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Data-driven dynamical systems

e State x € Q € R%, unknown function F: Q — Q governs dynamics
Xn+1 = F(xn)
* Goal: Learn about system from data {x(m),y(m) = F(x(m))}j:i=1

* Data: experimental measurements or numerical simulations
* E.g., used for forecasting, control, design, understanding

* Applications: chemistry, climatology,
electronics, epidemiology, finance,
fluids, molecular dynamics,
neuroscience, plasmas, robotics,
video processing, etc.

Poincaré
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Ope rator VieWpOint KOpmn von Neuann
* Koopman operator X acts on functions g: 2 — C '

[5‘(9] (x) = g(F(xn)) — g(xn+1)
* K is linear but acts on an infinite-dimensional space.

State x1 x x xn Non linear
I

Functlons \ \ \ \ Lmear

of state g (X1) g (xz) g (x3) : g (Xn)

« Work in L?(Q, w) for positive measure w, with inner product {,-).

* Koopman, “Hamiltonian systems and transformation in Hilbert space,” Proc. Natl. Acad. Sci. USA, 1931.
e Koopman, v. Neumann, “Dynamical systems of continuous spectra,” Proc. Natl. Acad. Sci. USA, 1932.
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Why is linear (much) easier?

Long-time dynamics
become trivial!

* Suppose F(x) = Ax, A € R¥*%¢, 4 = VAV L. /
e Set & =V 1y,
€Tl —_ V_lxn — V_lAnxO — AnV_le — A’I’Lé’o

e LetwlA = Aw, set o(x) = wlx,

[Ko](x) = wlAx = 1p(x) ‘Eigenfunction‘

Much more general (non-linear and even chaotic F).
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Koopman mode decomposition eenerize

eigenfunction of K / eigenfunction of X

9= ) e+ | deg(x)do
eigs 4; =TT per
g(x,) = [K"gl(xo) = CA-Ajnfpa-(xo) + ein9¢9,g(xo) dé
j j
eigs 4; [—TT,]per

Encodes: geometric features, invariant measures, transient behavior,
long-time behavior, coherent structures, quasiperiodicity, etc.

GOAL: Data-driven approximation of K and its spectral properties.

* Mezi¢, “Spectral properties of dynamical systems, model reduction and decompositions,” Nonlinear Dynam., 2005.
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Koopmania*: A revolution in the big data era?

New Papers on
“Koopman Operators”

~35,000 papers over last decade!

BUT: Computing spectra in infinite
dimensions is hotoriously hard!

HHHHHHHHHH

—number of papers

—doubles every 5 yrs

*Wikipedia: “its wild surge in popularity is sometimes jokingly called ‘Koopmania™
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Challenges of computing
Spec(K) = {A € C: K — Al isnotinvertible}

Truncate: K K € CNk*Nk

1) “Too much”: Approximate spurious modes 4 & Spec(K)
2) “Too little”: Miss parts of Spec(K)

3) Continuous spectra.

Verification: Is it right?
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Build the matrix: Dynamic Mode Decomposition (DMD)

Given dictionary {1/)1, - leK} of functions ¥;: Q - C,

(Wi, ;) = Ty Wi () (V) =

(Kpi, ;) = ZM_ i wint; (x (M) 4 (y)) =
[Hpr] (x (™)

H—> K= (¥, W)W ‘WW, e CNc*Nk

Recall open problems: too much, too little, continuous spectra, verification

(m
)}
m=1
/11 (xD) Py O\ (wy iy (x D) P, xO)\]
Pr ™) ey () wi) \pr (eD) oy (xOD)
T W P Ly
_ ¢1(x(1)) ¢NK(x(1)) Wq 1.01()’(1)) 1/JNK()’(1)) |
Pr ™) ey () wa) \Y1 D) oy ()
Uy - w Yy djk

Schmid, “Dynamic mode decomposition of numerical and experimental data,” J. Fluid Mech., 2010.
Rowley, Mezi¢, Bagheri, Schlatter, Henningson, “Spectral analysis of nonlinear flows,” J. Fluid Mech., 2009.

Kutz, Brunton, Brunton, Proctor, “Dynamic mode decomposition: data-driven modeling of complex systems,” SIAM, 2016.
Williams, Kevrekidis, Rowley “A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition,” J. Nonlinear Sci., 2015.



