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Data-driven dynamical systems

e State x € Q € R%, unknown function F: Q — Q governs dynamics
Xn+1 = F(xy)
* Goal: Learn about system from data {x(m),y(m) = F(x(m))}j::l

* Data: experimental measurements or numerical simulations
* E.g., used for forecasting, control, design, understanding

* Applications: chemistry, climatology,
electronics, epidemiology, finance,
fluids, molecular dynamics,
neuroscience, plasmas, robotics,
video processing, etc.

Poincaré



Operator viewpoint ==, =rer

* Koopman operator K acts on functions g: (0 = C

[Kgl(x) = g(F(x))

* K is linear but acts on an infinite-dimensional space. H
State n Non linear
I
Functlons \ \ \ \ Lmear
of state g(xl) g grs) - 9tn)

e Work in L% (), w) for positive measure w, with inner product {-,-).

* Koopman, “Hamiltonian systems and transformation in Hilbert space,” Proc. Natl. Acad. Sci. USA, 1931.
e Koopman, v. Neumann, “Dynamical systems of continuous spectra,” Proc. Natl. Acad. Sci. USA, 1932.



Why is linear (much) easier?

Long-time dynamics
become triviall

e Suppose F(x) = Ax, A € R**%¢, 4 = VAV L. /
e Seté& =V 1y,
67’1, —_ V_lxn — V_lAnxO — AnV_le — An€O

e Let wlA = Aw, set o(x) = w'x,

[Ko](x) = wlAx = 1p(x) ‘Eigenfunction ‘

Much more general (non-linear F and even chaotic systems).



Koopman mode decomposition generize

eigenfunction of I / eigenfunction of X

90 = ) e+ | $ag()do

eigs 4; [—TT,T]per

L
continuous spectra

90 = (K910 = ) i h"es, )+ [ emipy (o) do

eigs 4; [T, ] per

Encodes: geometric features, invariant measures, transient behavior,
long-time behavior, coherent structures, quasiperiodicity, etc.

GOAL: Data-driven approximation of K and its spectral properties.

* Mezié, “Spectral properties of dynamical systems, model reduction and decompositions,” Nonlinear Dynam., 2005.
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Koopmania*: A revolution in the big data era?

New Papers on
“Koopman Operators”

~35,000 papers over last decade!

BUT: Very little on verified methods!

Computing spectra in infinite
5558585858888 dimensions is hotoriously hard!

—number of papers

—doubles every 5 yrs

*Wikipedia: “its wild surge in popularity is sometimes jokingly called ‘Koopmania™



Challenges of computing
Spec(K) = {4 € C: K — Al is notinvertible}

Truncate: K K € CNkXNk

1) “Too much”: Approximate spurious modes 4 & Spec(K)
2) “Too little”: Miss parts of Spec(K)

3) Continuous spectra.

Verification: Is it right?



Computing spectra



Build the matrix: Dynamic Mode Decomposition (DMD)

Given dictionary {1/)1, - ¢NK} of functions ¥;: Q - C,

(Yi, ;) = Ty Wi (x )y (x ™)) =

(Kpi, ;) = ZM_ wint; (x(M) 4 (y)) =
[Fpr] (x (™)

(m
)} 7
m=1
[ (xD) Py O\ fwy y (x D) P, x)\]
Pr ) ey () wir ) \pr (eD) oy (xOD)
Fx W ¥y L
(1 (xD) Y XN\ [wy P (D) Uy YD)]
Pr ) ey () wi) \pr D) ey (D)
Py W By L

K=—> K=V, WY)W, WY, € CVk*Nk

Recall open problems: too much, too little, continuous spectra, verification

Schmid, “Dynamic mode decomposition of numerical and experimental data,” J. Fluid Mech., 2010.

Rowley, Mezi¢, Bagheri, Schlatter, Henningson, “Spectral analysis of nonlinear flows,” J. Fluid Mech., 2009.

Kutz, Brunton, Brunton, Proctor, “Dynamic mode decomposition: data-driven modeling of complex systems,” SIAM, 2016.
Williams, Kevrekidis, Rowley “A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition,” J. Nonlinear Sci., 2015.



Residual DMD (ResDMD): Approx. K and XK

(Wi ) = i Winth; (x ™) e (x ™)) = [LPX WLPX]

m=1 jk
M
(Kb, i) = > with; (x) iy (y) = [wx W‘Py]
m=1 i (x ™) jk
M
m=1 jk

Residuals: g = Z 8, 1%g — Agll* = g'[K, — AK," — ZK; + |A|°Glg

* C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.
e C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
* Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition



https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

ResDMD: avoiding “too much”

g*[K, — 2K," — 2K, + |A1%Gg
2 _
res(/l, g) — g* Gg eigenvectors

eigenvalues
Algorithm 1: A//

1. Compute G, K, K, € CNk*Nk and eigendecomposition K;V = GVA.
2. For each eigenpair (4, v), compute res(4, v).

3. Output: subset of e-vectors V) & e-vals A withres(4,v) < & (e = input tol).

Theorem (no spectral pollution): Suppose quad. rule converges. Then

lim sup max (K =Dt <e
M—oo AEA

* C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.



ResDMD: avoiding “too much”

g*[K, — 2K," — 2K, + |A1%Gg
2 _
res(/l, g) — g* Gg eigenvectors

eigenvalues
Algorithm 1: A//

1. Compute G, K, K, € CNk*Nk and eigendecomposition K;V = GVA.
2. For each eigenpair (4, v), compute res(4, v).

3. Output: subset of e-vectors V) & e-vals A withres(4,v) < & (e = input tol).

Theorem (no spectral pollution): Suppose quad. rule converges. Then

lim sup max (K =Dt <e
M—oo AEA

BUT: Typically, does not capture all of spectrum! (“too little”)

* C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.



