On the Solvability Complexity Index hierarchy, the computational spectral problem and computer assisted proofs

> Matthew Colbrook University of Cambridge

> > 05/09/2018

Outline

- Introduction
- Spectral Problems: Infinite Matrices
- Spectral Problems: Schrödinger Operators
- Numerical Examples
- Connections with Logic/Set Theory?
- Computer Assisted Proofs

Motivating example: spectra of infinite-dimensional operators. Many applications but W. Arveson (leading operator theorist U.C. Berkeley) pointed out in the early nineties, "Unfortunately, there is a dearth of literature on this basic problem, and so far as we have been able to tell, there are no proven techniques." Situation was worse for the Schrödinger case!

- Motivating example: spectra of infinite-dimensional operators. Many applications but W. Arveson (leading operator theorist U.C. Berkeley) pointed out in the early nineties, "Unfortunately, there is a dearth of literature on this basic problem, and so far as we have been able to tell, there are no proven techniques." Situation was worse for the Schrödinger case!
- Broadly, can we contribute to bridging the gap between logicians/computer scientists and numerical analysts? (I classify myself in the later category)

- Motivating example: spectra of infinite-dimensional operators. Many applications but W. Arveson (leading operator theorist U.C. Berkeley) pointed out in the early nineties, "Unfortunately, there is a dearth of literature on this basic problem, and so far as we have been able to tell, there are no proven techniques." Situation was worse for the Schrödinger case!
- Broadly, can we contribute to bridging the gap between logicians/computer scientists and numerical analysts? (I classify myself in the later category)
- Bonus: can we present a general framework for scientific computations and classification of problems which are very non-computable? And, how does this link with existing models?

- Motivating example: spectra of infinite-dimensional operators. Many applications but W. Arveson (leading operator theorist U.C. Berkeley) pointed out in the early nineties, "Unfortunately, there is a dearth of literature on this basic problem, and so far as we have been able to tell, there are no proven techniques." Situation was worse for the Schrödinger case!
- Broadly, can we contribute to bridging the gap between logicians/computer scientists and numerical analysts? (I classify myself in the later category)
- Bonus: can we present a general framework for scientific computations and classification of problems which are very non-computable? And, how does this link with existing models?
- Applications: can we present rigorous computations for the maths/science community and for computer assisted proofs?

Definitions

Solvability Complexity Index (SCI) [1, Hansen, JAMS]

 Ω is some set, called the *primary* set,

A is a set of complex valued functions on Ω , called the *evaluation* set, \mathcal{M} is a metric space, where the thing we compute lives Ξ is a mapping $\Omega \to \mathcal{M}$, called the *problem* function.

E.g. $\Omega = \mathcal{B}(\mathcal{H})$, problem function Ξ maps $A \mapsto \operatorname{Sp}(A)$, (\mathcal{M}, d) set of all compact subsets of $\mathbb C$ with Hausdorff metric and evaluation functions in Λ consist of $f_{i,i}: A \mapsto \langle Ae_i, e_i \rangle$, $i, j \in \mathbb{N}$, which provide the entries of the matrix representation of A w.r.t. an orthonormal basis $\{e_i\}_{i \in \mathbb{N}}$.

Definition 1 (General Algorithm)

Given a computational problem $\{\Xi, \Omega, \mathcal{M}, \Lambda\}$, a general algorithm is a mapping $\Gamma : \Omega \to \mathcal{M}$ such that for each $A \in \Omega$:

(i) there exists a finite subset of evaluations $\Lambda_{\Gamma}(A) \subset \Lambda$,

- (ii) the action of Γ on A only depends on $\{A_f\}_{f \in \Lambda_{\Gamma}(A)}$ where $A_f := f(A)$,
- (iii) for every $B \in \Omega$ such that $B_f = A_f$ for every $f \in \Lambda_{\Gamma}(A)$, it holds that $\Lambda_{\Gamma}(B) = \Lambda_{\Gamma}(A)$.

No restrictions on the operations allowed (can consult any fixed oracle etc.). But can consider different types of towers. E.g. type-2 Turing machines, allow radicals, BSS model, ...

