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• State 𝑥𝑥 ∈ Ω ⊆ ℝ𝑑𝑑, unknown function 𝐹𝐹:Ω → Ω governs dynamics
𝑥𝑥𝑛𝑛+1 = 𝐹𝐹(𝑥𝑥𝑛𝑛)

• Goal: Learn about system from data 𝑥𝑥(𝑚𝑚),𝑦𝑦(𝑚𝑚) = 𝐹𝐹(𝑥𝑥(𝑚𝑚)) 𝑚𝑚=1
𝑀𝑀

• Data: experimental measurements or numerical simulations
• E.g., used for forecasting, control, design, understanding

• Applications: chemistry, climatology, 
electronics, epidemiology, finance, 
fluids, molecular dynamics, 
neuroscience, plasmas, robotics, 
video processing, etc.

Data-driven dynamical systems

Poincaré



Operator viewpoint
• Koopman operator 𝒦𝒦 acts on functions 𝑔𝑔:Ω → ℂ

𝒦𝒦𝑔𝑔 𝑥𝑥 = 𝑔𝑔 𝐹𝐹 𝑥𝑥
• 𝒦𝒦 is linear but acts on an infinite-dimensional space.

• Work in 𝐿𝐿2(Ω,𝜔𝜔) for positive measure 𝜔𝜔, with inner product �,� .

• Koopman, “Hamiltonian systems and transformation in Hilbert space,” Proc. Natl. Acad. Sci. USA, 1931.
• Koopman, v. Neumann, “Dynamical systems of continuous spectra,” Proc. Natl. Acad. Sci. USA, 1932.

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 … 𝑥𝑥𝑛𝑛

𝑔𝑔(𝑥𝑥1) 𝑔𝑔(𝑥𝑥2) 𝑔𝑔(𝑥𝑥3) … 𝑔𝑔(𝑥𝑥𝑛𝑛)

𝐹𝐹 𝐹𝐹 𝐹𝐹 𝐹𝐹

𝒦𝒦𝒦𝒦 𝒦𝒦𝒦𝒦 𝒦𝒦𝒦𝒦 𝒦𝒦𝒦𝒦

State

Functions
of state

Non-linear

Linear

Koopman von Neumann



• Suppose 𝐹𝐹 𝑥𝑥 = 𝐴𝐴𝐴𝐴,𝐴𝐴 ∈ ℝ𝑑𝑑×𝑑𝑑, 𝐴𝐴 = 𝑉𝑉Λ𝑉𝑉−1.
• Set 𝜉𝜉 = 𝑉𝑉−1𝑥𝑥,

𝜉𝜉𝑛𝑛 = 𝑉𝑉−1𝑥𝑥𝑛𝑛 = 𝑉𝑉−1𝐴𝐴𝑛𝑛𝑥𝑥0 = Λ𝑛𝑛𝑉𝑉−1𝑥𝑥0 = Λ𝑛𝑛𝜉𝜉0
• Let 𝑤𝑤T𝐴𝐴 = 𝜆𝜆𝑤𝑤, set 𝜑𝜑 𝑥𝑥 = 𝑤𝑤T𝑥𝑥,

𝒦𝒦𝒦𝒦 𝑥𝑥 = 𝑤𝑤T𝐴𝐴𝐴𝐴 = 𝜆𝜆𝜆𝜆 𝑥𝑥

Much more general (non-linear 𝐹𝐹 and even chaotic systems).

Why is linear (much) easier?
Long-time dynamics 
become trivial!

Eigenfunction



Koopman mode decomposition

𝑔𝑔(𝑥𝑥) = �
eigs 𝜆𝜆𝑗𝑗

𝑐𝑐𝜆𝜆𝑗𝑗𝜑𝜑𝜆𝜆𝑗𝑗(𝑥𝑥) + �
[−𝜋𝜋,𝜋𝜋]per

𝜙𝜙𝜃𝜃,𝑔𝑔 𝑥𝑥 d𝜃𝜃

𝑔𝑔 𝑥𝑥𝑛𝑛 = 𝒦𝒦𝑛𝑛𝑔𝑔 𝑥𝑥0 = �
eigs 𝜆𝜆𝑗𝑗

𝑐𝑐𝜆𝜆𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛𝜑𝜑𝜆𝜆𝑗𝑗 𝑥𝑥0 + �

[−𝜋𝜋,𝜋𝜋]per

𝑒𝑒𝑖𝑖𝑛𝑛𝜃𝜃𝜙𝜙𝜃𝜃,𝑔𝑔 𝑥𝑥0 d𝜃𝜃

Encodes: geometric features, invariant measures, transient behavior, 
long-time behavior, coherent structures, quasiperiodicity, etc.

GOAL: Data-driven approximation of 𝒦𝒦 and its spectral properties. 

generalized
eigenfunction of 𝒦𝒦eigenfunction of 𝒦𝒦

• Mezić, “Spectral properties of dynamical systems, model reduction and decompositions,” Nonlinear Dynam., 2005.

continuous spectra



Koopmania*: A revolution in the big data era?

≈35,000 papers over last decade!

BUT: Very little on verified methods!

Computing spectra in infinite 
dimensions is notoriously hard!

Source: https://www.dimensions.ai/

*Wikipedia: “its wild surge in popularity is sometimes jokingly called ‘Koopmania’”
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Challenges of computing
Spec 𝒦𝒦 = {𝜆𝜆 ∈ ℂ:𝒦𝒦 − 𝜆𝜆𝜆𝜆 is not invertible}

1) “Too much”: Approximate spurious modes 𝜆𝜆 ∉ Spec(𝒦𝒦)

2) “Too little”: Miss parts of Spec(𝒦𝒦)

3) Continuous spectra.