ResDMD: avoiding “too little”

Spec.(K) = U Spec(K + B), léjg)l Spec.(K) = Spec(K)

IBl|<e
Algorlthm 2: First convergent method for general X
1. Compute G,K;, K, € CNk*Nk,
2. For z, in comp. grid, compute 7, = min  res(zy, g), corresponding g, (gen. SVD),

N
g=2j=Klgj1/Jj

3. Output: {z;: 1), < €} (approx. of Spec.(K)), {gx: Tx < €} (e-pseudo-eigenfunctions).

Theorem (full convergence): In the large data limit,
* Error control: {z;: 7}, < €} € Spec.(X) (as M — o)
* Convergence: Converges locally uniformly to Spec.(K) (as Ny — o)

* C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.



Example: Flow past a cylinder wake

Im(A)

Re = 100, Dimension (d) = 80,000 (vel. at grid points) R I e £

Pseudospectra, linear dictionary

10° ¢

res(4;, g;), linear dictionary
" spectral
" pollution
4 2 0 2 4

phase(4;)

* C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” ). Fluid Mech., 2023.



Example: Flow past a cylinder wake
Re = 100, Dimension (d) = 80,000 (vel. at grid points)

Pseudospectra, nonlinear dictionary

Re(A)

10° ¢

res(4;, g;j), nonlinear dictionary

branch —1 I . I branch 1
branch 0
4 2 (I) 2I 4
phase(A4;)

e C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.



o Koopman Modes
Linear dictionary

Mode 1 (real part) Mode 2 (real part) Mode 20 (real part) 1070

o N A

F NS

-2 0 2 4 6 8 10 12 14

x 10710

Mode 2 (absolute value) Mode 20 (absolute value)

0.015

0.005

Nonlinear dictionary
Mode 1 (real part)

2
0.01
0 0
-0.01
2 -

Mode 1 (absolute value)

2
0
-2

Mode 2 (real part) Mode 20 (real part)

%107

N
o

2 4 6 8 10 12 14 2 0 2 ) 6 8 10 12 14

Mode 20 (absolute value)

Mode 2 (absolute value)

%1070
0.02 o

0.015
001 O
0.005

2 0 2 4 6 8 10 12 14 2 0 2 4 6 8

10 12 14



Example: Trustworthy computation for large d

Peri‘o'dic Inlet
conditions N Blade Outlet
' N\ /"« Reynolds number = 3.9 x 105
‘“‘e‘\ y 25 mm  Ambient dimension (d) = 300,000
/“mm /X (number of measurement points)
*Measurements provided by Stephane Moreau (Sherbrooke)
o 404 mm
Rel. Error = ? Rel. Error =7
1 _ ,0.71i
0.8 02 2N A =€ 0.06
1. . acoustic source?
4 0.15 4 0.04
jj 04 101 /
102 | 0,05 % 10.02
) 1o 10
4-0.2 1 -0.05
1-0.02
| .. 1-0.1
ok 1015 004
08 -0.2 -0.06
: -0.25
1 -0.08

* C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.



Example: Trustworthy computation for large d

Periodic
Inlet

conditions N Blade Outlet
' N\ /"« Reynolds number = 3.9 x 10°
‘ met\ » 1 25 mm * Ambient dimension (d) = 300,000
/%mm /X (number of measurement points)
_____ ) *Measurements provided by Stephane Moreau (Sherbrooke)
c 404 mm

Outlet

Rel. Error < 0.0128 Rel. Error < 0.0196

1 . ‘ . 0.08
1= 0.511 0.25 ) = 0.711
0.8 — 8 — 8
0.2 o 0.06
0.6 turbulent
. 4 0.15
fluctuations 10.04
10.4 101
40.02
10.2 ? 4 0.05
10 10 10
4.0.2 i 4 -0.05
4 -0.02
4-0.4 1-0.1
$ | 4-0.04
0.6 g -0.15
1 -0.2 -0.06
-0.8 i
-0.25
1 -0.08

acoustic vibrations

* C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.



Dealing with continuous spectra



Setup for continuous spectra

No such assumption

/ was made in first part of talk!

Suppose system is measure-preserving (e.g., Hamiltonian, ergodic, post-transient etc.)

& K*K =1 (isometry)

= Spec(K) € {z:|z| < 1}
~~ spectral

measure
supp. on
boundary



Spectral decomposition of operators

A € C*"™ normal = O.N. basis of eigenvectors v, ..., Uy:

n n
V= (Z Vi Vg )v, Av = (z /lkvkv;;) v, v et
=i =1

Projector onto Span(vy) eigenvalues




Spectral decomposition of operators

A € C"*™ normal

k=1

n
*

1

Projector onto Span(vy) eigenvalues

= O.N. basis of eigenvectors vy, ..., Uy:

n
)v, Av = <z Akvkv,“E) v, v EeC
=1

o, .n

Energy of “v” in each eigenvector: ,uv(/lj) = (vjv]?kv, v) = |vj"v|2

This is called the spectral measure with respect to a vector v.



Spectral decomposition of operators

A € C*"™ normal = O.N. basis of eigenvectors vy, ..., Uy,

n n
v = <Z Vi Vg )v, Av = <z Akvkv,“E) v, veCt
=i =¥

Projector onto Span(vy) eigenvalues

o, .n

Energy of “v” in each eigenvector: ,uv(/lj) = (vjv]?kv, v) = |vj"v|2

This is called the spectral measure with respect to a vector v.

0.2 Eigenvalues
0.15]
0.1
0.05¢
O/ oo o wee 0o oo wewe oo o -

-n —2n/3-n/3 O n/3 2n/3 =@



Spectral decomposition of operators

A € C*"™ normal = O.N. basis of eigenvectors vy, ..., Uy,

n n
v = <Z Vi Vg )v, Av = <z Akvkv;> v, veCt
=i =¥

Projector onto Span(vy) eigenvalues

o, .n

* * 2
Energy of “v” in each eigenvector: ,uv(/lj) = (vjvj , v) = |vj v|
This is called the spectral measure with respect to a vector v.

o2t Spectrfal measure

0.15¢
0.1

0.05¢

Laldldl

-n —2n/3-n/3 O n/3 2n/3 =@




Spectral decomposition of operators

A € C*"™ normal = O.N. basis of eigenvectors vy, ..., Uy,

n n
v = <Z Vi Vg )v, Av = <z Akvkv,“E) v, veCt
=i =¥

Projector onto Span(vy) eigenvalues

o, .n

k k 2
Energy of “v” in each eigenvector: ,uv(/lj) = (vjvj , v) = |vj v|
This is called the spectral measure with respect to a vector v.