Definition 2 (Tower of algorithms)

Given $\{\Xi, \Omega, \mathcal{M}, \Lambda\}$, a tower of algorithms of height k for $\{\Xi, \Omega, \mathcal{M}, \Lambda\}$ is a collection of sequences of functions

$$\Gamma_{n_k}:\Omega\to\mathcal{M},\quad \Gamma_{n_k,n_{k-1}}:\Omega\to\mathcal{M},\,\ldots\,,\Gamma_{n_k,\ldots,n_1}:\Omega\to\mathcal{M},$$

where $n_k, \ldots, n_1 \in \mathbb{N}$ and the functions $\Gamma_{n_k, \ldots, n_1}$ are general algorithms. Moreover, for every $A \in \Omega$,

$$\lim_{n_k\to\infty}\ldots\lim_{n_1\to\infty}\Gamma_{n_k,\ldots,n_1}(A)=\Xi(A)$$

with convergence in metric space \mathcal{M} .

Definition 3 (Solvability Complexity Index)

 $\{\Xi, \Omega, \mathcal{M}, \Lambda\}$ is said to have $SCI(\Xi, \Omega, \mathcal{M}, \Lambda)_{\alpha} = k$ with respect to a tower of algorithms of type α if k is the smallest integer for which there exists a tower of algorithms of type α of height k.

If no such tower exists then $SCI(\Xi, \Omega, \mathcal{M}, \Lambda)_{\alpha} = \infty$.

If there exists a tower $\{\Gamma_n\}_{n\in\mathbb{N}}$ of type α and height one such that $\Xi = \Gamma_{n_1}$ for some finite n_1 , then we define $\operatorname{SCI}(\Xi, \Omega, \mathcal{M}, \Lambda)_{\alpha} = 0$.

Definition 4 (The Solvability Complexity Index Hierarchy)

Consider a collection C of computational problems and let T be the collection of all towers of algorithms of type α for the computational problems in C. Define

$$\Delta_0^{lpha} := \{\{\Xi, \Omega\} \in \mathcal{C} \mid \mathrm{SCI}(\Xi, \Omega)_{lpha} = 0\}$$

 $\Delta_{m+1}^{lpha} := \{\{\Xi, \Omega\} \in \mathcal{C} \mid \mathrm{SCI}(\Xi, \Omega)_{lpha} \le m\}, \qquad m \in \mathbb{N},$

as well as

$$\Delta_1^{\alpha} := \{ \{ \Xi, \Omega \} \in \mathcal{C} \mid \exists \ \{ \Gamma_n \}_{n \in \mathbb{N}} \in \mathcal{T} \text{ s.t. } \forall A \ d(\Gamma_n(A), \Xi(A)) \leq 2^{-n} \}.$$

Definition 5 (The SCI Hierarchy (totally ordered set))

Suppose ${\mathcal M}$ is totally ordered. Define

$$\begin{split} \Sigma_0^{\alpha} &= \Pi_0^{\alpha} = \Delta_0^{\alpha}, \\ \Sigma_1^{\alpha} &= \{ \{ \Xi, \Omega \} \in \Delta_2 \mid \exists \ \Gamma_n \in \mathcal{T} \text{ s.t. } \Gamma_n(\mathcal{A}) \nearrow \Xi(\mathcal{A}) \ \forall \mathcal{A} \in \Omega \}, \\ \Pi_1^{\alpha} &= \{ \{ \Xi, \Omega \} \in \Delta_2 \mid \exists \ \Gamma_n \in \mathcal{T} \text{ s.t. } \Gamma_n(\mathcal{A}) \searrow \Xi(\mathcal{A}) \ \forall \mathcal{A} \in \Omega \}, \end{split}$$

where \nearrow and \searrow denotes convergence from below and above respectively, as well as, for $m \in \mathbb{N}$,

$$\begin{split} \Sigma_{m+1}^{\alpha} &= \{ \{ \Xi, \Omega \} \in \Delta_{m+2} \mid \exists \ \Gamma_{n_{m+1}, \dots, n_1} \in \mathcal{T} \text{ s.t. } \Gamma_{n_{m+1}}(A) \nearrow \Xi(A) \ \forall A \in \Omega \}, \\ \Pi_{m+1}^{\alpha} &= \{ \{ \Xi, \Omega \} \in \Delta_{m+2} \mid \exists \ \Gamma_{n_{m+1}, \dots, n_1} \in \mathcal{T} \text{ s.t. } \Gamma_{n_{m+1}}(A) \searrow \Xi(A) \ \forall A \in \Omega \}. \end{split}$$