Verification: Is it right?

Truncate: 𝒦𝒦 𝕂𝕂 ∈ ℂ𝑁𝑁𝐾𝐾×𝑁𝑁𝐾𝐾



Computing spectra



Given dictionary 𝜓𝜓1, … ,𝜓𝜓𝑁𝑁𝐾𝐾 of functions 𝜓𝜓𝑗𝑗:Ω → ℂ, 

𝒦𝒦 𝕂𝕂 = Ψ𝑋𝑋∗𝑊𝑊Ψ𝑋𝑋 −1Ψ𝑋𝑋∗𝑊𝑊Ψ𝑌𝑌 ∈ ℂ𝑁𝑁𝐾𝐾×𝑁𝑁𝐾𝐾

Recall open problems: too much, too little, continuous spectra, verification

𝜓𝜓𝑘𝑘 ,𝜓𝜓𝑗𝑗 ≈ ∑𝑚𝑚=1
𝑀𝑀 𝑤𝑤𝑚𝑚𝜓𝜓𝑗𝑗 𝑥𝑥 𝑚𝑚 𝜓𝜓𝑘𝑘 𝑥𝑥 𝑚𝑚 =

𝜓𝜓1(𝑥𝑥(1)) ⋯ 𝜓𝜓𝑁𝑁𝐾𝐾(𝑥𝑥(1))
⋮ ⋱ ⋮

𝜓𝜓1(𝑥𝑥(𝑀𝑀)) ⋯ 𝜓𝜓𝑁𝑁𝐾𝐾(𝑥𝑥(𝑀𝑀))
Ψ𝑋𝑋

∗
𝑤𝑤1

⋱
𝑤𝑤𝑀𝑀

𝑊𝑊

𝜓𝜓1(𝑥𝑥(1)) ⋯ 𝜓𝜓𝑁𝑁𝐾𝐾(𝑥𝑥(1))
⋮ ⋱ ⋮

𝜓𝜓1(𝑥𝑥(𝑀𝑀)) ⋯ 𝜓𝜓𝑁𝑁𝐾𝐾(𝑥𝑥(𝑀𝑀))
Ψ𝑋𝑋 𝑗𝑗𝑗𝑗

Build the matrix: Dynamic Mode Decomposition (DMD)

• Schmid, “Dynamic mode decomposition of numerical and experimental data,” J. Fluid Mech., 2010.
• Rowley, Mezić, Bagheri, Schlatter, Henningson, “Spectral analysis of nonlinear flows,” J. Fluid Mech., 2009.
• Kutz, Brunton, Brunton, Proctor, “Dynamic mode decomposition: data-driven modeling of complex systems,” SIAM, 2016.
• Williams, Kevrekidis, Rowley “A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition,” J. Nonlinear Sci., 2015.

𝒦𝒦𝒦𝒦𝑘𝑘 ,𝜓𝜓𝑗𝑗 ≈ ∑𝑚𝑚=1
𝑀𝑀 𝑤𝑤𝑚𝑚𝜓𝜓𝑗𝑗 𝑥𝑥 𝑚𝑚 𝜓𝜓𝑘𝑘 𝑦𝑦 𝑚𝑚

[𝒦𝒦𝒦𝒦𝑘𝑘] 𝑥𝑥 𝑚𝑚

=
𝜓𝜓1(𝑥𝑥(1)) ⋯ 𝜓𝜓𝑁𝑁𝐾𝐾(𝑥𝑥(1))

⋮ ⋱ ⋮
𝜓𝜓1(𝑥𝑥(𝑀𝑀)) ⋯ 𝜓𝜓𝑁𝑁𝐾𝐾(𝑥𝑥(𝑀𝑀))

Ψ𝑋𝑋

∗
𝑤𝑤1

⋱
𝑤𝑤𝑀𝑀

𝑊𝑊

𝜓𝜓1(𝑦𝑦(1)) ⋯ 𝜓𝜓𝑁𝑁𝐾𝐾(𝑦𝑦(1))
⋮ ⋱ ⋮

𝜓𝜓1(𝑦𝑦(𝑀𝑀)) ⋯ 𝜓𝜓𝑁𝑁𝐾𝐾(𝑦𝑦(𝑀𝑀))
Ψ𝑌𝑌 𝑗𝑗𝑗𝑗



Residuals: 𝑔𝑔 = ∑𝑗𝑗=1
𝑁𝑁𝐾𝐾 𝐠𝐠𝑗𝑗𝜓𝜓𝑗𝑗 , 𝒦𝒦𝒦𝒦 − 𝜆𝜆𝜆𝜆 2 ≈ 𝐠𝐠∗ 𝐾𝐾2 − 𝜆𝜆𝐾𝐾1∗ − ̅𝜆𝜆𝐾𝐾1 + 𝜆𝜆 2𝐺𝐺 𝐠𝐠

Residual DMD (ResDMD): Approx. 𝒦𝒦 and𝒦𝒦∗𝒦𝒦

• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.
• C., Ayton, Szőke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
• Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