Residual DMD (ResDMD): Approx. K and KK

(Wi ) = i Winth; (x (™) e (x ™)) = [wx WWX]

m=1 jk
M
(Kb, ) = > with; (x) iy (y) = [LPX W%]
m=1 (K] (x (™) jk
M
(Kipie, Kpj) = > w1 () i (y)) = FJY*W‘PZ]
m=1 K jk

Residuals: g = Z 18V, IKXg —2glI” = g"[K, — AK," — 2Ky + |1A]°Glg
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* C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.
 C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., under minor rev.
* Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition


https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
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Quadrature with trajectory data

E.g., <~7€1/Jk'l/)1> o hm ZM 1Wml/)](x(m)) l/} (y(m))
(K] (x(m))

Three examples:

» High-order quadrature: {x("™), Wm} . M-point quadrature rule.

Rapid convergence. Requires free ch0|ce of {x(m)} and small d.

* Random sampling: {x(m)} 1 selected at random. <« Most common
Large d. Slow Monte Carlo O(M 1/2Y rate of convergence. /

* Ergodic sampling: x "+ = F(x (™),
Single trajectory, large d. Requires ergodicity, convergence can be slow.
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ResDMD: avoiding “too much”

g* (K, — AKy" — 2K, + |A1%Gg
2 _
reS(/L g) — g* Gg eigenvectors

eigenvalues
Algorithm 1: A//

1. Compute G,K;, K, € CNk*NK and eigendecomposition K;V = GVA.
2. For each eigenpair (4,v), compute res(4,v).

3. Output: subset of e-vectors V) & e-vals A;ywithres(4,v) < & (¢ = input tol).

Theorem (no spectral pollution): Suppose quad. rule converges. Then

lim sup max ||(KX — D)7 Y|t <e
M—oo AE€A(y)

* C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.
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ResDMD: avoiding “too much”

g* (K, — AKy" — 2K, + |A1%Gg
2 _
reS(/L g) — g* Gg eigenvectors

eigenvalues
Algorithm 1: A//

1. Compute G,K;, K, € CNk*NK and eigendecomposition K;V = GVA.
2. For each eigenpair (4,v), compute res(4,v).

3. Output: subset of e-vectors V) & e-vals A;ywithres(4,v) < & (¢ = input tol).

Theorem (no spectral pollution): Suppose quad. rule converges. Then

lim sup max ||(KX — D)7 Y|t <e
M—oo AE€A(y)

BUT: Typically, does not capture all of spectrum! (“too little”)

* C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.
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ResDMD: avoiding “too little”

Spec.(K) = U Spec(K + B), lgiPoi Spec.(K) = Spec(K)

IBl|<e
Algorlthm 2: First convergent method for general X
1. Compute G, K, K, € CNk*Nk,
2. For z, in comp. grid, compute 7, = min  res(z, g), corresponding g (gen. SVD).

N
9=X ;% 8j¥j

3. Output: {z;: 1), < €} (approx. of Spec.(K)), {gx: Tx < €} (e-pseudo-eigenfunctions).

Theorem (full convergence): Suppose the quadrature rule converges.
* Error control: {z;: 7, < £} € Spec.(K) (as M — o)
* Convergence: Converges locally uniformly to Spec.(K) (as Ny = )

* C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.
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Example: non-linear pendulum
X1 = Xy, X, = —sin(xy), Q= [-7m,7]perx R

Nk =3
157

1t

05+

0r

Im(\)

-0.5¢

At

-1.5
15 A -0.5 0 0.5 1 1.5

Re(\)
Computed pseudospectra (¢ = 0.25). Eigenvalues of IK shown as dots (spectral pollution).
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Approximate eigenfunctions

Colour represents complex argument, constant modulus shown as shadowed steps.
All residuals smaller than € = 0.05 (made smaller by increasing N).
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The Challenges

“ a¥a aa ”' A
) - [ ]

loUus-modes A& opectt /
2) “Too little”s Mi £ g % /

3) Continuous spectra.

Verification: Is it right?
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Setup for continuous spectra

No such assumption

/ was made in first part of talk!

Suppose system is measure-preserving (e.g., Hamiltonian, ergodic, post-transient etc.)

& K*K =1 (isometry)

= Spec(K) S {z:|z| < 1}
~~ spectral

(NB: we consider unitary extensions via Wold decomposition.) measure
supp. on
boundary
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Spectral decomposition of operators

A € C"*" normal = O.N. basis of eigenvectors v, ..., Uy:

n n
v = (2 Vi Vg )v, Av = (Z Akvkv,*Q) v, veCt
= =L

Projector onto Span(vy) eigenvalues




Spectral decomposition of operators

A € C"*™ normal

k=1

n
k

1

Projector onto Span(vy) eigenvalues

= O.N. basis of eigenvectors vy, ..., Uy:

n
)v, Av = (Z )lkvkv,";> v, v eC
=¥

o, . n

Energy of “v” in each eigenvector: ,uv(lj) = (vjv;v, v) = |v;v|2

This is called the spectral measure with respect to a vector v.