Definition 6 (The SCI Hierarchy (Attouch-Wetts/Hausdorff metric))

Suppose M is a metric space with the Attouch-Wetts or the Hausdorff metric induced by another metric space M'. Define for $m \in \mathbb{N}$

$$\begin{split} \Sigma_{0}^{\alpha} &= \Pi_{0}^{\alpha} = \Delta_{0}^{\alpha}, \\ \Sigma_{1}^{\alpha} &= \{\{\Xi, \Omega\} \in \Delta_{2} \mid \exists \ \Gamma_{n} \in \mathcal{T} \text{ s.t. } \Gamma_{n}(A) \underset{\mathcal{M}'}{\subset} B_{2^{-n}}^{\mathcal{M}}(\Xi(A)) \ \forall A \in \Omega\}, \\ \Pi_{1}^{\alpha} &= \{\{\Xi, \Omega\} \in \Delta_{2} \mid \exists \ \Gamma_{n} \in \mathcal{T} \text{ s.t. } B_{2^{-n}}^{\mathcal{M}}(\Gamma_{n}(A)) \underset{\mathcal{M}'}{\supset} \Xi(A) \ \forall A \in \Omega\}. \end{split}$$

where $\subset_{\mathcal{M}'}$ means inclusion in the metric space \mathcal{M}' . Interpret $B_{2^{-n}}^{\mathcal{M}}(x)$ as the subset of \mathcal{M}' given by $\bigcup \{S \subset \mathcal{M}' \mid S \in \mathcal{M}, d_{\mathcal{M}}(S, x) \leq 2^{-n}\}$. Moreover,

$$\Sigma_{m+1}^{\alpha} = \{\{\Xi, \Omega\} \in \Delta_{m+2} \mid \exists \Gamma_{n_{m+1}, \dots, n_1} \in \mathcal{T} \text{ s.t. } \Gamma_{n_{m+1}}(A) \underset{\mathcal{M}'}{\subset} B_{2^{-n}}^{\mathcal{M}}(\Xi(A)) \quad \forall A \in \Omega\}$$
$$\Pi_{m+1}^{\alpha} = \{\{\Xi, \Omega\} \in \Delta_{m+2} \mid \exists \Gamma_{n_{m+1}, \dots, n_1} \in \mathcal{T} \text{ s.t. } B_{2^{-n}}^{\mathcal{M}}(\Gamma_{n_{m+1}}(A)) \underset{\mathcal{M}'}{\subset} \Xi(A) \quad \forall A \in \Omega\}$$

What does this mean?

• Lower bounds for *general* algorithms provide lower bounds for any reasonable model of computation. But all constructed algorithms can be realised as type-2 Turing machines. Hence results are sharp in this sense - difficulty lies with infinite amount of data/information, not the model of computation.

- Lower bounds for *general* algorithms provide lower bounds for any reasonable model of computation. But all constructed algorithms can be realised as type-2 Turing machines. Hence results are sharp in this sense difficulty lies with infinite amount of data/information, not the model of computation.
- We gain a sharp classification of many real-world problems of interest.

- Lower bounds for *general* algorithms provide lower bounds for any reasonable model of computation. But all constructed algorithms can be realised as type-2 Turing machines. Hence results are sharp in this sense difficulty lies with infinite amount of data/information, not the model of computation.
- We gain a sharp classification of many real-world problems of interest.
- Numerical literature considers Δ_2^{α} algorithms Δ_2^{α} (numerical analysts love limits and the continuum). Sometimes impossible, e.g. spectrum of self-adjoint infinite matrices and 'spectral pollution'.