02+ Spectrfal measure

0.15¢
0.1

0.05¢

g ) IMﬂ.u.l..il .

-n —2n/3-n/3 O n/3 2n/3 =@




Spectral decomposition of operators

A € C*"™ normal = O.N. basis of eigenvectors v, ..., Uy:

n n
V= (Z Vi Vg )v, Av = (z /lkvkv;;) v, v et
=i =1

Projector onto Span(vy) eigenvalues

2

o, .n

Energy of “v” in each eigenvector: ,uv(/lj) = (vjvj‘v, v) =

*
vjv

This is called the spectral measure with respect to a vector v.

02t Spects®l measure

0.15¢
0.1

0.05

0 el de' g

-n —2n/3-n/3 O n/3 2n/3 =@




Spectral decomposition of operators

A € C*"™ normal = O.N. basis of eigenvectors vy, ..., Uy,

n n
v = <Z Vi Vg )v, Av = <z Akvkv,“E) v, veCt
=i =¥

Projector onto Span(vy) eigenvalues

o, .n

Energy of “v” in each eigenvector: ,uv(/lj) = (vjv]?kv, v) = |vj"v|2

This is called the spectral measure with respect to a vector v.

K is unitary = projection-valued measure ¢

g= (Ldf(y) )g, Ky = (jTydf(y))g

Spectral measure  v,(B) = (¢(B)g, 9)




Spectral decomposition of operators

A € C™ normal = 0
[0 \
o . . v, A1
White light contains a continuous spectrum
an(vy)

pjgenvector:

This is ca

g= ( JTdf(Y) )g,

=

Irradiance (W/m?2/nm)

Often interesting to look at
the intensity of each wavelength

Spectrum of Solar Radiation (Earth)

e

=
)

=

o
3

UV | Visible! Infrared »

i Sunlight without atmospheric absorption

5778K blackbody

Sunlight at sea level

HO
Atmospheric
absorption bands

HO cq o

250

500 750 1000 1250 1500 1750 2000 2250 2500

Wavelength (nm)

Spectral measure

vg(B) = (£(B)g, 9)




Approximation using autocorrelations

1 . (K'"'g g) n<O0
— — —inb d ) = — ¢

[_n»n]per
\ Approximate from

trajectory data

B ny\ _ ingd For m € N, mth order filter:
Vg N (8) — z P (N) Vg (n)e * Continuous, even, compactly supported on [-1,1]
n=—N « € C™([-1,1D, € c™1([0,1]D)
‘ « 9(0)=1,¢0/(0)=0forj=1,..,m—1
« ¢/(0)=0forj=0,..,m—1

Filter function

Approximates v, to order O (N ~"log(N)) with frequency smoothing scale O(N™™)



Link with power spectrum

Delay autocorrelation function

\ ((?Cm'g,g),n <0

R,(nAt) ={(g,qg o F = [ = 2V, (n
g( ) (g g nAt> k<g’:K~|n|g>,nZO g( )

Power spectrum of signal g(x(t)) T

\Sg(f) — fTRg(t)eszt dt
Window (using @) in frequency domain and discretize integral:
N

Sq(f) n\ R,(nAt) .
g ~ g in(2rfAt) — YT AL
2mAt Z (p(N) o - Von(2TfAL)

n=-—N

* Avoid (artificially) periodically extending signal = avoid broadening.
* Rigorous convergence theoryas N — oo,




Example: Shear layer in turbulent boundary

(hotwire experimental data)
(friction) Re = 1400

Blown-in air Separatlon bubble Shear layer
_> \\ __________________
|
I

-
=
—
-

tt BL1 BL2 BL4
UAFC

Flow measurement region

Flow Control Area

* C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” ). Fluid Mech., 2023.



PSD (baseline)

—— N, = 1000
-50 F|—— Nac = 2000
Nae = 3000
— N,. = 4000
-60 : :
10’ 102 103
frequency (Hz)

PSD (injection)

-10

—N,.=1000
50 | |—— Nae = 2000
Nao = 3000
— N,. = 4000
-60 . .
10" 102 10°
frequency (Hz)

-10

spectral measure (baseline)

—— Nac = 1000
-50 t|— Nac = 2000
N, = 3000
—— N, = 4000
-60 : '
10° 102 10°
frequency (Hz)

spectral measure (injection)

—N,. = 1000
.50 -|—— Nac = 2000
N, = 3000
— N, = 4000
60 : :
10’ 102 10°

frequency (Hz)

baseline
15 —————=nanag)
—_——————
-20 —PSD\
— $Phat
(pCOS
Pfour
25t — ©bump
30 ' ' '
2 4 6 8 10
frequency (Hz)
injection
-10 . .
. —x
—PSD §
_14 L ‘Phat
Peos
Pfour
-16 | Pbump
-18 1 =
N R
22 ' ' |
2 4 6 8 10

frequency (Hz)



Approximation using resolvent (Green’s function)

Smoothing convolution

Pyl = [ R0~ 0)dvy(6)

[—TT, ] per
& = “smoothing parameter”

\—/ Poisson kernel for gy — 1 (1+&)? -1
unit disk =(00) = 21+ (1 4+ £)%2 —2(1+ £)cos(8y)



Approximation using resolvent (Greer

& = “smoothing parameter”

N

Smoothing cc

Pyl = [ R-0
Poisso |




Approximation using resolvent (Green’s function)

Smoothing convolution

Pyl = [ R0~ 0)dvy(6)

[—T. 7] per
& = “smoothing parameter”
\—/ Poisson kernel for gy — 1 (1+e)2 -1
unit disk =(00) = 21+ (1 4+ £)%2 —2(1+ £)cos(8y)
[Pg * vg](eo) = Cy (e (1+e)71) — Cy (ewo(l + 8))
C.(2) = J edvy(0) _ (K —zD)71g, K" g), if |z| > 1
grs el — 7 —z Yg, (K —z"1D"1g), if0<|z| <1

[—TT, ] per
ResDMD computes

with error control



Example

/ o A1po  PoP1 \
Po —A1&p —CAppP1
W = azp1 —axay azp; P3P2
P2P1 —A1P2 —aza, —p3ap, -
\ 05_4%,03 —Zas /

a; = (—1)/0.950+1/2 p,-=\/1—\aj\2

Generalized shift, typical building block of many dynamical systems.