𝜓𝜓𝑘𝑘 ,𝜓𝜓𝑗𝑗 ≈ �
𝑚𝑚=1

𝑀𝑀

𝑤𝑤𝑚𝑚𝜓𝜓𝑗𝑗 𝑥𝑥 𝑚𝑚 𝜓𝜓𝑘𝑘 𝑥𝑥 𝑚𝑚 = Ψ𝑋𝑋∗𝑊𝑊Ψ𝑋𝑋
𝐺𝐺 𝑗𝑗𝑗𝑗

𝒦𝒦𝒦𝒦𝑘𝑘 ,𝜓𝜓𝑗𝑗 ≈ �
𝑚𝑚=1

𝑀𝑀

𝑤𝑤𝑚𝑚𝜓𝜓𝑗𝑗 𝑥𝑥 𝑚𝑚 𝜓𝜓𝑘𝑘 𝑦𝑦 𝑚𝑚

[𝒦𝒦𝒦𝒦𝑘𝑘] 𝑥𝑥 𝑚𝑚

= Ψ𝑋𝑋∗𝑊𝑊Ψ𝑌𝑌
𝐾𝐾1 𝑗𝑗𝑗𝑗

𝒦𝒦𝒦𝒦𝑘𝑘 ,𝒦𝒦𝜓𝜓𝑗𝑗 ≈ �
𝑚𝑚=1

𝑀𝑀

𝑤𝑤𝑚𝑚𝜓𝜓𝑗𝑗 𝑦𝑦 𝑚𝑚 𝜓𝜓𝑘𝑘 𝑦𝑦 𝑚𝑚 = Ψ𝑌𝑌∗𝑊𝑊Ψ𝑌𝑌
𝐾𝐾2 𝑗𝑗𝑗𝑗

https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition


ResDMD: avoiding “too much”

res(𝜆𝜆, 𝐠𝐠)2 =
𝐠𝐠∗ 𝐾𝐾2 − 𝜆𝜆𝐾𝐾1∗ − 𝜆̅𝜆𝐾𝐾1 + 𝜆𝜆 2𝐺𝐺 𝐠𝐠

𝐠𝐠∗𝐺𝐺𝐠𝐠

Algorithm 1:
1. Compute 𝐺𝐺,𝐾𝐾1,𝐾𝐾2 ∈ ℂ𝑁𝑁𝐾𝐾×𝑁𝑁𝐾𝐾 and eigendecomposition 𝐾𝐾1𝑉𝑉 = 𝐺𝐺𝐺𝐺Λ.
2. For each eigenpair (𝜆𝜆, 𝐯𝐯), compute res(𝜆𝜆, 𝐯𝐯).
3. Output: subset of e-vectors 𝑉𝑉(𝜀𝜀) & e-vals Λ(𝜀𝜀)with res 𝜆𝜆, 𝐯𝐯 ≤ 𝜀𝜀 (𝜀𝜀 = input tol).

• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.

eigenvectors
eigenvalues

Theorem (no spectral pollution): Suppose quad. rule converges. Then
lim sup
𝑀𝑀⟶∞

max
𝜆𝜆∈Λ(𝜀𝜀)

𝒦𝒦 − 𝜆𝜆 −1 −1 ≤ 𝜀𝜀



ResDMD: avoiding “too much”

res(𝜆𝜆, 𝐠𝐠)2 =
𝐠𝐠∗ 𝐾𝐾2 − 𝜆𝜆𝐾𝐾1∗ − 𝜆̅𝜆𝐾𝐾1 + 𝜆𝜆 2𝐺𝐺 𝐠𝐠

𝐠𝐠∗𝐺𝐺𝐠𝐠

Algorithm 1:
1. Compute 𝐺𝐺,𝐾𝐾1,𝐾𝐾2 ∈ ℂ𝑁𝑁𝐾𝐾×𝑁𝑁𝐾𝐾 and eigendecomposition 𝐾𝐾1𝑉𝑉 = 𝐺𝐺𝐺𝐺Λ.
2. For each eigenpair (𝜆𝜆, 𝐯𝐯), compute res(𝜆𝜆, 𝐯𝐯).
3. Output: subset of e-vectors 𝑉𝑉(𝜀𝜀) & e-vals Λ(𝜀𝜀)with res 𝜆𝜆, 𝐯𝐯 ≤ 𝜀𝜀 (𝜀𝜀 = input tol).

Theorem (no spectral pollution): Suppose quad. rule converges. Then
lim sup
𝑀𝑀⟶∞

max
𝜆𝜆∈Λ(𝜀𝜀)

𝒦𝒦 − 𝜆𝜆 −1 −1 ≤ 𝜀𝜀

BUT: Typically, does not capture all of spectrum! (“too little”)
• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.

eigenvectors
eigenvalues



ResDMD: avoiding “too little”

Spec𝜀𝜀(𝒦𝒦) = �
ℬ ≤𝜀𝜀

Spec(𝒦𝒦 + ℬ) , lim
𝜀𝜀↓0

Spec𝜀𝜀(𝒦𝒦) = Spec(𝒦𝒦)

Algorithm 2:
1. Compute 𝐺𝐺,𝐾𝐾1,𝐾𝐾2 ∈ ℂ𝑁𝑁𝐾𝐾×𝑁𝑁𝐾𝐾.
2. For 𝑧𝑧𝑘𝑘 in comp. grid, compute 𝜏𝜏𝑘𝑘 = min

𝑔𝑔=∑𝑗𝑗=1
𝑁𝑁𝐾𝐾 𝐠𝐠𝑗𝑗𝜓𝜓𝑗𝑗

res(𝑧𝑧𝑘𝑘 ,𝑔𝑔), corresponding 𝑔𝑔𝑘𝑘 (gen. SVD).