16/37
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Spectral decomposition of operators

A € C"*" normal = O.N. basis of eigenvectors vy, ..., Vy:

n n
v = (2 Vi Vg )v, Av = (Z )lkvkv,";> v, veCt
= =L

Projector onto Span(vy) eigenvalues

o, . n

Energy of “v” in each eigenvector: ,uv(lj) = (vjv;v, v) = |v;v|2

This is called the spectral measure with respect to a vector v.

0.2 Eigenvalues
0.15]
0.1
0.05¢
O/ oo o wee 0o oo wewe oo o -

-n —2n/3-n/3 O n/3 2n/3 ®
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Spectral decomposition of operators

A € C"*" normal = O.N. basis of eigenvectors vy, ..., Vy:

n n
v = (2 Vi Vg )v, Av = (Z Akvkv,*Q) v, veCt
= =L

Projector onto Span(vy) eigenvalues

o, . n

k k 2
Energy of “v” in each eigenvector: ,uv(lj) = (vjvj v, v) = |vj v|
This is called the spectral measure with respect to a vector v.

o2t Spectrfal measure

0.15¢
0.1

0.05¢

Ll

-n —2n/3-n/3 O n/3 2n/3 ®
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Spectral decomposition of operators

A € C"*" normal = O.N. basis of eigenvectors vy, ..., Vy:

n n
v = (2 Vi Vg )v, Av = (Z )lkvkv,";> v, veCt
= =L

Projector onto Span(vy) eigenvalues

o, . n

k k 2
Energy of “v” in each eigenvector: ,uv(lj) = (vjvj v, v) = |vj v|
This is called the spectral measure with respect to a vector v.

02| Spectral measure

0.15¢
0.1y

0.05+¢

iy D) ||m.l|.l.nllu.

-n —2n/3-n/3 O n/3 2n/3 ®




Spectral decomposition of operators

A € C"*™ normal

k=1

n
k

1

=

O.N. basis of eigenvectors vy, ..., Uy:

n
)v, Av = (Z Akvkv,";> v, v eC
=¥

Projector onto Span(vy,)

eigenvalues

o, . n

Energy of “v” in each eigenvector:

This is called the spectral measure with respect to a vector v.

* * 2
iy (%) = {vjvjv,v) = |vjv]

021 Spect

0

| measure

- —2n/3 —m/3

0 n/3 2n/3 @

16/37
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Spectral decomposition of operators

A € C"*" normal = O.N. basis of eigenvectors vy, ..., Vy:

n n
v = (2 Vi Vg )v, Av = (Z )lkvkv,";> v, veCt
= =L

Projector onto Span(vy) eigenvalues

o, . n

Energy of “v” in each eigenvector: ,uv(lj) = (vjv;v, v) = |v;v|2

This is called the spectral measure with respect to a vector v.

K is unitary = projection-valued measure ¢

g= (ers‘(y) )g, Ky = (Lydf(y))g

Spectral measure  v,(B) = (¢(B)g, 9)




Spectral decomposition of operators

A € C"*™ normal

[ \

White light contains a continuous spectrum

=S 0]
v, A1
N (V)

cigenvector:

This is ca

g= ( des(y) )g,

=

Irradiance (W/m?/nm)

Often interesting to look at
the intensity of each wavelength

Spectrum of Solar Radiation (Earth)

1.5

0.5

UV | Visible| Infrared »

i Sunlight without atmospheric absorption

5778K blackbody

Sunlight at sea level

HO
Atmospheric
absorption bands

KO cq o

250 500 750

1000 1250 1500 1750 2000 2250 2500
Wavelength (nm)

Spectral measure

vg(B) = (£(B)g, 9)

16/37



N0(e)

_________________

“smoothing parameter”

N
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Evaluating spectral measure

Smoothing convolution

Pyl = [ PG~ 0)dvy(6)

[T, ]per

Poisson kernel for 1 (1+e)? -1
unit disk P.(6o) = 2
21+ (1 + &) —2(1 + €)cos(6y)




_________________

& = “smoothing parameter”