20/34

Fix Nk, vary &: unstable!

Ng = 40,e = 1.000000

or o o

Im(z)




21/34

Fix €, vary Ng: too smooth!

N =1,e =0.100000

25
1r 2y
SO 1.5+
E
1t
0.
qr B
0 051
-0
0.95 1 1.05
2 0
2 1 0 1 2 -3 2 1 0 1 2 3



Adaptive: new matrix to compute residuals crucial

2.5

1.5}

051

Ng = 10,e = 0.100000

22/34



But ... slow convergence
Problem: As € | 0, erroris O(elog(1/¢)) and Nk (g) — o.

Pointwise error for spectral density

Error due to discretization
100 . . -

109

10|

10—10 -

I 10'15 !
0
10 0 50 100 150 200

Small N critical in data-driven computations. Can we improve convergence rate?




High-order rational kernels

Kernels
mth order rational kernels: ey e
1 m =25
)|
m =4
K (9) e“e i [ C] d] 15 y \‘_m:3
€ B -6 _ ——-1 ,—if
2T — e % — (1+¢z) et —(1+€Z]-) 1 m—9
0.5f m=1
ResDMD computes /
S —— —

with error control

£ = “smoothing parameter” z [cj(fg (eo(1 +ez)™') —d;C, (ewo(l + EZJ'))]
=1

S



25/34

Smaller N (larger &)

2 e = 0.100000
250 ‘ : :
1 [ 2
& $
. 15}
N
N 0 L .
E
N
0.05
- [ ] 7
0 05}
-0.0:
0.95 1 1.05
L= ‘ ‘ ‘ ‘ 0
2 1 0 1 2 3 =2 10 1 N



Convergence

Theorem: Automatic selection of N (¢)

with O(e™log(1/¢)) convergence: _ Pointwise error for spectral density

* Density of continuous spectrum p,,.
(pointwise and LP)

* Integration against test functions.
(weak convergence)

f h(0)[K. *v,](6) de

[—70, ] per

= f h(6) dv,(0) + 0(c™log(1/¢)) o
[~ per 107 1072 107! 10°
Also recover discrete spectrum. ¢

* C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.



Example: Molecular dynamics (Adenylate Kinase)

Adenylate Kinase
¢ key parts
N

 Ambient dimension (d) = 20,000
(positions and momenta of atoms)
 6th order kernel (spec res 107°)

*Dataset: www.mdanalysis.org/MDAnalysisData/adk_equilibrium.html

o g | b

0.22} /

0.2

0.18 ¢

0.14 ¢

* C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.



Horizontal slice = spectral measure at constant magnetic field strength.

Software package

SpecSolve available at https://github.com/SpecSolve
Capabilities: ODEs, PDEs, integral operators, discrete operators.

C., Horning, Townsend “Computing spectral measures of self-adjoint operators,” SIAM Rev., 2021.


https://github.com/SpecSolve

Further uses



Large d (2 S R?): robustand scalable

Popular to learn dictionary {l/)l, Ty 'PNK}

E.g., DMD with truncated SVD (llinear dictionary, most popular),
kernel methods (this talk), neural networks, etc.

Q: Is discretisation span{tpl, . 1/;NK} large/rich enough?

Above algorithms:
* Pseudospectra: {z,: 1), < €} € Spec.(K) error control
* Spectral measures: C, (z) and smoothed measures adaptive check

=> Rigorously verify learnt dictionary {1, ..., l/JNK}



jonary

ify the dicti

Ver

res(4;, g;), nonlinear dictionary

res(4;, g;), linear dictionary

1
05+
-0.5¢

Example

(v)uwg
B o
2 o
S

0 <t
_ 0%
i 1 —
X 2
M 3=
Al O =
& <
< O
U wn
£

=
S £
cC o

(7))
T ¢
m.m
o)
. T E
o <
e o

(velocity at measurement points)
*Measurements provided by Maté Sz6ke (Virginia Tech)

Re(AQ)

0.8948 + 0.1065i, error < 0.1105

Re(AQ)

A=

A=

0.9439 + 0.2458i, error < 0.0765

o
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C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.



Example: Trustworthy Koopman mode decomposition

a)t =135 us b)t =10 us c)t =15 us

e C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.



Example: Trustworthy Koopman mode decomposition

b) £ = 10 us d) ¢ = 20 us
true —residual ordering
o modulus ordering —modulus ordering
o residual ordering | | p
| 5J) 10
§ | =
|
& 0 i i “ A':':':':':'i':,’ GEJ 10 2L
d : 5
(o [ —_ . .
o \ unseen shockwave g e extremely efficient
! _
| from 40 modes
-100 : ' ' ' 107 - ' '
0 2 4 6 8 0 50 100 150 200
Time(10~°s) Number of modes

* C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” ). Fluid Mech., 2023.



Wlder progra mme SCI provides needed assumptions

* Infinite-dimensional computational analysis = Practical and rigorous algorithms.

* Solvability Complexity Index = Classify difficulty of problems, prove algorithms are optimal.

* Extends to: Foundations of Al, optimization, computer-assisted proofs, and PDEs etc.

DATA SCIENCE + NUMERICAL ANALYSIS

C., “On the computation of geometric features of spectra of linear operators on Hilbert spaces,” Found. Comput. Math., to appear.
C., “Computing spectral measures and spectral types,” Comm. Math. Phys., 2021.

