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Introduction

Motivation

Motivating example: spectra of infinite-dimensional operators. Many
applications but W. Arveson (leading operator theorist U.C. Berkeley)
pointed out in the early nineties, “Unfortunately, there is a dearth
of literature on this basic problem, and so far as we have been
able to tell, there are no proven techniques.” Situation was worse
for the Schrödinger case!

Broadly, can we contribute to bridging the gap between
logicians/computer scientists and numerical analysts? (I classify
myself in the later category)

Bonus: can we present a general framework for scientific
computations and classification of problems which are very
non-computable? And, how does this link with existing models?

Applications: can we present rigorous computations for the
maths/science community and for computer assisted proofs?
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Introduction Definitions

Solvability Complexity Index (SCI) [1, Hansen, JAMS]

Ω is some set, called the primary set,

Λ is a set of complex valued functions on Ω, called the evaluation set,

M is a metric space, where the thing we compute lives

Ξ is a mapping Ω→M, called the problem function.

E.g. Ω = B(H), problem function Ξ maps A 7→ Sp(A), (M, d) set of all
compact subsets of C with Hausdorff metric and evaluation functions in Λ
consist of fi ,j : A 7→ 〈Aej , ei 〉, i , j ∈ N, which provide the entries of the
matrix representation of A w.r.t. an orthonormal basis {ei}i∈N.



Introduction Definitions

Definition 1 (General Algorithm)

Given a computational problem {Ξ,Ω,M,Λ}, a general algorithm is a
mapping Γ : Ω→M such that for each A ∈ Ω:

(i) there exists a finite subset of evaluations ΛΓ(A) ⊂ Λ,

(ii) the action of Γ on A only depends on {Af }f ∈ΛΓ(A) where Af := f (A),

(iii) for every B ∈ Ω such that Bf = Af for every f ∈ ΛΓ(A), it holds that
ΛΓ(B) = ΛΓ(A).

No restrictions on the operations allowed (can consult any fixed oracle
etc.). But can consider different types of towers. E.g. type-2 Turing
machines, allow radicals, BSS model, ...



Introduction Definitions

Definition 2 (Tower of algorithms)

Given {Ξ,Ω,M,Λ}, a tower of algorithms of height k for {Ξ,Ω,M,Λ} is
a collection of sequences of functions

Γnk : Ω→M, Γnk ,nk−1
: Ω→M, . . . , Γnk ,...,n1 : Ω→M,

where nk , . . . , n1 ∈ N and the functions Γnk ,...,n1 are general algorithms.
Moreover, for every A ∈ Ω,

lim
nk→∞

... lim
n1→∞

Γnk ,...,n1(A) = Ξ(A)

with convergence in metric space M.



Introduction Definitions

Definition 3 (Solvability Complexity Index)

{Ξ,Ω,M,Λ} is said to have SCI(Ξ,Ω,M,Λ)α = k with respect to a
tower of algorithms of type α if k is the smallest integer for which there
exists a tower of algorithms of type α of height k .

If no such tower exists then SCI(Ξ,Ω,M,Λ)α =∞.

If there exists a tower {Γn}n∈N of type α and height one such that
Ξ = Γn1 for some finite n1, then we define SCI(Ξ,Ω,M,Λ)α = 0.



Introduction Definitions

Definition 4 (The Solvability Complexity Index Hierarchy)

Consider a collection C of computational problems and let T be the
collection of all towers of algorithms of type α for the computational
problems in C. Define

∆α
0 := {{Ξ,Ω} ∈ C | SCI(Ξ,Ω)α = 0}

∆α
m+1 := {{Ξ,Ω} ∈ C | SCI(Ξ,Ω)α ≤ m}, m ∈ N,

as well as

∆α
1 := {{Ξ,Ω} ∈ C | ∃ {Γn}n∈N ∈ T s.t. ∀A d(Γn(A),Ξ(A)) ≤ 2−n}.