N

Evaluating spectral measur

Smoothing cc

Pyl = [ R -0
Poisso |

17/37
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Evaluating spectral measure

/b(g) Smoothing convolution

Pyl = [ PG~ 0)dvy(6)

_________________

[T, ]per

“smoothing parameter”

\—/ Poisson kernel for P (6. — 1 (1+e)? -1
unit disk =(00) = 21+ (1+ €)% —2(1+ £)cos(8y)

[P, *v,|(60) = Cy(eo(1+ &)™) — ¢, (ei90(1 + e))

1) _ i _
4(2) = f - -dv‘g(e):{m_z{) 9H9) if 2| > 1

C
et — 7 —z g, (K —-—z"1D"1g), if0<|z| <1

[—T, ] per
ResDMD computes

with error control



(T Tabo
Po —A1&
W = azpP1

P2pP1

\

Example

PoP1

—doP1 \

—Qp0;  A3pPy  P3P2

P2 —aza; —p3a;
aup3 —auaz ™ /

a; = (—1)70.950+D/2, p,-:\/l—\aj\z

Generalized shift, typical building block of many dynamical systemes.

18/37
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Fix Nk, vary &: unstable!

Ng = 40,e = 1.000000

or o o

Im(z)
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Fix €, vary Ng: too smooth!

N =1,e =0.100000

25
1r 2y
SO 1.5+
E
1t
0.
qr B
0 051
-0
0.95 1 1.05
2 0
2 1 0 1 2 -3 2 1 0 1 2 3



Adaptive: new matrix to compute residuals crucial

2.5

1.5}

051

Ng = 10,e = 0.100000

21/37
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But ... slow convergence
Problem: As € | 0, erroris O(elog(1/¢)) and Nk (g) — o.

Pointwise error for spectral density

Error due to discretization
100 ¢ . . -

10°

€=0.01 |

10|

10—10 B

3 2 i 0 107" |
10 10 10 10 0 50 100 150 200

Small Ng critical in data-driven computations. Can we improve convergence rate?




mth order rational kernels: 5 m=6

K, (6) =

23/37

High-order rational kernels

Kernels

C; d]

o6 i [
—i0 _
21 e (

] —
1+ez)™t e 0 —(1+ez)

ResDMD computes
with error control

&

“smoothing parameter”

D

D [ea(e® @ +ez)) — dic, (e (1 + )]
j=1
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Smaller Ny (larger €)

e = 1.000000
2 "o © ' 2.5
PO o ‘ ‘ ‘
o o
o o
1 o o 2
(<} o
; :
307 ° 15¢
E (]
— ) 1F
o.oso o
qt 1
0 0.5F
s 1 9019 o© P
2 L o L 0
2 1 0 1 2 -3 2 1 0 1 2 3
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Convergence

Theorem: Automatic selection of N (¢)

with O(e™log(1/¢)) convergence:

* Density of continuous spectrum p,,.
(pointwise and LP)

* Integration against test functions.
(weak convergence)

f R@O)[K. = v,](6) d6

[—TT,T]per

= f h(6) dvy(0) + 0(e™log(1/¢))

[—T,T]per .
Also recover discrete spectrum.

Pointwise error for spectral density

10 107 107" 10Y
E

* C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.
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Spectral measures of seIf—ad Jomt operators

Horizontal slice = spectral measure at constant magnetic field strength.

Software package

SpecSolve available at https://github.com/SpecSolve
Capabilities: ODEs, PDEs, integral operators, discrete operators.

C., Horning, Townsend “Computing spectral measures of self-adjoint operators,” SIAM Rev., 2021.


https://github.com/SpecSolve
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The Challenges

“ a¥a aa ”' A
eV - [ ]

yproxtmate spurious-modes A& Spectt /
2) “Toe little”: M; E Spec(dC /

Verification: Is it right?



Is it right? T
The importance of verification

Articles published week ending 28 JUNE 2019

Published by
American Physical Society o Volume 122, Number 25

E.g., ground state of quasicrystal

C., Roman, Hansen, “How to compute spectra with error control,” Phys. Rev. Lett., 2019.