C., Horning, Townsend “Computing spectral measures of self-adjoint operators,” SIAM Rev., 2021.

C., Roman, Hansen, “How to compute spectra with error control,” Phys. Rev. Lett., 2019.

C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022.
C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th
problem," Proc. Natl. Acad. Sci. USA, 2022.

C., “Computing semigroups with error control,” SIAM J. Numer. Anal., 2022.

C., “The mpEDMD Algorithm for Data-Driven Computations of Measure-Preserving Dynamical Systems,” preprint.

Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.

Smale, “The fundamental theorem of algebra and complexity theory,” Bull. Amer. Math. Soc., 1981, 36 pp.

McMullen, “Families of rational maps and iterative root-finding algorithms,” Ann. of Math., 1987, 27 pp.




Interested?

Some future directions:

* ResDMD in neuroscience.

* ResDMD + control = error control?

* Embed & learn symmetries (e.g., check out the algorithm mpEDMD).
* Forecasting with error bounds.

* Koopmanism meets neural nets (and vice versa).

* Foundations results for dynamical systems (i.e., impossibility results)?

Opportunities to collaborate, visit Cambridge, grad students & beyond!



Rigorous data-driven Koopmanism!

“Too much” or “Too little”
Idea: New matrix for residual
= ResDMD for computing spectra.
Continuous spectra
Idea: Smoothing via resolvent and ResDMD.
Is it right?
ResDMD verifies computations.
E.g., learned dictionaries.

Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
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“Too much” or “Too little”

Optimization and Learning with

Zeroth-order Stochastic Oracles

By Stefan M. Wild

athematical optimization is a foun-

dational technology for machine
learning and the solution of design, deci-
sion, and control problems. In most optimi-
zation applications, the principal assump-

tion_is_the mli of at least the

Idea: New matrix for residual

sequence is that material properties are
only available via in situ and in operando
characterization. In the context of optimiza-
tion, this scenario s called a “zeroth-order
oracle” — our knowledge about a particular
system or property is data driven and limited
by the black-box nature of measurement
procurement. An_additional challenge is

An optimization solver specifies a particular
composition of solvents and bases. an oper-
ating temperature, and reaction times; this
combination is then run through a continu-
ous flow reactor. The material that exits the
reactor is then automatically characterized

I 3

= ResDMD for computin
ontinuous spectra

g spectra.

search for novel materials for energy stor-
age. In order 1o create viable new materi-
als. we must move beyond pure theory and
account for the actual processes that oceur
during materials synthesis. A neces g

Idea: Smoothing via resolvent and ResDMD.
Is it right?

ResDMD verifies
E.g., learned dict
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Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

ers—such as the laboratory
Figure 1—doing so is impossible.

Figure 1 displays an instantiation of a
data-driven optimization setting in a chem-

ure 1. A continuous flove
Research Facility uses the

optiny

Resilient Da-drivennamical Systems
with Koopman: An Infinite-dimensional

reactor at Argonne National Laboratory's Materials Engineering
ation solver ParMOO to perform autonomous discovery 2]

through an inline nuclear magnetic reso-
nance detector that illuminates properties
of the synthesized materials. These sto-
chastic, zeroth-order oracle outputs return
o the solver in a closed-loop setting that

See Optimi on page 3

Read more about these
breakthroughs in SIAM News!

Numerical Analysis Perspective

By Steven L. Brunton
and Maithew J. Colbrook

D namical systems. which describe the
evolution of systems in time. are ubig-
uitous in modern science and engineering
“They find usc in a wide variety of applica-
tions. from mechanics and circuits to cli-
matology. neuroscience, and epidemiology.
Consider a discret I system
with state @ in a state space C R’ that
is governed by an unknown and typically
nonlinear function F:Q—

n=0. (I

The classical, geometric way to analyze
such systems—which dates back (o the
seminal work of Henri Poincaré—is based

on the local analysis of fixed points, peri-
odic orbits, stable or unstable manifolds,
and 5o forth. Although Poincaré’s frame-
work has revolutionized our understanding
of dynamical systems. this approach has at
least two challenges in many modern appli-
cations: (i) Obtaining a global understand-
ing of the nonlinear dynamics and (ii) han-
dling systems that are either (00 complex
to analyze or offer incomplete information
about the evolution (i.¢.. unknown, high-
dimensional, and highly nonlinear F),
Koopman operator theory. which origi-
nated with Bernard Koopman and John
von Neumann [6, 7], provides a powerful
alternative to the classical geometric view
of dynamical systems because it addresses
inea fi issue that

We lift the nonlinear system (1) into an infi-
nite-dimensional space of observable func-
tions ¢:©2— C via a Koopman operator K

Ky(z,)=g(x, ).

The evolution dynamics thus become lin-
ear, allowing us to utilize generic solu-
tion techniques that are based on sp
tral decompositions. In recent decad
Koopman operators have captivated
researchers because of emerging data-driv-
en and numerical implementations that
coincide with the rise of machine leaming
and high-performance computing [2].

One major goal of modern Koopman
operator theory s 1o find a coordinatc
with which a linear system

the issu
underlies the aforementioned  challenges.

(a) Rel. Error =
5 i
% %
I I
~ ~

Rel. Error=?