- Lower bounds for *general* algorithms provide lower bounds for any reasonable model of computation. But all constructed algorithms can be realised as type-2 Turing machines. Hence results are sharp in this sense difficulty lies with infinite amount of data/information, not the model of computation.
- We gain a sharp classification of many real-world problems of interest.
- Numerical literature considers Δ_2^{α} algorithms Δ_2^{α} (numerical analysts love limits and the continuum). Sometimes impossible, e.g. spectrum of self-adjoint infinite matrices and 'spectral pollution'.
- Hence, the field of computational spectral theory is mostly concerned with non-computable problems. Numerical analysts could not solve the spectral problem because they couldn't see the connection with logic.

- Lower bounds for *general* algorithms provide lower bounds for any reasonable model of computation. But all constructed algorithms can be realised as type-2 Turing machines. Hence results are sharp in this sense difficulty lies with infinite amount of data/information, not the model of computation.
- We gain a sharp classification of many real-world problems of interest.
- Numerical literature considers Δ_2^{α} algorithms Δ_2^{α} (numerical analysts love limits and the continuum). Sometimes impossible, e.g. spectrum of self-adjoint infinite matrices and 'spectral pollution'.
- Hence, the field of computational spectral theory is mostly concerned with non-computable problems. Numerical analysts could not solve the spectral problem because they couldn't see the connection with logic.
- Error control for scientific problems computer assisted proofs?

Computing Spectra with Error Control

- Hilbert space $l^2(\mathbb{N})$ with $||x||_2 = \sqrt{\sum_{j=1}^{\infty} |x_j|^2}$, $\langle x, y \rangle = \sum_{j=1}^{\infty} x_j \bar{y}_j$
- Bounded linear operator $A: l^2(\mathbb{N}) \to l^2(\mathbb{N})$ realised as matrix

(a_{11}	a ₁₂	a ₁₃		
	a_{21}	a ₂₂	a ₂₃		
	a_{31}	a ₃₂	a ₃₃		
	÷	÷	÷	·	J

• Want to compute spectrum (generalisation of eigenvalues)

$$\operatorname{Sp}(A) := \{ z \in \mathbb{C} : A - zI \text{ not invertible} \}.$$

from the matrix elements.

• Also the pseudospectrum

$$\operatorname{Sp}_{\epsilon}(A) := \{ z \in \mathbb{C} : \| (A - zI)^{-1} \|^{-1} \leq \epsilon \}.$$

Two Key Definitions

Definition 7 (Dispersion - off-diagonal decay)

We say that the dispersion of $A \in \mathcal{B}(l^2(\mathbb{N}))$ is bounded by the function $f : \mathbb{N} \to \mathbb{N}$ if

$$D_{f,m}(A):=\max\{\|(I-P_{f(m)})AP_m\|,\|P_mA(I-P_{f(m)})\|\}\rightarrow 0\quad\text{as }m\rightarrow\infty.$$

Definition 8 (Controlled growth of the resolvent - well-conditioned)

Let $g: [0, \infty) \to [0, \infty)$ be a continuous function, vanishing only at x = 0and tending to infinity as $x \to \infty$ with $g(x) \le x$. We say that a closed operator A with non-empty spectrum on the Hilbert space \mathcal{H} has controlled growth of the resolvent by g if

$$\|(A-zI)^{-1}\|^{-1} \ge g(\operatorname{dist}(z,\operatorname{Sp}(A))) \quad \forall z \in \mathbb{C},$$

where we use the convention $||B^{-1}||^{-1} := 0$ if B has no bounded inverse.

What does this mean?

- Dispersion think banded matrices.
- Controlled resolvent g is a measure of the conditioning of the problem of computing Sp(A) through the formula

$$\operatorname{Sp}_{\epsilon}(A) = \bigcup_{\|B\| \leq \epsilon} \operatorname{Sp}(A+B).$$

• Self-adjoint and normal operators (A commutes with A*) have well conditioned spectral problems since

$$\|(A - zI)^{-1}\|^{-1} = \operatorname{dist}(z, \operatorname{Sp}(A)), \quad g(x) = x.$$

• Different classes have different classifications in hierarchy...