3. Output: 𝑧𝑧𝑘𝑘: 𝜏𝜏𝑘𝑘 < 𝜀𝜀 (approx. of Spec𝜀𝜀(𝒦𝒦)), 𝑔𝑔𝑘𝑘: 𝜏𝜏𝑘𝑘 < 𝜀𝜀 (𝜀𝜀-pseudo-eigenfunctions).

Theorem (full convergence): In the large data limit, 
• Error control: 𝑧𝑧𝑘𝑘: 𝜏𝜏𝑘𝑘 < 𝜀𝜀 ⊆ Spec𝜀𝜀(𝒦𝒦) (as 𝑀𝑀 → ∞)
• Convergence: Converges locally uniformly to Spec𝜀𝜀 𝒦𝒦 (as 𝑁𝑁𝐾𝐾 → ∞)

First convergent method for general 𝒦𝒦

• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.



Example: Flow past a cylinder wake
Re = 100,  Dimension (𝑑𝑑) = 80,000 (vel. at grid points)

Pseudospectra, linear dictionary res(𝜆𝜆𝑗𝑗 ,𝑔𝑔𝑗𝑗), linear dictionary

• C., Ayton, Szőke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.



res(𝜆𝜆𝑗𝑗 ,𝑔𝑔𝑗𝑗), nonlinear dictionaryPseudospectra, nonlinear dictionary

Example: Flow past a cylinder wake
Re = 100,  Dimension (𝑑𝑑) = 80,000 (vel. at grid points)

• C., Ayton, Szőke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.



Koopman Modes
Linear dictionary

Nonlinear dictionary



Example: Trustworthy computation for large 𝑑𝑑

𝜆𝜆 = 𝑒𝑒0.11𝑖𝑖 𝜆𝜆 = 𝑒𝑒0.51𝑖𝑖 𝜆𝜆 = 𝑒𝑒0.71𝑖𝑖
?

Rel. Error = ? Rel. Error = ? Rel. Error = ?

• Reynolds number ≈ 3.9 × 105
• Ambient dimension (𝑑𝑑) ≈ 300,000

(number of measurement points)
*Measurements provided by Stephane Moreau (Sherbrooke)

• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.



𝜆𝜆 = 𝑒𝑒0.11𝑖𝑖 𝜆𝜆 = 𝑒𝑒0.51𝑖𝑖 𝜆𝜆 = 𝑒𝑒0.71𝑖𝑖
Rel. Error ≤ 0.0054 Rel. Error ≤ 0.0128 Rel. Error ≤ 0.0196

Example: Trustworthy computation for large 𝑑𝑑
• Reynolds number ≈ 3.9 × 105
• Ambient dimension (𝑑𝑑) ≈ 300,000

(number of measurement points)
*Measurements provided by Stephane Moreau (Sherbrooke)

• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.



Dealing with continuous spectra



Suppose system is measure-preserving (e.g., Hamiltonian, ergodic, post-transient etc.)

⟺𝒦𝒦∗𝒦𝒦 = 𝐼𝐼 (isometry)

⟹ Spec(𝒦𝒦) ⊆ 𝑧𝑧: 𝑧𝑧 ≤ 1

Setup for continuous spectra

1

spectral
measure
supp. on
boundary

No such assumption
was made in first part of talk!



Spectral decomposition of operators

𝐴𝐴 ∈ ℂ𝑛𝑛×𝑛𝑛 normal ⟹ O.N. basis of eigenvectors 𝑣𝑣1, … , 𝑣𝑣𝑛𝑛:

𝑣𝑣 = �
𝑘𝑘=1

𝑛𝑛

𝑣𝑣𝑘𝑘𝑣𝑣𝑘𝑘∗ 𝑣𝑣, 𝐴𝐴𝐴𝐴 = �
𝑘𝑘=1

𝑛𝑛

𝜆𝜆𝑘𝑘𝑣𝑣𝑘𝑘𝑣𝑣𝑘𝑘∗ 𝑣𝑣, 𝑣𝑣 ∈ ℂ𝑛𝑛

Projector onto Span(𝑣𝑣𝑘𝑘) eigenvalues



Spectral decomposition of operators

𝐴𝐴 ∈ ℂ𝑛𝑛×𝑛𝑛 normal ⟹ O.N. basis of eigenvectors 𝑣𝑣1, … , 𝑣𝑣𝑛𝑛:

𝑣𝑣 = �
𝑘𝑘=1

𝑛𝑛

𝑣𝑣𝑘𝑘𝑣𝑣𝑘𝑘∗ 𝑣𝑣, 𝐴𝐴𝐴𝐴 = �
𝑘𝑘=1

𝑛𝑛

𝜆𝜆𝑘𝑘𝑣𝑣𝑘𝑘𝑣𝑣𝑘𝑘∗ 𝑣𝑣, 𝑣𝑣 ∈ ℂ𝑛𝑛

Projector onto Span(𝑣𝑣𝑘𝑘) eigenvalues

Energy of “v” in each eigenvector:            𝜇𝜇𝑣𝑣 𝜆𝜆𝑗𝑗 = 𝑣𝑣𝑗𝑗𝑣𝑣𝑗𝑗∗𝑣𝑣, 𝑣𝑣 = 𝑣𝑣𝑗𝑗∗𝑣𝑣
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This is called the spectral measure with respect to a vector 𝑣𝑣. 