Rel. Error=?

i
— 071

{/

Rel. Error < 0.005:

5

ResDMD

Rel. Error < 0.0196

Figure 1. Koopman maodes of a turbulent flow (Reynolds number 3.9 x 10°) past & cascade of
airfoils that are computed from trajectory data (d == 300,000). Koopman modes are projections

of the physical field onto eigenfunctions of

K they provide the collective motion of the fluid

that occurs at the same spatial frequency, growth, or decay rate according to an approximate
eigenvalue X. 1a. Koopman modes that were computed via existing state-of-the-art tech
niques. Note the lack of error bounds. 1b. Koopman modes that were computed using residual
dynamic mode decomposition (ResDMD). The physical picture in 1b is different from 1a, but
we know that it is correct because of the guaranteed relative error bounds (green text). This

outcome illustrates the importance of verification. Figure courtesy of Matthew Colbrook.

may approximate even strongly nonlinear
dynamics; this coordinate system relates to
the spectrum of the Koopman operator. In
2005, Igor Mezi¢ introduced the Koopman
mode decomposition (8], which provided a
theoretical basis for connecting the dynam-
ic mode decomposition (DMD) with the
Koopman operator [9. 10]. DMD quickly
became the workhorse algorithm for com-
putational approximations of the Koopman
operator due to ts simple and highly exten-
sible formulation in terms of linear algebra,
and the fact that it applies equally well
to data-driven modeling when no gov-
erning equations are available. However,
researchers soon realized that simply build-
ing linear models in terms of the primitive
measured variables cannot sufficiently cap-
wre nonlinear dynamics beyond periodic
and quasi-periodic phenomena. A major
breakthrough oceurred with the introd:
tion of extended DMD (EDMD), which
generalizes DMD 1o a broader class of
basis functions in which to expand eigen-
functions of the Koopman operator [11].

See Dynamical Systems on page 4




Rigorous data-driven Koopmanism!

“Too much” or “Too little”

Idea: New matrix for residual
= ResDMD for computing spectra

ontinuous spectra
Idea: Smooth
Is it right?

ResDMD verifies computations

E.g., learned dictionaries

Short video summaries

available on YouTube:
(Thank you Steve Brunton
for letting me use your channel!

Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

ing via resolvent and ResDMD.
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Optimization and Learning with
Zeroth-order Stochastic Oracles

By Stefan M. Wild

athematical optimization is a foun-
dational technology for machine
learning and the solution of design, deci-
sion, and control problems. In most optimi-
zation applications, the principal assump-

tion_is_the A«mmmmi of at least the

sequence is that material properties are
only available via in situ and in operando
characterization. In the context of optimi

tion, this scenario s called a “zeroth-order
oracle” — our knowledge about a particular
system or property is data driven and limited
by the black-box nature of measurement
procurement. An_additional challenge is

An optimization solver specifies a particular
composition of solvents and bases. an oper-
ating temperature, and reaction times; this
combination is then run through a continu-
ous flow reactor. The material that exits the
reactor is then automatically characterized

search for novel materials for energy stor-
age. In order to create viable new materi-
als. we must move beyond pure theory and
account for the actual processes that oceur

Residual Dynamic
Mode Decompaosition

-

Measure-preserving
Extended Dynamic
Mode Decomposition

ers—such as the laboratory
Figure 1—doing so is impossible.

Figure 1 displays an instantiation of a
data-driven optimization setting in a chem-

through an inline nuclear magnetic reso-
nance detector that illuminates properties
of the synthesized materials. These sto-
chastic, zeroth-order oracle outputs return
o the solver in a closed-loop setting that

See Optimi on page 3

Read more about these
breakthroughs in SIAM News!

Research Facility uses U

Resilient Da-drivennamical Systems
with Koopman: An Infinite-dimensional

are 1. A cortinvous low rescior at Argonne National Laboratory's Materials Engineering
ization solver ParMOO to perform autonomous discovery (2]

Numerical Analysis Perspective

By Steven L. Brunton
and Maithew J. Colbrook

D namical systems, which describe the
evolution of systems in time, are ubiq-
uitous in modern science and engineering.
They find use in a wide variety of applica-
tions, from mechanics and circuits to cli-
matology. neuroscience, and epidemiology.
Consider a discrete-time dynamical system
with state @ in a state space 2C R” that
is govemed by an unknown and ypically
nonlinear function F: Q2

z =F(). nz0. ()
The classical, geometric way to analyze
h systems—which dates back to the
seminal work of Henri Poinca

on the local analysis of fixed points, peri-
odic orbits, stable or unstable manifolds,
and 5o forth. Although Poincaré’s frame-
work has revolutionized our understanding
of dynamical systems. this approach has at
least two challenges in many modern appli-
cations: (i) Obtaining a global understand-
ing of the nonlinear dynamics and (ii) han-
dling systems that are either 100 complex
to analyze or offer incomplete information
out the evolution (i.¢.. unknown, high-

imensiondh, and highly nonlinear ).
Koopman operator theory. which origi
nated with Bernard Koopman and John
von Neumann [6, 7], provides a powerful
alternative to the classical geometric view
of dynamical sysems because it addresses
ssue. that

We lift the nonlinear system (1) into an infi-
nite-dimensional space of observable func-
tions g: 2 — C viaa Koopman operator K

Ko(@,) =gz, ).

The evolution dynamics thus become lin-
ear, allowing us to utilize generic solu-
tion techniques that are based on spec-
tral decompositions. In recent decades,
Koopman operators have  captivate
researchers because of emerging data-driv-
en and numerical implementations that
coincide with the rise of machine learing
and high-performance computing [2].

One major goal of modern Koopman
operator theory is o find a coordinate
with which a linear sys

the
underlies the aforementioned  challenges.

(a) Rel. Error =
2 3
°
] &
~

Rel. Error=?

Rel. Error < 0.0054

g

ResDMD

Rel. Error

0.0128

Figure 1. Koopman maodes of a turbulent flow (Reynolds number 3.9 x 10°) past & cascade of
ns

airfoils that are computed from traject

vy data (d ~ 300,000). Koopman modes are proj
of the physical field onto eigenfunctions of K

they provide the collective motion of the

uid
that occurs at the same spatial frequency, growth, or decay rate according to an approximate

cigenvalue \. 1a. Koopman modes that

were computed via existing state-of-the-art tech

niques. Note the lack of error bounds. 1b. Koopman modes that were computed using residual

dmemic mods decomposiion (ResDMD/ The physical picture in
e guaranteed relative error bounds (green text). This
of verificz

we know that it is correct b
outcome illustrates the "n;mrrﬁm.