 By considering diagonal operators, clear the problem does not lie in $\Delta^{\textit{G}}_{1}$ - algorithms can only read a finite amount of information. Hence we wish to show lies in Σ_1^A .

- By considering diagonal operators, clear the problem does not lie in Δ₁^G - algorithms can only read a finite amount of information. Hence we wish to show lies in Σ₁^A.
- Idea: can we approximate the quantity $||(A zI)^{-1}||^{-1}$ locally? Then gain an upper bound:

$$dist(z, Sp(A)) \le g^{-1}(||(A - zI)^{-1}||^{-1}).$$

- By considering diagonal operators, clear the problem does not lie in Δ₁^G - algorithms can only read a finite amount of information. Hence we wish to show lies in Σ₁^A.
- Idea: can we approximate the quantity $||(A zI)^{-1}||^{-1}$ locally? Then gain an upper bound:

$$dist(z, Sp(A)) \le g^{-1}(||(A - zI)^{-1}||^{-1}).$$

• Introduce smallest singular value σ_1 (injection modulus) and

$$\gamma(z,A) = \min\{\sigma_1(A-zI), \sigma_1(A^*-\bar{z}I)\} = \|(A-zI)^{-1}\|^{-1}, \\ \gamma_n(z,A) = \min\{\sigma_1((A-zI)P_n), \sigma_1((A^*-\bar{z}I)P_n)\}.$$

- By considering diagonal operators, clear the problem does not lie in Δ₁^G - algorithms can only read a finite amount of information. Hence we wish to show lies in Σ₁^A.
- Idea: can we approximate the quantity $||(A zI)^{-1}||^{-1}$ locally? Then gain an upper bound:

$$dist(z, Sp(A)) \le g^{-1}(||(A - zI)^{-1}||^{-1}).$$

• Introduce smallest singular value σ_1 (injection modulus) and

$$\gamma(z,A) = \min\{\sigma_1(A-zI), \sigma_1(A^*-\bar{z}I)\} = \|(A-zI)^{-1}\|^{-1}, \\ \gamma_n(z,A) = \min\{\sigma_1((A-zI)P_n), \sigma_1((A^*-\bar{z}I)P_n)\}.$$

• Can prove $\gamma_n \downarrow \gamma$ uniformly on compacts.

Example 1: We have both f and g.

• Reduced to approximating $\gamma_n(z, A)$.

Infinite Matrices

Example 1: We have both f and g.

- Reduced to approximating $\gamma_n(z, A)$.
- Idea: use function f. E.g.

$$\left|\sigma_1((A-zI)P_n)-\sigma_1(P_{f(n)}(A-zI)P_n)\right|\leq D_{f,n}(A).$$

Example 1: We have both f and g.

- Reduced to approximating $\gamma_n(z, A)$.
- Idea: use function f. E.g.

$$\left|\sigma_1((A-zI)P_n)-\sigma_1(P_{f(n)}(A-zI)P_n)\right|\leq D_{f,n}(A).$$

• So only need to approximate the smallest singular value of a rectangular matrix. This can be done using incomplete Cholesky decomposition and a simple search routine. Can also build in error for inexact input/storage and even round-off.

Infinite Matrices

Example 1: We have both f and g.

- Reduced to approximating $\gamma_n(z, A)$.
- Idea: use function f. E.g.

$$\left|\sigma_1((A-zI)P_n)-\sigma_1(P_{f(n)}(A-zI)P_n)\right|\leq D_{f,n}(A).$$

- So only need to approximate the smallest singular value of a rectangular matrix. This can be done using incomplete Cholesky decomposition and a simple search routine. Can also build in error for inexact input/storage and even round-off.
- Given f, g and $D_{f,n}(A)$, we can gain an upper bound to dist(z, Sp(A)) that converges locally uniformly to the true distance. Can use this to build Σ_1^A algorithm.

Example 2: When we have only g, e.g. self-adjoint case.