𝒦𝒦 is unitary ⟹ projection-valued measure 𝜉𝜉

𝑔𝑔 = �
𝕋𝕋
𝑑𝑑𝑑𝑑(𝑦𝑦) 𝑔𝑔, 𝒦𝒦𝑔𝑔 = �

𝕋𝕋
𝑦𝑦𝑦𝑦𝑦𝑦(𝑦𝑦) 𝑔𝑔

Spectral measure      𝜈𝜈𝑔𝑔 𝐵𝐵 = ⟨𝜉𝜉 𝐵𝐵 𝑔𝑔,𝑔𝑔⟩
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Spectral measure      𝜈𝜈𝑔𝑔 𝐵𝐵 = ⟨𝜉𝜉 𝐵𝐵 𝑔𝑔,𝑔𝑔⟩

White light contains a continuous spectrum

Often interesting to look at 
the intensity of each wavelength



Approximation using autocorrelations

�𝜈𝜈𝑔𝑔 𝑛𝑛 =
1
2𝜋𝜋

�
−𝜋𝜋,𝜋𝜋 per

𝑒𝑒−𝑖𝑖𝑖𝑖𝜃𝜃 d𝜈𝜈𝑔𝑔 𝜃𝜃 =
1
2𝜋𝜋

�
𝒦𝒦 |𝑛𝑛|𝑔𝑔,𝑔𝑔 , 𝑛𝑛 < 0
𝑔𝑔,𝒦𝒦 |𝑛𝑛|𝑔𝑔 , 𝑛𝑛 ≥ 0

Approximate from
trajectory data

𝜈𝜈𝑔𝑔,𝑁𝑁(𝜃𝜃) = �
𝑛𝑛=−𝑁𝑁

𝑁𝑁

𝜑𝜑
𝑛𝑛
𝑁𝑁

�𝜈𝜈𝑔𝑔 𝑛𝑛 𝑒𝑒𝑖𝑖𝑖𝑖𝜃𝜃

Filter function

For 𝑚𝑚 ∈ ℕ, 𝑚𝑚th order filter:
• Continuous, even, compactly supported on [-1,1]
• ∈ 𝐶𝐶𝑚𝑚−1 −1,1 , ∈ 𝐶𝐶𝑚𝑚−1 0,1
• 𝜑𝜑 0 = 1,𝜑𝜑𝑗𝑗 0 = 0 for 𝑗𝑗 = 1, … ,𝑚𝑚 − 1
• 𝜑𝜑𝑗𝑗 0 = 0 for 𝑗𝑗 = 0, … ,𝑚𝑚 − 1

Approximates 𝜈𝜈𝑔𝑔 to order 𝑂𝑂(𝑁𝑁−𝑚𝑚log(𝑁𝑁)) with frequency smoothing scale 𝑂𝑂(𝑁𝑁−𝑚𝑚)



Link with power spectrum

𝑅𝑅𝑔𝑔 𝑛𝑛∆𝑡𝑡 = 𝑔𝑔,𝑔𝑔 ∘ 𝐹𝐹𝑛𝑛∆𝑡𝑡 = �
𝒦𝒦|𝑛𝑛|𝑔𝑔,𝑔𝑔 ,𝑛𝑛 < 0
𝑔𝑔,𝒦𝒦|𝑛𝑛|𝑔𝑔 ,𝑛𝑛 ≥ 0

= 2𝜋𝜋�𝜈𝜈𝑔𝑔 𝑛𝑛

Delay autocorrelation function

𝑆𝑆𝑔𝑔 𝑓𝑓 = �
−𝑇𝑇

𝑇𝑇
𝑅𝑅𝑔𝑔(𝑡𝑡)𝑒𝑒2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋 d𝑡𝑡

Window (using 𝜑𝜑) in frequency domain and discretize integral:

𝑆𝑆𝑔𝑔 𝑓𝑓
2𝜋𝜋Δ𝑡𝑡

≈ �
𝑛𝑛=−𝑁𝑁

𝑁𝑁

𝜑𝜑
𝑛𝑛
𝑁𝑁

𝑅𝑅𝑔𝑔 𝑛𝑛∆𝑡𝑡
2𝜋𝜋

𝑒𝑒𝑖𝑖𝑖𝑖 2𝜋𝜋𝑓𝑓Δ𝑡𝑡 = 𝜈𝜈𝑔𝑔,𝑁𝑁(2𝜋𝜋𝜋𝜋Δ𝑡𝑡)

• Avoid (artificially) periodically extending signal ⟹ avoid broadening.
• Rigorous convergence theory as 𝑁𝑁 → ∞.

Power spectrum of signal 𝑔𝑔 𝑥𝑥 𝑡𝑡



(friction) Re = 1400

Example: Shear layer in turbulent boundary
(hotwire experimental data)

• C., Ayton, Szőke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.





Approximation using resolvent (Green’s function)

Poisson kernel for
unit disk

𝜃𝜃0

•
•
𝑂𝑂(𝜀𝜀)𝑂𝑂(𝜀𝜀)

𝜀𝜀 = “smoothing parameter”

𝑃𝑃𝜀𝜀 ∗ 𝜈𝜈𝑔𝑔 𝜃𝜃0 = �
[−𝜋𝜋,𝜋𝜋]per

𝑃𝑃𝜀𝜀 𝜃𝜃0 − 𝜃𝜃 d𝜈𝜈𝑔𝑔 𝜃𝜃

Smoothing convolution

𝑃𝑃𝜀𝜀(𝜃𝜃0) =
1
2𝜋𝜋

1 + 𝜀𝜀 2 − 1
1 + 1 + 𝜀𝜀 2 − 2 1 + 𝜀𝜀 cos(𝜃𝜃0)



Approximation using resolvent (Green’s function)

Poisson kernel for
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Smoothing convolution
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1 + 𝜀𝜀 2 − 1
1 + 1 + 𝜀𝜀 2 − 2 1 + 𝜀𝜀 cos(𝜃𝜃0)