Introduction More Structure

Definition 5 (The SCI Hierarchy (totally ordered set))

Suppose M is totally ordered. Define

Σα
0 = Πα0 = ∆α

0 ,

Σα
1 = {{Ξ,Ω} ∈ ∆2 | ∃ Γn ∈ T s.t. Γn(A)↗ Ξ(A) ∀A ∈ Ω},

Πα1 = {{Ξ,Ω} ∈ ∆2 | ∃ Γn ∈ T s.t. Γn(A)↘ Ξ(A) ∀A ∈ Ω},

where ↗ and ↘ denotes convergence from below and above respectively, as well
as, for m ∈ N,

Σα
m+1 = {{Ξ,Ω} ∈ ∆m+2 | ∃ Γnm+1,...,n1 ∈ T s.t. Γnm+1 (A)↗ Ξ(A) ∀A ∈ Ω},

Παm+1 = {{Ξ,Ω} ∈ ∆m+2 | ∃ Γnm+1,...,n1 ∈ T s.t. Γnm+1 (A)↘ Ξ(A) ∀A ∈ Ω}.



Introduction More Structure

Definition 6 (The SCI Hierarchy (Attouch-Wetts/Hausdorff metric))

Suppose M is a metric space with the Attouch-Wetts or the Hausdorff metric
induced by another metric space M′. Define for m ∈ N

Σα
0 = Πα0 = ∆α

0 ,

Σα
1 = {{Ξ,Ω} ∈ ∆2 | ∃ Γn ∈ T s.t. Γn(A) ⊂

M′
BM2−n(Ξ(A)) ∀A ∈ Ω},

Πα1 = {{Ξ,Ω} ∈ ∆2 | ∃ Γn ∈ T s.t. BM2−n(Γn(A)) ⊃
M′

Ξ(A) ∀A ∈ Ω}.
,

where ⊂M′ means inclusion in the metric space M′. Interpret BM2−n(x) as the
subset of M′ given by

⋃
{S ⊂M′ |S ∈M, dM(S , x) ≤ 2−n}. Moreover,

Σα
m+1 = {{Ξ,Ω} ∈ ∆m+2 | ∃ Γnm+1,...,n1 ∈ T s.t. Γnm+1 (A) ⊂

M′
BM2−n(Ξ(A)) ∀A ∈ Ω},

Παm+1 = {{Ξ,Ω} ∈ ∆m+2 | ∃ Γnm+1,...,n1 ∈ T s.t. BM2−n(Γnm+1 (A)) ⊂
M′

Ξ(A) ∀A ∈ Ω}.
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What does this mean?



Introduction More Structure

Why do we care?

Lower bounds for general algorithms provide lower bounds for any
reasonable model of computation. But all constructed algorithms can
be realised as type-2 Turing machines. Hence results are sharp in this
sense - difficulty lies with infinite amount of data/information, not the
model of computation.

We gain a sharp classification of many real-world problems of interest.

Numerical literature considers ∆α
2 algorithms ∆α

2 (numerical analysts
love limits and the continuum). Sometimes impossible, e.g. spectrum
of self-adjoint infinite matrices and ‘spectral pollution’.

Hence, the field of computational spectral theory is mostly concerned
with non-computable problems. Numerical analysts could not solve
the spectral problem because they couldn’t see the connection with
logic.

Error control for scientific problems - computer assisted proofs?
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Spectral Problems Infinite Matrices

Computing Spectra with Error Control

Hilbert space l2(N) with ‖x‖2 =
√∑∞

j=1 |xj |
2, 〈x , y〉 =

∑∞
j=1 xj ȳj

Bounded linear operator A : l2(N)→ l2(N) realised as matrix
a11 a12 a13 . . .
a21 a22 a23 . . .
a31 a32 a33 . . .

...
...

...
. . .


Want to compute spectrum (generalisation of eigenvalues)

Sp(A) := {z ∈ C : A− zI not invertible}.

from the matrix elements.

Also the pseudospectrum

Spε(A) := {z ∈ C : ‖(A− zI )−1‖−1 ≤ ε}.



Spectral Problems Infinite Matrices

Two Key Definitions

Definition 7 (Dispersion - off-diagonal decay)

We say that the dispersion of A ∈ B(l2(N)) is bounded by the function
f : N→ N if

Df ,m(A) := max{‖(I −Pf (m))APm‖, ‖PmA(I −Pf (m))‖} → 0 as m→∞.