• How to build Σ_2^A algorithm? Define

$$\gamma_{n_2,n_1}(z,A) = \min\{\sigma_1(P_{n_1}(A-zI)P_{n_2}), \sigma_1(P_{n_1}(A^*-\bar{z}I)P_{n_2})\}.$$

After first limit $n_1 \to \infty$ gain $\gamma_{n_2}(z, A)$ then as before. So only need show this is sharp. I.e. problem does not lie in Δ_2^G .

Example 2: When we have only g, e.g. self-adjoint case.

• How to build Σ_2^A algorithm? Define

$$\gamma_{n_2,n_1}(z,A) = \min\{\sigma_1(P_{n_1}(A-zI)P_{n_2}), \sigma_1(P_{n_1}(A^*-\bar{z}I)P_{n_2})\}.$$

After first limit $n_1 \to \infty$ gain $\gamma_{n_2}(z, A)$ then as before. So only need show this is sharp. I.e. problem does not lie in Δ_2^G .

Assume for a contradiction that there is a sequence {Γ_k} of general algorithms such that Γ_k(A) → Sp(A) for all A ∈ Ω_{SA}, and consider operators of the type

$$A:= igoplus_{r=1}^\infty A_{l_r} ext{ with } \{l_r\} \subset \mathbb{N} ext{ and } A_n:= egin{pmatrix} 1&&&&1\ &0&&&\ &&&&\ &&&\ddots&&\ &&&0&\ 1&&&&1\end{pmatrix} \in \mathbb{C}^{n imes n}.$$

Simple oscillation argument...

Example 3: General Bounded Operators

• Can prove not in Δ_3^G (at least three limits needed) - a difficult Baire category argument required!

Example 3: General Bounded Operators

- Can prove not in Δ₃^G (at least three limits needed) a difficult Baire category argument required!
- How to build a Π_3^A algorithm? Use pseudospectrum:

$$\operatorname{Sp}_{\epsilon}(A) := \{ z \in \mathbb{C} : \| (A - zI)^{-1} \|^{-1} \le \epsilon \},$$
$$\lim_{\epsilon \downarrow 0} \operatorname{Sp}_{\epsilon}(A) = \operatorname{Sp}(A).$$

Example 3: General Bounded Operators

- Can prove not in Δ₃^G (at least three limits needed) a difficult Baire category argument required!
- How to build a Π_3^A algorithm? Use pseudospectrum:

$$\operatorname{Sp}_{\epsilon}(A) := \{ z \in \mathbb{C} : \| (A - zI)^{-1} \|^{-1} \le \epsilon \},$$
$$\lim_{\epsilon \downarrow 0} \operatorname{Sp}_{\epsilon}(A) = \operatorname{Sp}(A).$$

Without function g (which links Sp and Sp_ε), can compute Sp_ε(A) in two limits. Let ε = 1/n₃ then last limit gives convergence from above so Π^A₃.

Further Results [3]

We have classifications for classes

- Different classes of compact operators
- Normal/self-adjoint/controlled resolvent (g)
- Bounded dispersion
- Diagonal
- General bounded
- Even unbounded
- ...

For problems

- Spectrum
- Pseudospectrum
- Essential Spectrum
- Decision problem: is $z \in \text{Sp}(A)$?

Schrödinger Operators [3]

• Want to compute spectrum of a Schrödinger operator

$$H = -\Delta + V, \qquad V : \mathbb{R}^d \to \mathbb{C},$$

Classical problem in computational quantum mechanics. Consider computations using point samples of the potential V(x) (no matrix values are assumed).

Schrödinger Operators [3]

• Want to compute spectrum of a Schrödinger operator

$$H = -\Delta + V, \qquad V : \mathbb{R}^d \to \mathbb{C},$$

Classical problem in computational quantum mechanics. Consider computations using point samples of the potential V(x) (no matrix values are assumed).

• Unsolved for a long time when considering H acting on $L^2(\mathbb{R}^d)$ allowing non self-adjointness and arbitrary complex potentials.

Schrödinger Operators [3]

• Want to compute spectrum of a Schrödinger operator

$$H = -\Delta + V, \qquad V : \mathbb{R}^d \to \mathbb{C},$$

Classical problem in computational quantum mechanics. Consider computations using point samples of the potential V(x) (no matrix values are assumed).

