\theta_{0}\right)=\frac{1}{2 \pi} \frac{(1+\varepsilon)^{2}-1}{1+(1+\varepsilon)^{2}-2(1+\varepsilon) \cos \left(\theta_{0}\right)}
$$

Evaluating spectral measur

Evaluating spectral measure

$\varepsilon=$ "smoothing parameter"
$\begin{aligned} & \text { Poisson kernel for } \\ & \text { unit disk }\end{aligned} P_{\varepsilon}\left(\theta_{0}\right)=\frac{1}{2 \pi} \frac{(1+\varepsilon)^{2}-1}{1+(1+\varepsilon)^{2}-2(1+\varepsilon) \cos \left(\theta_{0}\right)}$

$$
\left[P_{\varepsilon} * v_{g}\right]\left(\theta_{0}\right)=\mathcal{C}_{g}\left(e^{i \theta_{0}}(1+\varepsilon)^{-1}\right)-\mathcal{C}_{g}\left(e^{i \theta_{0}}(1+\varepsilon)\right)
$$

$$
\mathcal{C}_{g}(z)=\int_{[-\pi, \pi]_{\mathrm{per}}} \frac{e^{i \theta} \mathrm{~d} v_{g}(\theta)}{e^{i \theta}-z}= \begin{cases}\left\langle(\mathcal{K}-z I)^{-1} g, \mathcal{K}^{*} g\right\rangle, & \text { if }|z|>1 \\ -z^{-1}\left\langle g,\left(\mathcal{K}-\bar{z}^{-1} I\right)^{-1} g\right\rangle, & \text { if } 0<|z|<1\end{cases}
$$

ResDMD computes with error control

Example

$$
\begin{gathered}
\mathcal{K}=\left(\begin{array}{cccccc}
\overline{\alpha_{0}} & \overline{\alpha_{1}} \rho_{0} & \rho_{0} \rho_{1} & & & \\
\rho_{0} & -\overline{\alpha_{1}} \alpha_{0} & -\alpha_{0} \rho_{1} & & & \\
& \overline{\alpha_{2}} \rho_{1} & -\overline{\alpha_{2}} \alpha_{1} & \overline{\alpha_{3}} \rho_{2} & \rho_{3} \rho_{2} & \\
& \rho_{2} \rho_{1} & -\alpha_{1} \rho_{2} & -\overline{\alpha_{3}} \alpha_{2} & -\rho_{3} \alpha_{2} & \ddots \\
& & & \overline{\alpha_{4}} \rho_{3} & -\overline{\alpha_{4}} \alpha_{3} & \ddots \\
& & \ddots & \ddots & \ddots
\end{array}\right) \\
\alpha_{j}=(-1)^{j} 0.95^{(j+1) / 2}, \quad \rho_{j}=\sqrt{1-\left|\alpha_{j}\right|^{2}}
\end{gathered}
$$

Generalized shift, typical building block of many dynamical systems.

Fix N_{K}, vary ε : unstable!

Fix ε, vary N_{K} : too smooth!

Adaptive: new matrix to compute residuals crucial

But ... slow convergence

Problem: As $\varepsilon \downarrow 0$, error is $O(\varepsilon \log (1 / \varepsilon))$ and $N_{K}(\varepsilon) \rightarrow \infty$.

Small N_{K} critical in data-driven computations. Can we improve convergence rate?

High-order rational kernels

Kernels

m th order rational kernels:
$K_{\varepsilon}(\theta)=\frac{e^{-i \theta}}{2 \pi} \sum_{j=1}^{m}\left[\frac{c_{j}}{e^{-i \theta}-\left(1+\varepsilon \overline{Z_{j}}\right)^{-1}}-\frac{d_{j}}{e^{-i \theta}-\left(1+\varepsilon z_{j}\right)}\right]$

ResDMD computes with error control

$$
\left[K_{\varepsilon} * v_{g}\right]\left(\theta_{0}\right)=
$$

$$
\sum_{j=1}^{m}\left[c_{j} \mathcal{C}_{g}\left(e^{i \theta_{0}}\left(1+\varepsilon \bar{z}_{j}\right)^{-1}\right)-d_{j} \mathcal{C}_{g}\left(e^{i \theta_{0}}\left(1+\varepsilon z_{j}\right)\right)\right]
$$

Smaller N_{K} (larger ε)

Convergence

Theorem: Automatic selection of $N_{K}(\varepsilon)$ with $O\left(\varepsilon^{m} \log (1 / \varepsilon)\right)$ convergence:

- Density of continuous spectrum ρ_{g}. (pointwise and L^{p})
- Integration against test functions. (weak convergence)

$$
\begin{aligned}
& \int_{[-\pi, \pi]_{\text {per }}} h(\theta)\left[K_{\varepsilon} * v_{g}\right](\theta) \mathrm{d} \theta \\
= & \int_{[-\pi, \pi]_{\text {per }}} h(\theta) \mathrm{d} v_{g}(\theta)+O\left(\varepsilon^{m} \log (1 / \varepsilon)\right)
\end{aligned}
$$

Also recover discrete spectrum.