Definition 8 (Controlled growth of the resolvent - well-conditioned)

Let g : [0,∞)→ [0,∞) be a continuous function, vanishing only at x = 0
and tending to infinity as x →∞ with g(x) ≤ x . We say that a closed
operator A with non-empty spectrum on the Hilbert space H has
controlled growth of the resolvent by g if

‖(A− zI )−1‖−1 ≥ g(dist(z , Sp(A))) ∀z ∈ C,

where we use the convention ‖B−1‖−1 := 0 if B has no bounded inverse.



Spectral Problems Infinite Matrices

What does this mean?

Dispersion - think banded matrices.

Controlled resolvent - g is a measure of the conditioning of the
problem of computing Sp(A) through the formula

Spε(A) =
⋃
‖B‖≤ε

Sp(A + B).

Self-adjoint and normal operators (A commutes with A∗) have well
conditioned spectral problems since∥∥(A− zI )−1

∥∥−1
= dist(z ,Sp(A)), g(x) = x .

Different classes have different classifications in hierarchy...



Spectral Problems Infinite Matrices

Example 1: We have both f and g . [2, C. et al.]

By considering diagonal operators, clear the problem does not lie in
∆G

1 - algorithms can only read a finite amount of information. Hence
we wish to show lies in ΣA

1 .

Idea: can we approximate the quantity ‖(A− zI )−1‖−1 locally? Then
gain an upper bound:

dist(z ,Sp(A)) ≤ g−1(‖(A− zI )−1‖−1).

Introduce smallest singular value σ1 (injection modulus) and

γ(z ,A) = min{σ1(A− zI ), σ1(A∗ − z̄ I )} = ‖(A− zI )−1‖−1,

γn(z ,A) = min{σ1((A− zI )Pn), σ1((A∗ − z̄ I )Pn)}.

Can prove γn ↓ γ uniformly on compacts.
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Spectral Problems Infinite Matrices

Example 1: We have both f and g .

Reduced to approximating γn(z ,A).

Idea: use function f . E.g.∣∣σ1((A− zI )Pn)− σ1(Pf (n)(A− zI )Pn)
∣∣ ≤ Df ,n(A).

So only need to approximate the smallest singular value of a
rectangular matrix. This can be done using incomplete Cholesky
decomposition and a simple search routine. Can also build in error for
inexact input/storage and even round-off.

Given f , g and Df ,n(A), we can gain an upper bound to
dist(z , Sp(A)) that converges locally uniformly to the true distance.
Can use this to build ΣA

1 algorithm.
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Spectral Problems Infinite Matrices

Example 2: When we have only g , e.g. self-adjoint case.

How to build ΣA
2 algorithm? Define

γn2,n1(z ,A) = min{σ1(Pn1(A− zI )Pn2), σ1(Pn1(A∗ − z̄ I )Pn2)}.

After first limit n1 →∞ gain γn2(z ,A) then as before. So only need
show this is sharp. I.e. problem does not lie in ∆G

2 .

Assume for a contradiction that there is a sequence {Γk} of general
algorithms such that Γk(A)→ Sp(A) for all A ∈ ΩSA, and consider
operators of the type

A :=
∞⊕
r=1

Alr with {lr} ⊂ N and An :=


1 1

0
. . .

0
1 1

 ∈ Cn×n.

Simple oscillation argument...
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Example 3: General Bounded Operators

Can prove not in ∆G
3 (at least three limits needed) - a difficult Baire

category argument required!

How to build a ΠA
3 algorithm? Use pseudospectrum:

Spε(A) := {z ∈ C : ‖(A− zI )−1‖−1 ≤ ε},
lim
ε↓0

Spε(A) = Sp(A).

Without function g (which links Sp and Spε), can compute Spε(A) in
two limits. Let ε = 1/n3 then last limit gives convergence from above
so ΠA

3 .
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Spectral Problems Infinite Matrices

Further Results [3]

We have classifications for classes

Different classes of compact operators

Normal/self-adjoint/controlled resolvent (g)

Bounded dispersion

Diagonal

General bounded

Even unbounded

...

For problems

Spectrum

Pseudospectrum

Essential Spectrum

Decision problem: is z ∈ Sp(A)?

...



Spectral Problems Schrödinger Operators

Schrödinger Operators [3]

Want to compute spectrum of a Schrödinger operator

H = −∆ + V , V : Rd → C,

Classical problem in computational quantum mechanics. Consider
computations using point samples of the potential V (x) (no matrix
values are assumed).