IS it right? - PHYSICAL REVIEW B o
The importance of verification

covering condensed matter and materials physics

Highlights
/I/
PHYSICAL Bulk localized transport states in
I REVIEW infinite and finite quasicrystals via
4 LETTERS magnetic aperiodicity

Phys. Rev. B

' Anticles published week ending 28 JUNE 2019

| Spectra with error control

Certainty in computed
spectral properties

Published by
American Physical Society Shot Volume 122, Number 25

E.g., ground state of quasicrystal

E.g., new physical phenomena:
bulk localised transport states

 C.,,Roman, Hansen, “How to compute spectra with error control,” Phys. Rev. Lett., 2019.
 Johnstone, C., Nielsen, Ohberg, Duncan, “Bulk Localised Transport States in Infinite and Finite Quasicrystals via Magnetic Aperiodicity,” Phys. Rev. B, 2022.
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Example: Trustworthy computation for large d

Periodic

conditions
N

Inlet
Blade Outlet

/"« Reynolds number = 3.9 x 10°

 Ambient dimension (d) = 300,000
(number of measurement points)

*Raw measurements provided by Stephane Moreau (Sherbrooke)

Rel. Error =7

0.08

Re‘l. Error =7

0.2 0.06
aCOUStIC source?

N\ /

0.04

10.02

10

1-0.02

-0.04

-0.06

-0.08

 C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.
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Example: Trustworthy computation for large d

Periodic

conditions / Inlet
= St

Blade Outlet

/"« Reynolds number = 3.9 x 10°
 Ambient dimension (d) = 300,000

(number of measurement points)

*Raw measurements provided by Stephane Moreau (Sherbrooke)

404 mm
Outlet
Rel. Error < 0.0054 Rel. Error < 0.0128 Rel. Error 0.0196

A eOlll y i A — eosll - 0.08
06 turbulent v o
» ‘ﬂuctuations 040 0.04
0 ‘ : 102 j . 10.02
$e$0® : |2 | | 0 1.0.02
| - '{ 015 -0.04
¥ -0.2 -0.06

-0.8 i}

1 -0.08

acoustic vibrations
 C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.
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Large d () S R?): robust and scalable

Popular to learn dictionary {1/21, oy 1/JNK}

E.g., DMD with truncated SVD (Ilinear dictionary, most popular),
kernel methods (this talk), neural networks, etc.

Q: Is discretisation span{tpl, . IIJNK} large/rich enough?

Above algorithms:
 Pseudospectra: {z,: 1), < €} € Spec.(K) error control
* Spectral measures: C, (z) and smoothed measures adaptive check

— Rigorously verify learnt dictionary {l/)l, e l/JNK}
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jonary

Verify the dicti

Example

res(4;, g;), linear dictionary

res(4;, g;), nonlinear dictionary

05}
-0.5}

Un
e

6.4 x 10%

* Reynolds number =
 Ambient dimension (d) = 100,000

(velocity at measurement points)
*Raw measurements provided by Maté Sz6ke (Virginia Te«

Re(1)

0.8948 + 0.1065i, error < 0.1105

Re(A)

1=

A=

0.9439 + 0.2458i, error < 0.0765

110

NY)

A '

108 109

107

SECSCE Y

——s oy N

N =
. =~ 7 V1§ )
2 -\\-l\f 108 i
?\;:\ g9
\ \\/z
..._, B |
./I}s\\‘///l/_ b .\\ %
10 2 = 1 o
o i o
g/
n o - = g8 8
. 7 7 5

T '- _$*
=)

SN e L |

h :Ek\v?\\\ 1

52

110

\\\\\l//,\.\..\\

R,

K W
1.\\\\\:
/A

109

\.~\\.F'\|‘I\\
\-It‘\ 8 o0
- O
L]
,?m‘,},
// ;///, /JS
BN~ ]
= .,.\ f\\.\\_ =
: :%L:\\\w(\u:;
/V. S~ e~ . \\_
/.K \////! / v SN .ﬁ
N _\/\»v// / ////u el o
£ N7 RN N N
J ' VBR LA NS 3
N, //// //,6 8/
NS S N 8/
NN e~ \..M‘UN// »/LW
//_//ar»\\liff ‘\:l//t/l.\,//‘ %
[a\] — o

g

)e/hjet

X\/hjet

77

C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., under minor rev.
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Example: Spectral measures in large d

Adenylate Kinase
¢ key parts
N

 Ambient dimension (d) = 20,000
(positions and momenta of atoms)
 6th order kernel (spec res 107°)

*Dataset: www.mdanalysis.org/MDAnalysisData/adk_equilibrium.html

o g | b

0.22} /

0.2

0.18 ¢

0.14 ¢

* C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.
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Example: Trustworthy Koopman mode decomposition

b) ¢ =10 us o)t =15 us d) ¢ = 20 us
‘ 1 00 T
true —residual ordering
o modulus ordering —modulus ordering
o residual ordering | |

10-1 1

Pressure

. extremely efficient f

Relative MSE

\ unseen shockwi

~0r 3L .
prediction 10 compression
from 40 modes
-100 ‘ - . L .
° ° ¢ ° 8 0 50 100 150 200
Time(10~°s) Number of modes

* C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., under minor rev.
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Wlder progra mme SCI provides needed assumptions

* Infinite-dimensional computational analysis = Practical and rigorous algorithms.