' of the

b is different from 1a, but

tion. Figure courtesy of Matthew Colbrook

may approximate even strongly nonlinear
dynamics; this coordinate system relates to
the spectrum of the Koopman operator. In
2005, Igor Mezi¢ introduced the Koopman
mode decomposition (8], which provided a
theoretical basis for connecting the dynam-
ic mode decomposition (DMD) with the
Koopman operator [9, 10]. DMD quickly
became the workhorse algorithm for com-
putational approximations of the Koopman
operator due Lo its simple and highly exten-
sible formulation in terms of linear algebra,
and the fact that it applies cqually well
to data-driven modeling when no gov-
erning equations are available. However,
researchers soon realized that simply build-
ing linear models in terms of the primitive
measured variables cannot sufficiently cap-
wre nonlinear dynamics beyond periodic
and quasi-periodic phenomena. A major
breakthrough oceurred with the introd:
tion of extended DMD (EDMD), which
generalizes DMD 1o a broader class of
basis functions in which to expand eigen-
functions of the Koopman operator [11].

See Dynamical Systems on page 4
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Quadrature with trajectory data

E.g., <‘(K‘l/)k' l/)]) — A}II_IEOZ 1VV"’nl/)] (x(m)) l/) (y(m))

[Kg] (x(m))

Three examples:

» High-order quadrature: {x("™), Wm} . M-point quadrature rule.

Rapid convergence. Requires free ch0|ce of {x(m)} and small d.

* Random sampling: {x(m)} 1 selected at random. <« Most common
Large d. Slow Monte Carlo O(M 1/2Y rate of convergence. /

* Ergodic sampling: x "+ = F(x (™),
Single trajectory, large d. Requires ergodicity, convergence can be slow.



RESEARCH ARTICLE

The difficulty of computing stable and
accurate neural networks: On the barriers of
deep learning and Smale’s 18th problem

March 16, 2022
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Example: Barriers of deep learning
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Instability is the Achilles’ |
training algorithms findir
ones. This foundational it
century on the limits of A
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classification theory onw
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number of hidden layers.
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Some Al Systems May Be Impossible to Compute >
New research suggests there are limitations to what deep

neural networks can do

BY CHARLES Q. CHOI
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Mathematical paradox demonstrates the limits of Al

4 MIN READ

A

1 they get things wrong, but
new study, Al generally suffers
:matical paradox.

k€ There are fundamental
limits inherent in

more mathematics and,
dduce similarly, AT
algorithms can't exist
say for certain problems 93

— Matthew Colbrook

C., Antun, Hansen, “The difficulty of computing stable and accurate neural networks:

On the barriers of deep learning and Smale’s 18th problem,” Proc. Natl. Acad. Sci. USA.
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Protecting Privacy with Synthetic Data

By Matthew R. Francis

R archers across every scientific dis-
cipline need complete and reliable
data sets 10 draw trustworthy conclusions
Huwe»e: pnhl\th Il data from a given
study can be undesiable. For example.
memcal G particular include personal
nformation that—if published in full—
would violate patients privacy and poten-
tially expose them to harm. Similarly, many

Original
Data

Differential Privacy
Preprocessing

Vine Copula
Model

Synthetic
Data

igure 1. /n adaition {0 adding noise t©
e data ot Sabastian Gambs. diforential
privacy-based method processes it with
an information theory algorithm to obtain
synthetic data that—in_ principle—shields
the privacy of the people involved. Figure
courtesy of the author.

studies in the social sciences include demo-
aphic or geographical data that could
easily be exploited by unscrupulous parties.

In'short, researchers must strike a delicate
balance between publishing enough data
to verify their conclusions and protect-
ing the privacy of the people involved.
Unfortunately, multiple studies have shown
that simply anonymizing the data—by
removing individuals’ names before publi-
cation, for instance—is insufficient, as out-
siders can use context clues to reconstruct
missing information and expose research
subjects. “We want o generate synthetic
data for public release 1o replace the crigi-
nal data set,” Bei Jiang of the Universily of
Alberta said. “When we design our frame-
work, we have this main goal in mind: we
want to produce the same inference results
as in the original data set”

In contrast with falsified data, which is
one of the deadliest scientific sins, research-
1 can generate synthetic data directly from
original data sets. If the construction process
is done properly, other scientsts can then
analyze this synthetic data and trust that their
conclusions are no different from what they
would have obtained with full access to the
original raw data — ideally, at least. “When
youcreate] synthetic data, what does it mean
tobe private yet realistic?” Sébastien Gambs

of the University of Québec in Montréal
asked. “Its still an open rescarch question.”

During the 2022 American Association
for the Advancement of Science Annual
Meeting.! which took place virtually in
February, Jiang and Gambs each presented
formal methods for the generation of syn-
thetic data that ensure privacy. Their models
draw from multiple fields to address chal-
lenges in the era of big data, where the

aid. “If you want to protect people [whol
are at a higher risk, then you perturb their
data. But the utilty will be lowered the more
you perturb. A better approach s to account
Tor their risks (o begin with.”

Unfortunately, malicious actors have access
1o the same algorithmic tools a5 research-

ers. Therefore, protection of confidentially
also involves testing synthetic data agains
the types of attacks that such players might
utiize. “In praciice. this helps one really
understand the translation between an abstract
privacy parameter and a practical guarantee.”
Gambs said. In other words, the robustness
of a formal mathematical model is irrel-
evant if the model is not well implemented.