Unsolved for a long time when considering H acting on L2(Rd)
allowing non self-adjointness and arbitrary complex potentials.

Consider the computational problem {Ξ,Ω,M,Λ} with the
Attouch-Wets metric defined by

dAW(A,B) =
∞∑
i=1

2−i min

{
1, sup
|x |<i
|d(x ,A)− d(x ,B)|

}
,

where A and B are closed subsets of C - generalises Hausdorff
distance to general closed sets.
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Spectral Problems Schrödinger Operators

Example: V ∈ BVφ(Rd ), ‖V ‖∞ ≤ M

Assume potential in BVφ(Rd) = {f : TV(f[−a,a]d ) ≤ φ(a)}. For
simplicity, assume V real-valued.

Aim: Construct a ΣA
1 tower. Easy to show sharp.

Method: Choose a suitable basis and compute estimations of matrix
of operator. Then can use above method (adapted to unbounded
closed operators).

How: Use V ∈ BVφ(Rd), ‖V ‖∞ ≤ M to bound error in integrals
from theory of numerical integration.
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Figure: Guaranteed error bound of 10−5.
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k and Πα
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unless there is more structure on the metric space M.

However, due to its generality, some of the hierarchies in logic become
special cases of the SCI hierarchy.

As a mathematician with no background in logic, I would be very
interested in people’s opinions on this and making connections across
communities...

In general, is there a connection with Weihrauch computability?
Often its is easier to prove upper bounds without encoding M but
tools developed in this community may be useful for lower bounds.
(Again comments and discussion at the end most welcome.)
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Connections to Logic/Set Theory?

Very easy example: Arithmetical Hierarchy

Given a subset A ⊂ Z+ with characteristic function χA definable in
First-Order Arithmetic, what is SCI of deciding whether a given number
x ∈ Z+ belongs to A?

primary set Ω := Z+,

evaluation set Λ = {λ} consisting of the function λ : Z+ → C, x 7→ x ,

metric space M := ({1, 0}, ddiscr ).

Definition 9 (Kleene-Shoenfield tower)

A tower of algorithms given by a family
{Γnk ,...,n1 : Ω→M : nk , . . . , n1 ∈ N} of functions at the lowest level is
said to be a Kleene-Shoenfield tower, if the function

Nk × Ω→M, (nk , . . . , n1, x) 7→ Γnk ,...,n1(x)

is computable.



Connections to Logic/Set Theory?

Theorem 10 (The SCI hierarchy encompasses the arithmetical hierarchy)

For every m ∈ N we have

Ξ ∈ ∆m ⇔ {Ξ,Ω} ∈ ∆KS
m ,

Ξ ∈ Σm ⇔ {Ξ,Ω} ∈ ΣKS
m ,

Ξ ∈ Πm ⇔ {Ξ,Ω} ∈ ΠKS
m .



Connections to Logic/Set Theory?

A more interesting result...

Consider f : R∗ → R∗. A k-tower for f is F : Nk × R∗ → R∗ with

f (x1, ..., xm) = lim
nk→∞

... lim
n1→∞

F (nk , ..., n1, x1, ..., xm).

E. Neumann and A. Pauly recently showed

Theorem 11 ([4])

If max{SCITTE (f ), SCIBSS(f )} ≥ 2 then SCITTE (f ) = SCIBSS(f ).

Since SCITTE (f ) ≤ n iff f ≤w lim(n) we obtain that for n ≥ 2

SCIBSS(f ) ≥ n iff f �w lim(n−1).

So there is some connection with Weihrauch reducibility (for this type of
problem function) and a sense of unification for very non-computable
problems...
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Recent computer assisted proof of the long lasting Kepler conjecture
(Hilbert’s 18th problem) is a great example of the use of numerical
calculations in a proof [5].

The proof relies on deciding more than 50, 000 decision problems in
numerical optimisation that are not in ∆G

1 . In particular, the proof
hinges on computing undecidable problems.

Just as most spectral problems of interest are not in ∆G
1 , there are

many other crucial problems not in ∆G
1 that may be useful in

computer assisted proofs. The key to computer assisted proofs are
the classes ΣA

1 and ΠA
1 .
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Thank you!
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