[^1]
Spectral measures of self-adjoint operators

Software package

SpecSolve available at https://github.com/SpecSolve Capabilities: ODEs, PDEs, integral operators, discrete operators.

The Challenges

1) "Too much": Approximate spurious modes $\lambda \notin \operatorname{Spec}(\mathcal{K})$
2) "Too little": Miss parts of $\operatorname{Spec}(\mathcal{K})$
3) Continuous-spectra.

Verification: Is it right?

Is it right? The importance of verification

E.g., ground state of quasicrystal

Is it right? The importance of verification

E.g., ground state of quasicrystal

- PHYSICAL REVIEW B
covering condensed matter and materials physics

Highlights

Editors' Suggestion

Bulk localized transport states in infinite and finite quasicrystals via magnetic aperiodicity
Phys. Rev. B

Example: Trustworthy computation for large d

Rel. Error = ?
$\lambda=e^{0.11 i}$

404 mm

Outlet

- Reynolds number $\approx 3.9 \times 10^{5}$
- Ambient dimension $(d) \approx 300,000$ (number of measurement points)

*Raw measurements provided by Stephane Moreau (Sherbrooke)

[^2]
Example: Trustworthy computation for large d

Outlet

- Reynolds number $\approx 3.9 \times 10^{5}$
- Ambient dimension $(d) \approx 300,000$ (number of measurement points)
*Raw measurements provided by Stephane Moreau (Sherbrooke)

Rel. Error ≤ 0.0054
$\lambda=e^{0.11 i}$

Rel. Error ≤ 0.0128

Rel. Error ≤ 0.0196

[^3]- C., Townsend, "Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems," preprint.

Large $d\left(\Omega \subseteq \mathbb{R}^{d}\right)$: robust and scalable
Popular to learn dictionary $\left\{\psi_{1}, \ldots, \psi_{N_{K}}\right\}$
E.g., DMD with truncated SVD (linear dictionary, most popular), kernel methods (this talk), neural networks, etc.

Q: Is discretisation $\operatorname{span}\left\{\psi_{1}, \ldots, \psi_{N_{K}}\right\}$ large/rich enough?

Above algorithms:

- Pseudospectra: $\left\{z_{k}: \tau_{k}<\varepsilon\right\} \subseteq \operatorname{Spec}_{\varepsilon}(\mathcal{K})$
- Spectral measures: $\mathcal{C}_{g}(z)$ and smoothed measures
error control adaptive check
\Rightarrow Rigorously verify learnt dictionary $\left\{\psi_{1}, \ldots, \psi_{N_{K}}\right\}$

Example: Verify the dictionary

- C., Ayton, Szőke, "Residual Dynamic Mode Decomposition," J. Fluid Mech., under minor rev.

Example: Spectral measures in large d

Adenylate Kinase

- Ambient dimension $(d) \approx 20,000$ (positions and momenta of atoms)
- 6th order kernel (spec res 10^{-6})
*Dataset: www.mdanalysis.org/MDAnalysisData/adk_equilibrium.html

- C., Townsend, "Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems," preprint.

Example: Trustworthy Koopman mode decomposition

c) $t=15 \mu \mathrm{~s}$

d) $t=20 \mu \mathrm{~s}$

[^4]
Wider programme

- Infinite-dimensional computational analysis \Rightarrow Practical and rigorous algorithms.

- Solvability Complexity Index \Rightarrow Classify difficulty of problems, prove algorithms are optimal.
- Extends to: Foundations of AI, optimization, computer-assisted proofs, and PDEs etc.

DATA SCIENCE + NUMERICAL ANALYSIS

```
C., "On the computation of geometric features of spectra of linear operators on Hilbert spaces," Found. Comput. Math., to appear.
C., "Computing spectral measures and spectral types," Comm. Math. Phys., }2021
C., Horning, Townsend "Computing spectral measures of self-adjoint operators," SIAM Rev., }2021
C., Roman, Hansen, "How to compute spectra with error control," Phys. Rev. Lett., }2019
C., Hansen, "The foundations of spectral computations via the solvability complexity index hierarchy," J. Eur. Math. Soc., }2022
C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale's 18th
problem," Proc. Natl. Acad. Sci. USA, }2022
C., "Computing semigroups with error control," SIAM J. Numer. Anal., }2022
- C., "The mpEDMD Algorithm for Data-Driven Computations of Measure-Preserving Dynamical Systems," preprint.
• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, "On the solvability complexity index hierarchy and towers of algorithms," arXiv, }2020
- Smale, "The fundamental theorem of algebra and complexity theory," Bull. Amer. Math. Soc., 1981, 36 pp.
McMullen, "Families of rational maps and iterative root-finding algorithms," Ann. of Math., 1987, 27 pp.
```


Example: Barriers of deep learning

- C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale's 18th problem," Proc. NatI. Acad. Sci. USA.

 $\underset{\substack{\text { Mat } \\ \text { May } 2022}}{\text { Volume }}$

Protecting Privacy with Synthetic Data

Interested? Get in touch (e.g., 'lll be around this afternoon)!