Approximation using resolvent (Green’s function)

𝒞𝒞𝑔𝑔 𝑧𝑧 = �
[−𝜋𝜋,𝜋𝜋]per

𝑒𝑒𝑖𝑖𝑖𝑖d𝜈𝜈𝑔𝑔(𝜃𝜃)
𝑒𝑒𝑖𝑖𝑖𝑖 − 𝑧𝑧

= � 𝒦𝒦 − 𝑧𝑧𝑧𝑧 −1𝑔𝑔,𝒦𝒦∗𝑔𝑔 , if 𝑧𝑧 > 1
−𝑧𝑧−1 𝑔𝑔, 𝒦𝒦 − ̅𝑧𝑧−1𝐼𝐼 −1𝑔𝑔 , if 0 < 𝑧𝑧 < 1

Poisson kernel for
unit disk

ResDMD computes
with error control

𝜃𝜃0

•
•
𝑂𝑂(𝜀𝜀)𝑂𝑂(𝜀𝜀)

𝜀𝜀 = “smoothing parameter”

𝑃𝑃𝜀𝜀 ∗ 𝜈𝜈𝑔𝑔 𝜃𝜃0 = �
[−𝜋𝜋,𝜋𝜋]per

𝑃𝑃𝜀𝜀 𝜃𝜃0 − 𝜃𝜃 d𝜈𝜈𝑔𝑔 𝜃𝜃

Smoothing convolution

𝑃𝑃𝜀𝜀(𝜃𝜃0) =
1
2𝜋𝜋

1 + 𝜀𝜀 2 − 1
1 + 1 + 𝜀𝜀 2 − 2 1 + 𝜀𝜀 cos(𝜃𝜃0)

𝑃𝑃𝜀𝜀 ∗ 𝜈𝜈𝑔𝑔 𝜃𝜃0 = 𝒞𝒞𝑔𝑔 𝑒𝑒𝑖𝑖𝜃𝜃0(1 + 𝜀𝜀)−1 − 𝒞𝒞𝑔𝑔 𝑒𝑒𝑖𝑖𝜃𝜃0 1 + 𝜀𝜀



𝒦𝒦 =

𝛼𝛼0 𝛼𝛼1𝜌𝜌0 𝜌𝜌0𝜌𝜌1
𝜌𝜌0 −𝛼𝛼1𝛼𝛼0 −𝛼𝛼0𝜌𝜌1

𝛼𝛼2𝜌𝜌1 −𝛼𝛼2𝛼𝛼1 −𝛼𝛼3𝜌𝜌2 −𝜌𝜌3𝜌𝜌2
𝜌𝜌0 −𝜌𝜌2𝜌𝜌1 −𝛼𝛼1𝜌𝜌2 −𝛼𝛼3𝛼𝛼2 −𝜌𝜌3𝛼𝛼2 ⋱

𝛼𝛼4𝜌𝜌3 −𝛼𝛼4𝛼𝛼3 ⋱
⋱ ⋱ ⋱

𝛼𝛼𝑗𝑗 = (−1)𝑗𝑗0.95(𝑗𝑗+1)/2, 𝜌𝜌𝑗𝑗 = 1 − 𝛼𝛼𝑗𝑗
2

Generalized shift, typical building block of many dynamical systems.

Example
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Fix NK , vary E: unstable I 



21/34 

Fix E, vary NK : too smooth I 
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Adaptive: new matrix to compute residuals crucial 



But … slow convergence
Problem: As 𝜀𝜀 ↓ 0, error is 𝑂𝑂(𝜀𝜀 log(1/𝜀𝜀)) and 𝑁𝑁𝐾𝐾(𝜀𝜀) → ∞.

Small 𝑁𝑁𝐾𝐾 critical in data-driven computations. Can we improve convergence rate?

Pointwise error for spectral density Error due to discretization

𝜀𝜀 𝑁𝑁𝐾𝐾



High-order rational kernels
𝑚𝑚th order rational kernels:

𝐾𝐾𝜀𝜀 𝜃𝜃 =
𝑒𝑒−𝑖𝑖𝑖𝑖

2𝜋𝜋
�
𝑗𝑗=1

𝑚𝑚
𝑐𝑐𝑗𝑗

𝑒𝑒−𝑖𝑖𝑖𝑖 − (1 + 𝜀𝜀�𝑧𝑧𝑗𝑗)−1
−

𝑑𝑑𝑗𝑗
𝑒𝑒−𝑖𝑖𝑖𝑖 − 1 + 𝜀𝜀𝑧𝑧𝑗𝑗

𝐾𝐾𝜀𝜀 ∗ 𝜈𝜈𝑔𝑔 𝜃𝜃0 =

�
𝑗𝑗=1

𝑚𝑚

𝑐𝑐𝑗𝑗𝒞𝒞𝑔𝑔 𝑒𝑒𝑖𝑖𝜃𝜃0(1 + 𝜀𝜀�𝑧𝑧𝑗𝑗)−1 − 𝑑𝑑𝑗𝑗𝒞𝒞𝑔𝑔 𝑒𝑒𝑖𝑖𝜃𝜃0 1 + 𝜀𝜀𝑧𝑧𝑗𝑗

Kernels

ResDMD computes
with error control

𝜃𝜃0

•
•

𝑂𝑂(𝜀𝜀)

𝜀𝜀 = “smoothing parameter”

•
•• •
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Convergence

Pointwise error for spectral density

𝜀𝜀

Theorem: Automatic selection of 𝑁𝑁𝐾𝐾(𝜀𝜀)
with 𝑂𝑂(𝜀𝜀𝑚𝑚log(1/𝜀𝜀)) convergence:
• Density of continuous spectrum 𝜌𝜌𝑔𝑔.