* Solvability Complexity Index = Classify difficulty of problems, prove algorithms are optimal.

* Extends to: Foundations of Al, optimization, computer-assisted proofs, and PDEs etc.

DATA SCIENCE + NUMERICAL ANALYSIS

C., “On the computation of geometric features of spectra of linear operators on Hilbert spaces,” Found. Comput. Math., to appear.
C., “Computing spectral measures and spectral types,” Comm. Math. Phys., 2021.

C., Horning, Townsend “Computing spectral measures of self-adjoint operators,” SIAM Rev., 2021.

C., Roman, Hansen, “How to compute spectra with error control,” Phys. Rev. Lett., 2019.

C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022.
C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th
problem," Proc. Natl. Acad. Sci. USA, 2022.

C., “Computing semigroups with error control,” SIAM J. Numer. Anal., 2022.

C., “The mpEDMD Algorithm for Data-Driven Computations of Measure-Preserving Dynamical Systems,” preprint.

Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.

Smale, “The fundamental theorem of algebra and complexity theory,” Bull. Amer. Math. Soc., 1981, 36 pp.

McMullen, “Families of rational maps and iterative root-finding algorithms,” Ann. of Math., 1987, 27 pp.
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March 16, 2022 119(12) e21071
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Instability is the Achilles’ |
training algorithms findir

ones. This foundational it

Some Al Systems May Be Impossible to Compute >
New research sug

1 they get things wrong, but
new study, Al generally suffers

*matical paradox.

&€ There are fundamental
limits inherent in

gests there are limitations to what deep

neural networks can do o, mathematic and
lgorith 't exist
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century on the limits of A
demonstrate limitations (
NNs. Despite numerous ¢
only in specific cases do t
classification theory onw
suitable conditions—are

number of hidden layers.

— Matthew Colbrook

C., Antun, Hansen,

‘The difficulty of computing stable and accurate neural networks:

On the barriers of deep learning and Smale’s 18th problem,” Proc. Natl. Acad. Sci. USA.

arriers of deep learning
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Protecting Privacy with Synthetic Data

By Matthew R. Francis

ch irchers across every scientific dis
plinc need complete and refiable
data sets 1o draw trustworthy conclusions
However, publishing all data from a given
study can be undesirable, For example.
medical data in particular include personal
information that—if published in full—
would violate patients’ privacy and poten-
tially expose them to harm. Similarly, many

m =
Data

Differential Privacy
Preprocessing

Vine Copula
Model

al ) 4 Synthetic
' Data

the people

studies in the social sciences include demo-
data that could
casily be exploited by unscrupulous p.r»\

In short. researchers must strike a de
balance between publishing enou; s
to verify their conclusions and protect-
ing the privacy of the people involved
Unfortunately, multiple studies have shown
that simply anonymizing the data—by
removing individuals” names before publi-
cation. for instance- insufficient,
siders can use contet clues 10 reconstruct
missing nation and expose fesearch
subjects.
data for public release 1o replace the origi-
nal data set,” Bel Jiang of the University of
Alberia said. “When we design our fi
work. we have this main goal in mind: w
want 1 prodisce the same inference results
as in the original data set”

In contrast with falsified data, which is
ane of the deadliest scientific sins, research-
ers can generate synthetic data disectly from
original data sets. If the construction perocess
is done properly, other scientists can then
analyze this synthetic data and trust that their
conclusions are no different from what they

s out-

‘you ereate] synthetic data. what does it mean

10 be private yet realistic”” Séhastien Gambs

of the Univesity of Québee in Montréal
asked. "It sill an open research question.
2022 American Association
Advancement of Science Anmal
which took place virtually in
February. Jiang and Gambs each presented
formal metbods for the generation of syn-
thetic data that ensure privacy. Their models
draw from multiple fields 10 address chal
lenges in the era of big data. where the
ther than ever. “There is always
4 trade-olY between utility and risk.” Jiang
said. “If you want to protect people [wh
are at a highes risk, then you perturb 4
data. But the uility will be lowered the more
‘You perturb. A better approach is to account
for their risks to begin with.”