"One of great joys of doing mathematics is
Some future directions: working with inspiring and brilliant people!"

- Arieh Iserles
- ResDMD + control \Rightarrow error control?
- Embed \& learn symmetries (e.g., check out the algorithm mpEDMD).
- Forecasting with error bounds.
- Koopmanism meets neural nets (and vice versa).
- Foundations results for dynamical systems (i.e., impossibility results)?
- Further barriers in deep learning.
- Functional analysis meets data science meets numerical analysis!

Opportunities to collaborate, visit Cambridge, grad students \& beyond!

Summary: rigorous data-driven Koopmanism!

- "Too much" or "Too little"

Idea: New matrix for residual \Rightarrow ResDMD for computing spectra.

- Continuous spectra and spectral measures:

Idea: Convolution with rational kernels via resolvent and ResDMD.

- Is it right?

Idea: Use ResDMD to verify computations. E.g., learned dictionaries.

Code:
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

Additional slides...

measure-preserving EDMD...

- Polar decomposition of \mathcal{K}. Easy to combine with any DMD-type method!
- Converges for spectral measures, spectra, Koopman mode decomposition.
- Measure-preserving discretization for arbitrary measure-preserving systems.

Snapshots collected over 1s

EDMD unstable!

[^5]
Solvability Complexity Index Hierarchy

Class $\Omega \ni A$, want to compute $\Xi: \Omega \rightarrow(\mathcal{M}, d)$
 metric space

- Δ_{0} : Problems solved in finite time (v . rare for cts problems).
- Δ_{1} : Problems solved in "one limit" with full error control:

$$
d\left(\Gamma_{n}(A), \Xi(A)\right) \leq 2^{-n}
$$

- Δ_{2} : Problems solved in "one limit":

$$
\lim _{n \rightarrow \infty} \Gamma_{n}(A)=\Xi(A)
$$

- Δ_{3} : Problems solved in "two successive limits":

$$
\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} \Gamma_{n, m}(A)=\Xi(A)
$$

- Ben-Artzi, C., Hansen, Nevanlinna, Seidel, "On the solvability complexity index hierarchy and towers of algorithms," preprint.
- Hansen, "On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators," J. Amer. Math. Soc., 2011.

McMullen, "Families of rational maps and iterative root-finding algorithms," Ann. of Math., 1987.

- Doyle, McMullen, "Solving the quintic by iteration," Acta Math., 1989.

Smale, "The fundamental theorem of algebra and complexity theory," Bull. Amer. Math. Soc., 1981.

Error control for spectral problems

Σ_{1} convergence

$$
\Xi(A)=\operatorname{Spec}(A)
$$

- $\Sigma_{1}: \exists$ alg. $\left\{\Gamma_{n}\right\}$ s.t. $\lim _{n \rightarrow \infty} \Gamma_{n}(A)=\Xi(A), \max _{z \in \Gamma_{n}(A)} \operatorname{dist}(z, \Xi(A)) \leq 2^{-n}$

Error control for spectral problems

Σ_{1} convergence

Π_{1} convergence
$\Xi(A)=\operatorname{Spec}(A)$

- $\Sigma_{1}: \exists$ alg. $\left\{\Gamma_{n}\right\}$ s.t. $\lim _{n \rightarrow \infty} \Gamma_{n}(A)=\Xi(A), \max _{z \in \Gamma_{n}(A)} \operatorname{dist}(z, \Xi(A)) \leq 2^{-n}$
$\cdot \Pi_{1}: \exists$ alg. $\left\{\Gamma_{n}\right\}$ s.t. $\lim _{n \rightarrow \infty} \Gamma_{n}(A)=\Xi(A), \max _{z \in \Xi(A)} \operatorname{dist}\left(z, \Gamma_{n}(A)\right) \leq 2^{-n}$ Such problems can be used in a proof!

Small sample of classification theorems

Increasing difficulty

Small sample of classification theorems

Increasing difficulty

Error control

Small sample of classification theorems

Increasing difficulty

Small sample of classification theorems

Increasing difficulty

[^6]
Small sample of classification theorems

Increasing difficulty

[^7]
Small sample of classification theorems

Increasing difficulty

[^8]
[^0]: - Mezić, "Spectral properties of dynamical systems, model reduction and decompositions," Nonlinear Dynam., 2005.

[^1]: - C., Townsend, "Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems," preprint.

[^2]: C., Townsend, "Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems," preprint.

[^3]: acoustic vibrations

[^4]: - C., Ayton, Szőke, "Residual Dynamic Mode Decomposition," J. Fluid Mech., under minor rev.

[^5]: - C., "The mpEDMD Algorithm for Data-Driven Computations of Measure-Preserving Dynamical Systems," arXiv 2022.

[^6]: *Open problem of Schwinger: "The special canonical group," "Unitary operator bases," PNAS, 1960.

[^7]: *Open problem of Schwinger: "The special canonical group," "Unitary operator bases," PNAS, 1960.

[^8]: *Open problem of Schwinger: "The special canonical group," "Unitary operator bases," PNAS, 1960.