(pointwise and 𝐿𝐿𝑝𝑝)
• Integration against test functions.

(weak convergence)

�
[−𝜋𝜋,𝜋𝜋]per

ℎ 𝜃𝜃 𝐾𝐾𝜀𝜀 ∗ 𝜈𝜈𝑔𝑔 𝜃𝜃 d𝜃𝜃

= �
[−𝜋𝜋,𝜋𝜋]per

ℎ 𝜃𝜃 d𝜈𝜈𝑔𝑔 𝜃𝜃 + 𝑂𝑂(𝜀𝜀𝑚𝑚log(1/𝜀𝜀))

Also recover discrete spectrum.
• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.



Example: Molecular dynamics (Adenylate Kinase)

• Ambient dimension (𝑑𝑑) ≈ 20,000
(positions and momenta of atoms)

• 6th order kernel (spec res 10−6)
*Dataset: www.mdanalysis.org/MDAnalysisData/adk_equilibrium.html

LID NMP

• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.

Adenylate Kinase



Software package

SpecSolve available at https://github.com/SpecSolve
Capabilities: ODEs, PDEs, integral operators, discrete operators.

Spectral measures of self-adjoint operators

• C., Horning, Townsend “Computing spectral measures of self-adjoint operators,” SIAM Rev., 2021.

https://github.com/SpecSolve


Further uses



Popular to learn dictionary 𝜓𝜓1, … ,𝜓𝜓𝑁𝑁𝐾𝐾

E.g., DMD with truncated SVD (linear dictionary, most popular), 
kernel methods (this talk), neural networks, etc.

Q: Is discretisation 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 𝝍𝝍𝟏𝟏, … ,𝝍𝝍𝑵𝑵𝑲𝑲 large/rich enough?

Above algorithms:
• Pseudospectra: 𝑧𝑧𝑘𝑘: 𝜏𝜏𝑘𝑘 < 𝜀𝜀 ⊆ Spec𝜀𝜀(𝒦𝒦) error control
• Spectral measures: 𝒞𝒞𝑔𝑔 𝑧𝑧 and smoothed measures adaptive check

⟹ Rigorously verify learnt dictionary 𝜓𝜓1, … ,𝜓𝜓𝑁𝑁𝐾𝐾

Large 𝑑𝑑 (Ω ⊆ ℝ𝑑𝑑): robust and scalable



𝜆𝜆 = 0.9439 + 0.2458𝑖𝑖, error ≤ 0.0765 𝜆𝜆 = 0.8948 + 0.1065𝑖𝑖, error ≤ 0.1105

• Reynolds number ≈ 6.4 × 104
• Ambient dimension (𝑑𝑑) ≈ 100,000

(velocity at measurement points)
*Measurements provided by Máté Szőke (Virginia Tech)

Spectral pollution

Example: Verify the dictionary

• C., Ayton, Szőke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.



Example: Trustworthy Koopman mode decomposition

• C., Ayton, Szőke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.



extremely efficient
compression

Number of modes

Re
la

tiv
e 

M
SE

unseen shockwave
prediction
from 40 modes

Example: Trustworthy Koopman mode decomposition

Time(10−5s)

Pr
es

su
re

• C., Ayton, Szőke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.



• Infinite-dimensional computational analysis ⟹ Practical and rigorous algorithms.

• Solvability Complexity Index⟹Classify difficulty of problems, prove algorithms are optimal.

• Extends to: Foundations of AI, optimization, computer-assisted proofs, and PDEs etc.

DATA SCIENCE + NUMERICAL ANALYSIS

Wider programme

• C., “On the computation of geometric features of spectra of linear operators on Hilbert spaces,” Found. Comput. Math., to appear.
• C., “Computing spectral measures and spectral types,” Comm. Math. Phys., 2021.
• C., Horning, Townsend “Computing spectral measures of self-adjoint operators,” SIAM Rev., 2021.
• C., Roman, Hansen, “How to compute spectra with error control,” Phys. Rev. Lett., 2019.
• C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022.
• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th 

problem," Proc. Natl. Acad. Sci. USA, 2022.
• C., “Computing semigroups with error control,” SIAM J. Numer. Anal., 2022.
• C., “The mpEDMD Algorithm for Data-Driven Computations of Measure-Preserving Dynamical Systems,” preprint.
• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.
• Smale, “The fundamental theorem of algebra and complexity theory,” Bull. Amer. Math. Soc., 1981, 36 pp.
• McMullen, “Families of rational maps and iterative root-finding algorithms,” Ann. of Math., 1987, 27 pp.

SCI provides needed assumptions



Some future directions:
• ResDMD in neuroscience.
• ResDMD + control ⟹ error control?
• Embed & learn symmetries (e.g., check out the algorithm mpEDMD).
• Forecasting with error bounds.
• Koopmanism meets neural nets (and vice versa).
• Foundations results for dynamical systems (i.e., impossibility results)?

Opportunities to collaborate, visit Cambridge, grad students & beyond!

Interested?



“Too much” or “Too little” 
Idea: New matrix for residual

⇒ ResDMD for computing spectra.
Continuous spectra
Idea: Smoothing via resolvent and ResDMD.
Is it right?
ResDMD verifies computations.
E.g., learned dictionaries.

Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

Rigorous data-driven Koopmanism!



Read more about these 
breakthroughs in SIAM News!