Unfortunately, malicious actors have access
10 the same alpoeithic tools a5 fesearch-
ers. Therefore, protection of coafidentially
also involves testing synthetic data against
the types of attacks that such playess might
utiize. “In peactice. this helps one really
understand the translation between an abstrac
peivacy parameter and a practical guarintee.”
Gambs ssid. In other words. the robusiness
of a formal mathematical model is frvel
evant if the model is not well implemented.

stakes an

Differential Privacy Made Simple(r)

Gambs and his collaborators turned to dif
ferential privacy: a powerful mathematical
formalism that in principle is the best avail-
able technique for securing confidentiality
However, the approach is also complex and
difficult to implement without a high degree
of statistical knowledge. To smooth the

See Synthetle Data o1 pa
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Proving Existence Is Not Enough:
Mathematical Paradoxes Unravel the Limits
of Neural Networks in Artificial Intelligence

By Vegard Antun, Matthew J.
Colbrook, and Anders C. Hansen

he impact of deep leaming (DL), newral

aetworks (NNs). and artificial inteli-
sence (AD over the list decade s been
profound. Advances in computer visi
mitural language processing have yielded
smart speakers in our homes, driving
tance in our cars, and automated diagnoses
in medicine. Al has also rapidly entered sci-
computing, However, overwhelming
amounts of empirical evidence (3, 8] su
that modem Al s often non-robust (unstable).
may generate hallucinations, and can produce
nonsensical output with high levels of predic-
tion confidence (see Figure 1). These issues
present a secious coacem for Al use within

e Ight of he et e e A, the
serious negative consequences of is use for
EU citizens and organisatio e led w
mulsiple iniratives [...] Among the iden
requirements, the concepts of robustness and
explainabilisy of Al systems have
as key elements for a future regulation.

Robastness and trust of algorithms lie
at the heart of numerical analysis [9]. The
lack of robustness and trust in Al is hence
the Achilles’ heel of DL and has become &
serious political issve. Classical appeoxima
tion theorems show that a continuous func
tion can be approximated arbitcarily well
by a NN [S]. Therefore, stable problems
that are described by stable functions can
be solved stably with a NN, These results
inspire the following fundamental question
Why does DL lead 10 unstable methods and
Al-generated hallucinations, even in sce
narios where we can prove that siable and
Ny exist?

accurate

publ

ations jre.ce
andle! 3

repositor

Our main result reveals a serious issue
for centain peoblems; while stable and accu
rate NNs may proably exist, no training
ithm can obtain them (see
on page 4). As such, existe

® theorems
on appeoximation qualities of “NNs (e 2

universal approximation) represent oaly the
first step towards a complete understanding

of modern Al Sometimes

tesults about the feasible achievements of
mathematics and

A similar program oa the boundaries of
Als necessary. Stephen Smale already sug-
gested such a program in the 18 problem
on his list of mathemat)
21st century: Whar are the limits of A1? 1]

See Mathensatical Paradoses on pase 4

they even provide overly

optimistic estimates of pos-
sible NN achievements.

The Limits of Al:
Smale’s 18th Problem
The strong optimism that
sumounds Al is evideat in
computer scientist Geoffrey
Hinton's 2017 quote: “They
should stop raining radi-
ologists now.”™ Such opti
mism is comparable to the
confidence that surrounded
mathematics in the carly
20t century, a5 summed
up in David Hilber's senti-
ment: “Wir miissen wissen
Wir werden wissen” [“We
must know. We will know”].
Hilbert believed that
‘mathematics could prove or
dispeove any statement, and
that there were 1o estric
tions on which problems
algorithms could solve. The

in image

image Al reconstruction

Benign
. \{qlinant

Model confidence

seminal contributions of

Kurt Godel (7] and Alan
Turing (12] turned Hilhert's
idealism upside down by
establishing paradoxes that
expedited

impossibility

er
2ine/201 7104003/
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Interested? Get in touch (e.g., I'll be around this afternoon)!

“One of great joys of doing mathematics is

Some future directions: working with inspiring and brilliant people!”

- Arieh Iserles
e ResDMD + control = error control?

* Embed & learn symmetries (e.g., check out the algorithm mpEDMD).
* Forecasting with error bounds.

* Koopmanism meets neural nets (and vice versa).

* Foundations results for dynamical systems (i.e., impossibility results)?
* Further barriers in deep learning.

* Functional analysis meets data science meets numerical analysis!