- Unsolved for a long time when considering H acting on $L^2(\mathbb{R}^d)$ allowing non self-adjointness and arbitrary complex potentials.
- Consider the computational problem $\{\Xi,\Omega,\mathcal{M},\Lambda\}$ with the Attouch-Wets metric defined by

$$d_{\mathrm{AW}}(A,B) = \sum_{i=1}^{\infty} 2^{-i} \min \left\{ 1, \sup_{|x| < i} |d(x,A) - d(x,B)| \right\},$$

where A and B are closed subsets of \mathbb{C} - generalises Hausdorff distance to general closed sets.

Assume potential in BV_φ(ℝ^d) = {f : TV(f_{[-a,a]^d}) ≤ φ(a)}. For simplicity, assume V real-valued.

- Assume potential in BV_φ(ℝ^d) = {f : TV(f_{[-a,a]^d}) ≤ φ(a)}. For simplicity, assume V real-valued.
- Aim: Construct a Σ_1^A tower. Easy to show sharp.

- Assume potential in BV_φ(ℝ^d) = {f : TV(f_{[-a,a]^d}) ≤ φ(a)}. For simplicity, assume V real-valued.
- Aim: Construct a Σ_1^A tower. Easy to show sharp.
- Method: Choose a suitable basis and compute estimations of matrix of operator. Then can use above method (adapted to unbounded closed operators).

- Assume potential in BV_φ(ℝ^d) = {f : TV(f_{[-a,a]^d}) ≤ φ(a)}. For simplicity, assume V real-valued.
- Aim: Construct a Σ_1^A tower. Easy to show sharp.
- Method: Choose a suitable basis and compute estimations of matrix of operator. Then can use above method (adapted to unbounded closed operators).
- How: Use $V \in BV_{\phi}(\mathbb{R}^d)$, $||V||_{\infty} \leq M$ to bound error in integrals from theory of numerical integration.

Generalisations

• Can deal with complex potentials also.

Generalisations

- Can deal with complex potentials also.
- Can build an algorithm for sectorial unbounded potentials with blow up at ∞. Different method - more standard discretisation. Problem lies in Δ₂^A but not Σ₁^G ∪ Π₁^G - same classification as compact operators (realised as infinite matrices).

Graphene

Figure: Guaranteed error bound of 10^{-5} .

Laplacian on Penrose Tile

Laplacian on Penrose Tile

Laplacian on Penrose Tile

• In general, one cannot define the Σ_k^{α} and Π_k^{α} (in the above sense) unless there is more structure on the metric space \mathcal{M} .

- In general, one cannot define the Σ_k^{α} and Π_k^{α} (in the above sense) unless there is more structure on the metric space \mathcal{M} .
- However, due to its generality, some of the hierarchies in logic become special cases of the SCI hierarchy.

- In general, one cannot define the Σ_k^{α} and Π_k^{α} (in the above sense) unless there is more structure on the metric space \mathcal{M} .
- However, due to its generality, some of the hierarchies in logic become special cases of the SCI hierarchy.
- As a mathematician with no background in logic, I would be very interested in people's opinions on this and making connections across communities...

- In general, one cannot define the Σ_k^{α} and Π_k^{α} (in the above sense) unless there is more structure on the metric space \mathcal{M} .
- However, due to its generality, some of the hierarchies in logic become special cases of the SCI hierarchy.
- As a mathematician with no background in logic, I would be very interested in people's opinions on this and making connections across communities...
- In general, is there a connection with Weihrauch computability?
 Often its is easier to prove upper bounds without encoding *M* but tools developed in this community may be useful for lower bounds. (Again comments and discussion at the end most welcome.)

Very easy example: Arithmetical Hierarchy

Given a subset $A \subset \mathbb{Z}_+$ with characteristic function χ_A definable in First-Order Arithmetic, what is SCI of deciding whether a given number $x \in \mathbb{Z}_+$ belongs to A?