T hups
meetingapp.cgi

as.confex.com/aaas/2022/

Differential Privacy Made Simple(r)

‘Gambs and his collaborators twrned to dif-
ferential privacy: a powerful mathematical
formalism that in principle is the best avail-
able technique for securing confidentiality.
However, the approach is also complex and
difficult to implement without a high degree
of statistical knowledge. To smooth the

See Synthetic Data on page 3

Original
Data

Extract
I‘.h_, Statistics
u Apply Multiple
Imputation Model
Synthetic
Data

igure 2. Researchers can protect privacy
by performing a full statistical analysis on
the original data set, then using a missing-
data algorithm called multiple imputation
to construct a synthetic data set that has
exactly the same statistical characteristics.
Figure courtesy of the author.
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Proving Existence Is Not Enough:
Mathematical Paradoxes Unravel the Limits
of Neural Networks in Artificial Intelligence

By Vegard Antun, Matthew J.
Colbrook, and Anders C. Hansen

he impact of deep learning (DL), neural
networks (NNs), and artificial intelli-
gence (AD) over the last decade has been
profound. Advances in computer vision and
natural language processing have yielded
smart speakers in our homes, driving 2ssi
tance in our cars, and automated diagnoses
in medicine. Al has also rapidly entered sci-
entific computing. However, mcnmcmmm
amounts of empirical evidence [3, 8] s
that modern AT s often non-robust (un\umc)
may generate hallucinations, and can produce
nonsensical output with high levels of pre
tion confidence (see Figure 1). These issues
present a serious concern for AI use wil
legal frameworks. As stated by the European
Commission's Joint Research Centre, “In
the light of the recent advances in Al the
serious negative consequences of its use for
EU citizens and organisations have led 1o
multiple initatives [...] Among the idenified
requirements, the concepts of robustness and
explainability of AI systems have emerged
as key elements for a future regulation.”
Robustness and trust of algorithms lie
at the heart of numerical analysis [9]. The
lack of robustness and trust in Al is hence
the Achilles” heel of DL and has become a
serious political issue. Classical approxima-
tion theorems show that a continuous func-
tion can be approximated arbitrarily well
by a NN [$). Therefore, stable problems
that are described by stable functions can
be solved stably with a NN. These results
inspire the following fundamental question:
Wiy does DL lead to unstable methods and
Al-generated hallucinations, even in sce-
narios where we can prove that stable and
accurate NN exist?

T

Our main result reveals a serious issue
for certain problems; while stable and accu-
rate NNs may provably exist, no training
algorithm can obtain them (see Figure 2,
on page 4). As such, existence theorems
on approximation qualities of NNs (e.2.,
universal approximation) represent only the
first step towards a complete understanding
of moder Al Sometimes

results about the feasible achievements of
mathematics and digital computers.

A similar program on the boundaries of
Als necessary. Stephen Smale already sug-
gested such a program in the 18th problem

n his list of mathematical problems for the
21stcentury: What are the limits of AI? [11).

See Mathematical Paradoxes on page

they even provide overly

optimistic estimates of pos-
sible NN achievements.

The Limits of Al:
Smale’s 18th Problem
“The strong optimism that
surrounds Al is evident in
computer scientist Geoffrey
Hinton's 2017 quote: “They
should stop training radi- | [€Y]
ologists now." Such opti-
mism is comparable 10 the
confidence that surrounded
mathematics in the early
20th century, as summed
i Hilbert's seni-

must know. We will know"

Hilbert  believed  that
mathematics could prove or
disprove any statement, and
that there were no restric-
tions on_ which problems
algorithms could sove. The
seminal of

o—

Instabilities in medical diagnosis
Original Mole Pe

Benign
Malignant
Model confidence

in image

(b)

Benign
I \[,lignant

Model confidence

Kurt Godel [7] and Alan

igure 1. Hallucinations in image reconstruction and instabillies
in medical diagnoses. 1a. The correct, original image from the

Turing [12] wrned Hilbert’s - 2020 fasthiAl Challenge. 1b. Reconstruction by an artificial intelli-
idealism upside down by gence (Al method that produces an incorrect detai (Algenerated
establishing paradoxes that _ hallucinaton). 1¢. Dermatoscopic mage of a benign melanocytic

expedited  impossibility

2 hupsi/iwww.n

repository/handle/JRC1 19336

2017/04/03/

nevus, along with the diagnostic probability computed by a deep
neural network (NN). 1d. Combined image of the nevus with
slight perturbation and the dignostic probability from the same
ysker, - dagp NN. One lagncsis s deaty incorect, but can anaiort

Figures 1a and 1b are courtesy of the 2020

ai-versus-md anthRl Cralnge. 5ok i et courtesy o [6]



measure-preserving EDMD...
* Polar decomposition of K. Easy to combine with any DMD-type method!

* Converges for spectral measures, spectra, Koopman mode decomposition.

* Measure-preserving discretization for arbitrary measure-preserving systems.

TKE y =~ 5mm TKE, y ~ 35mm

———mpEDMD ———mpEDMD

Time-averaged TKE
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Snapshots collected over 1s EDMD unstable!

 C., “The mpEDMD Algorithm for Data-Driven Computations of Measure-Preserving Dynamical Systems,” arXiv 2022.



Solvability Complexity Index Hierarchy

Class ) 3 A, want to compute E: Q) = (M, d) €= metric space
* Ay: Problems solved in finite time (v. rare for cts problems).

* A;: Problems solved in “one limit” with full error control:
d(l,(4),2(4)) < 27"
* A,: Problems solved in “one limit”:
lim [, (4) = E(4)

* A;: Problems solved in “two successive limits”:
lim lim I3, ,,(4) = £(4)

. Nn—>00 Mm— 00
[ ]

Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.

Hansen, “On the solvability complexity index, the 7+pseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.
McMullen, “Families of rational maps and iterative root-finding algorithms,” Ann. of Math., 1987.

Doyle, McMullen, “Solving the quintic by iteration,” Acta Math., 1989.

Smale, “The fundamental theorem of algebra and complexity theory,” Bull. Amer. Math. Soc., 1981.



Error control for spectral problems

>.1 convergence

Z(A) = Spec(4)

e ¥ :3alg. {I},} s.t. im[,,(4A) = Z2(A4), maxzern(A)dist(Z, E(A)) <2
Nn—>00



Error control for spectral problems

N 21" COlIvETZENCe Tlicolivergence
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e ¥ :3alg. {I},} s.t. im[,,(4A) = Z2(A4), maxzern(A)dist(Z, E(A)) <2
Nn—>00

« I1;: Falg.{I3,} s.t. lim I3, (4) = E(A), max,ez(q)dist(z,[,(4)) <277
Nn—>00

Such problems can be used in a proof!



Small sample of classification theorems

Increasing difficulty

Error control
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Small sample of classification theorems

Increasing difficulty

Error control
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