Opportunities to collaborate, visit Cambridge, grad students & beyond!
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Summary: rigorous data-driven Koopmanism!

* “Too much” or “Too little”
Idea: New matrix for residual = ResDMD for computing spectra.
* Continuous spectra and spectral measures:
Idea: Convolution with rational kernels via resolvent and ResDMD.
* Is it right?
Idea: Use ResDMD to verify computations. E.g., learned dictionaries.

Code:
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition




Additional slides...



measure-preserving EDMD...
* Polar decomposition of K. Easy to combine with any DMD-type method!

* Converges for spectral measures, spectra, Koopman mode decomposition.

* Measure-preserving discretization for arbitrary measure-preserving systems.

TKE y =~ b5mm . TKE, y ~ 35mm

——mpEDMD : " | ~——mpEDMD

Time-averaged TKE

10° 200

mes MPEDMD
——piDMD A ] | |——piDMD 180 + m— DiDMD
104 L —]I?/IDMDTKE . s ] 104 L —EDMD 160 Mean TKE of flow
— Mean of flow ] i

[ |[=——Mean TKE of flow

140

10% ¢
i 120}

e 100 |

80 -

1010 1 2 3 4 5 1010 5 6OO 10 2IO 3I0 4IO
Time (s) Height y (mm)
Snapshots collected over 1s EDMD unstable!

 C., “The mpEDMD Algorithm for Data-Driven Computations of Measure-Preserving Dynamical Systems,” arXiv 2022.



Solvability Complexity Index Hierarchy

Class ) 3 A, want to compute E: Q) = (M, d) €=——— metric space
* Ay: Problems solved in finite time (v. rare for cts problems).

* A;: Problems solved in “one limit” with full error control:
d(l,(4),2(4) < 27"
* A,: Problems solved in “one limit”:
lim [, (4) = E(4)

* A;: Problems solved in “two successive limits”:
lim lim I3, ,,(4) = £(4)

. Nn—00 Mm—0oo

Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.

Hansen, “On the solvability complexity index, the 7+pseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.
McMullen, “Families of rational maps and iterative root-finding algorithms,” Ann. of Math., 1987.

Doyle, McMullen, “Solving the quintic by iteration,” Acta Math., 1989.

Smale, “The fundamental theorem of algebra and complexity theory,” Bull. Amer. Math. Soc., 1981.



Error control for spectral problems

>.1 convergence

Z(A) = Spec(4)

e ¥ :3alg. {I},} s.t. im[,,(4) = Z2(A4), maxzern(A)dist(z, E(A)) <2"
Nn—>00



Error control for spectral problems

>.1 convergence II; convergence

-

Z(A) = Spec(4)

e ¥ :3alg. {I},} s.t. im[,,(4) = Z2(A4), maxzern(A)dist(z, E(A)) <2"
Nn—>00

e II;: F alg. {I};, } s.t. im [, (A) = E(A), max,ez(q)dist(z,I;,(4)) < 27"
Nn—>00

Such problems can be used in a proof!



Small sample of classification theorems

Increasing difficulty

Error control
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Small sample of classification theorems

Increasing difficulty

Error control

Hl HZ H3
G \ & < &
Al ;Zlur[l; Az QZZUI_Iz; A3 ;23UH3
A G < G N

Spectra of K Continuous spectra of K (different regularity assumptions)



Small sample of classification theorems

Increasing difficulty

Error control Spectra of
A compact operators
|
| & < & <

S & xS &
0 \ 22 23

Spectra of K Continuous spectra of K (different regularity assumptions)



Small sample of classification theorems

Increasing difficulty

Error control Spectra of Spectra of Schrodinger*
| compact operators (different potential classes)

Spectra of K Continuous spectra of K (different regularity assumptions)

*Open problem of Schwinger: “The special canonical group,” “Unitary operator bases,” PNAS, 1960.



Small sample of classification theorems

Increasing difficulty

Error control Spectra of Spectra of Schrodinger*
| compact operators (different potential classes)

Spectra of K Continuous spectra of K (different regularity assumptions)

*Open problem of Schwinger: “The special canonical group,” “Unitary operator bases,” PNAS, 1960.



Small sample of classification theorems

Increasing difficulty

Error control Spectra of Spectra of Schrodinger*  Spectral stability
| compact operators (different potential classes)

Spectra of K Continuous spectra of K (different regularity assumptions)

*Open problem of Schwinger: “The special canonical group,” “Unitary operator bases,” PNAS, 1960.
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