- primary set $\Omega := \mathbb{Z}_+$,
- evaluation set $\Lambda = \{\lambda\}$ consisting of the function $\lambda : \mathbb{Z}_+ \to \mathbb{C}, x \mapsto x$,
- metric space $\mathcal{M} := (\{1, 0\}, d_{discr}).$

Definition 9 (Kleene-Shoenfield tower)

A tower of algorithms given by a family $\{\Gamma_{n_k,...,n_1} : \Omega \to \mathcal{M} : n_k,...,n_1 \in \mathbb{N}\}$ of functions at the lowest level is said to be a *Kleene-Shoenfield tower*, if the function

$$\mathbb{N}^k \times \Omega \to \mathcal{M}, \quad (n_k, \ldots, n_1, x) \mapsto \Gamma_{n_k, \ldots, n_1}(x)$$

is computable.

Theorem 10 (The SCI hierarchy encompasses the arithmetical hierarchy) For every $m \in \mathbb{N}$ we have

$$\begin{split} \Xi &\in \Delta_m \Leftrightarrow \{\Xi, \Omega\} \in \Delta_m^{\mathrm{KS}}, \\ \Xi &\in \Sigma_m \Leftrightarrow \{\Xi, \Omega\} \in \Sigma_m^{\mathrm{KS}}, \\ \Xi &\in \Pi_m \Leftrightarrow \{\Xi, \Omega\} \in \Pi_m^{\mathrm{KS}}. \end{split}$$

A more interesting result...

Consider $f : \mathbb{R}^* \to \mathbb{R}^*$. A k-tower for f is $F : \mathbb{N}^k \times \mathbb{R}^* \to \mathbb{R}^*$ with

$$f(x_1,...,x_m) = \lim_{n_k\to\infty} ... \lim_{n_1\to\infty} F(n_k,...,n_1,x_1,...,x_m).$$

E. Neumann and A. Pauly recently showed

Theorem 11 ([4]) If max{SCI_{TTE}(f), SCI_{BSS}(f)} \geq 2 then SCI_{TTE}(f) = SCI_{BSS}(f).

Since $SCI_{TTE}(f) \le n$ iff $f \le_w lim^{(n)}$ we obtain that for $n \ge 2$

$$\operatorname{SCI}_{BSS}(f) \ge n \text{ iff } f \nleq_w \lim^{(n-1)}$$
.

So there is some connection with Weihrauch reducibility (for this type of problem function) and a sense of unification for very non-computable problems...

Computer Assisted Proofs

• Recent computer assisted proof of the long lasting Kepler conjecture (Hilbert's 18th problem) is a great example of the use of numerical calculations in a proof [5].

Computer Assisted Proofs

- Recent computer assisted proof of the long lasting Kepler conjecture (Hilbert's 18th problem) is a great example of the use of numerical calculations in a proof [5].
- The proof relies on deciding more than 50,000 decision problems in numerical optimisation that are not in Δ₁^G. In particular, the proof hinges on computing undecidable problems.

Computer Assisted Proofs

- Recent computer assisted proof of the long lasting Kepler conjecture (Hilbert's 18th problem) is a great example of the use of numerical calculations in a proof [5].
- The proof relies on deciding more than 50,000 decision problems in numerical optimisation that are not in Δ₁^G. In particular, the proof hinges on computing undecidable problems.
- Just as most spectral problems of interest are not in Δ₁^G, there are many other crucial problems not in Δ₁^G that may be useful in computer assisted proofs. The key to computer assisted proofs are the classes Σ₁^A and Π₁^A.

Anders Hansen.

On the solvability complexity index, the *n*-pseudospectrum and approximations of spectra of operators.

- J. Amer. Math. Soc., 24(1):81-124, 2011.
- Matthew Colbrook, Bogdan Roman, and Anders Hansen. How to compute spectra with error control. *Submitted*, 2018.
- Jonathan Ben-Artzi, Matthew Colbrook, Anders Hansen, Olavi Nevanlinna, and Markus Seidel.

On the solvability complexity index hierarchy and towers of algorithms.

Eike Neumann and Arno Pauly.

A topological view on algebraic computation models.

Journal of Complexity, 44:1-22, 2018.

Thomas Hales.

A proof of the Kepler conjecture.

Annals of mathematics, pages 1065–1185, 2005.

Thank you!