“Too much” or “Too little” 
Idea: New matrix for residual

⇒ ResDMD for computing spectra.
Continuous spectra
Idea: Smoothing via resolvent and ResDMD.
Is it right?
ResDMD verifies computations.
E.g., learned dictionaries.

Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

Rigorous data-driven Koopmanism!



Read more about these 
breakthroughs in SIAM News!

“Too much” or “Too little” 
Idea: New matrix for residual

⇒ ResDMD for computing spectra.
Continuous spectra
Idea: Smoothing via resolvent and ResDMD.
Is it right?
ResDMD verifies computations.
E.g., learned dictionaries.

Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

Rigorous data-driven Koopmanism!

Short video summaries
available on YouTube:

(Thank you Steve Brunton
for letting me use your channel!) 



Additional slides…



Quadrature with trajectory data

E.g.,    𝒦𝒦𝒦𝒦𝑘𝑘 ,𝜓𝜓𝑗𝑗 = lim
𝑀𝑀→∞

∑𝑚𝑚=1
𝑀𝑀 𝑤𝑤𝑚𝑚𝜓𝜓𝑗𝑗 𝑥𝑥 𝑚𝑚 𝜓𝜓𝑘𝑘 𝑦𝑦 𝑚𝑚

[𝒦𝒦𝒦𝒦𝑘𝑘] 𝑥𝑥 𝑚𝑚

Three examples:

• High-order quadrature: 𝑥𝑥(𝑚𝑚),𝑤𝑤𝑚𝑚 𝑚𝑚=1
𝑀𝑀 𝑀𝑀-point quadrature rule.  

Rapid convergence. Requires free choice of 𝑥𝑥(𝑚𝑚)
𝑚𝑚=1
𝑀𝑀

and small 𝑑𝑑.

• Random sampling: 𝑥𝑥(𝑚𝑚)
𝑚𝑚=1
𝑀𝑀

selected at random.
Large 𝑑𝑑. Slow Monte Carlo 𝑂𝑂(𝑀𝑀−1/2) rate of convergence.

• Ergodic sampling: 𝑥𝑥(𝑚𝑚+1) = 𝐹𝐹(𝑥𝑥(𝑚𝑚)). 
Single trajectory, large 𝑑𝑑. Requires ergodicity, convergence can be slow.

Most common



• C., Antun, Hansen, “The difficulty of computing stable and accurate neural networks: 
On the barriers of deep learning and Smale’s 18th problem,” Proc. Natl. Acad. Sci. USA.

Example: Barriers of deep learning



measure-preserving EDMD…
• Polar decomposition of 𝒦𝒦. Easy to combine with any DMD-type method!

• Converges for spectral measures, spectra, Koopman mode decomposition.

• Measure-preserving discretization for arbitrary measure-preserving systems.

• C., “The mpEDMD Algorithm for Data-Driven Computations of Measure-Preserving Dynamical Systems,” arXiv 2022.

Snapshots collected over 1s EDMD unstable!



Class Ω ∋ 𝐴𝐴, want to compute Ξ:Ω → (ℳ,𝑑𝑑)
• ∆0: Problems solved in finite time (v. rare for cts problems).
• ∆1: Problems solved in “one limit” with full error control:

𝑑𝑑(Γ𝑛𝑛 𝐴𝐴 ,Ξ(𝐴𝐴)) ≤ 2−𝑛𝑛

• ∆2: Problems solved in “one limit”:
lim
𝑛𝑛→∞

Γ𝑛𝑛(𝐴𝐴) = Ξ(𝐴𝐴)

• ∆3: Problems solved in “two successive limits”:
lim
𝑛𝑛→∞

lim
𝑚𝑚→∞

Γ𝑛𝑛,𝑚𝑚(𝐴𝐴) = Ξ(𝐴𝐴)

• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
• Hansen, “On the solvability complexity index, the 𝑛𝑛-pseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.
• McMullen, “Families of rational maps and iterative root-finding algorithms,” Ann. of Math., 1987.
• Doyle, McMullen, “Solving the quintic by iteration,” Acta Math., 1989.
• Smale, “The fundamental theorem of algebra and complexity theory,” Bull. Amer. Math. Soc., 1981.

Solvability Complexity Index Hierarchy
metric space

⋮



Error control for spectral problems

• Σ1: ∃ alg. Γ𝑛𝑛 s.t. lim
𝑛𝑛→∞

Γ𝑛𝑛 𝐴𝐴 = Ξ 𝐴𝐴 , max𝑧𝑧∈Γ𝑛𝑛 𝐴𝐴 dist 𝑧𝑧,Ξ 𝐴𝐴 ≤ 2−𝑛𝑛

Ξ 𝐴𝐴 = Spec(𝐴𝐴)



Error control for spectral problems

• Σ1: ∃ alg. Γ𝑛𝑛 s.t. lim
𝑛𝑛→∞

Γ𝑛𝑛 𝐴𝐴 = Ξ 𝐴𝐴 , max𝑧𝑧∈Γ𝑛𝑛 𝐴𝐴 dist 𝑧𝑧,Ξ 𝐴𝐴 ≤ 2−𝑛𝑛

• Π1: ∃ alg. Γ𝑛𝑛 s.t. lim
𝑛𝑛→∞

Γ𝑛𝑛 𝐴𝐴 = Ξ 𝐴𝐴 , max𝑧𝑧∈Ξ(𝐴𝐴)dist(𝑧𝑧, Γ𝑛𝑛 𝐴𝐴 ) ≤ 2−𝑛𝑛

Such problems can be used in a proof!

Ξ 𝐴𝐴 = Spec(𝐴𝐴)
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