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Motivation

Motivation

Motivating example: spectra of infinite-dimensional operators.
Many applications but W. Arveson (leading operator theorist
U.C. Berkeley) pointed out in nineties, “Unfortunately, there
is a dearth of literature on this basic problem, and ...
there are no proven techniques.” Situation even worse for
the Schrödinger case.

Given a Schrödinger operator

H = −∆ + V , V : Rd → C,

Can we compute the spectrum from point samples of the
potential V (x) (or similar appropriate data)? Very important
open problem both in continuous and discrete case.
Naive discretisations can fail spectacularly even when V real
valued.
Talk will present solution to this problem and how to compute
spectra for much more general cases.
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Motivation

Computational Schrödinger Problem

Problem of algorithmically computing Sp(H) goes at least as far
back as Schrödinger himself [1].

Studied by great scientists and mathematicians throughout 20th
and 21st centuries. Very incomplete list - P.W. Anderson [2], J.
Schwinger [3], A. Weyl [4], T. Digernes, V.S. Varadarajan and
S.R.S. Varadhan [5], A. Böttcher [6, 7], P.A. Deift, L.C. Li and C.
Tomei [8], C. Fefferman and L. Seco
[9, 10, 11, 12, 13, 14, 15, 16, 17], P. Hertel, E. Lieb and W.
Thirring [18], L. Demanet and W. Schlag [19], M. Zworski
[20, 21]...
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Motivation

Computational Schrödinger Problem

M. Zworski’s result: Let V : R2 → R be in L∞comp and define

Pε = −∆ + V − iεx2, ε > 0.

Let {zj(ε)}∞j=1 be eigenavlues of Pε (has discrete spectrum) then
uniformly on compact subsets of {z : arg(z) ∈ (−π/4, 7π/4)}

zj(ε)→ zj as ε ↓ 0.

zj resonances of H.
Later - can compute Sp(Pε) via algorithm Γεn, get resonances in
sector of C via two limits

lim
ε↓0

lim
n→∞

Γεn(A).

More on complex potentials and more general PDEs later...
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Motivation

A question of Smale and a curious case of limits

Computing zeros of polynomials with iterative rational map (e.g.
Newton’s method).

S. Smale [22]: “Does there exist a purely iterative generally
convergent algorithm?”
C. McMullen [23]: “Yes, if the degree is three; no, if the degree is
higher.”
P. Doyle and C. McMullen [24]: “But can be solved in the case of
the quartic and the quintic using several limits (towers of generally
convergent iterative maps linked serially).”

Theorem 1

For Pd there exists a generally convergent algorithm only for
d ≤ 3. Towers of algorithms exist additionally for d = 4 and d = 5
but not for d ≥ 6.
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Motivation

Another example of limits

Problem: Given an infinite matrix (acting as a bounded operator
on l2(N))

A =


a11 a12 a13 . . .
a21 a22 a23 . . .
a31 a32 a33 . . .

...
...

...
. . .

 ,

can we compute the spectrum Sp(A) from the matrix elements in
Hausdorff metric?

Answer [25]: No! Best one can do is compute using three
successive limits:

lim
n3→∞

lim
n2→∞

lim
n1→∞

Γn3,n2,n1(A) = Sp(A)
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Motivation: Kepler’s conjecture

400 year old problem
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Motivation

Motivation: Kepler’s conjecture

Flyspeck program (T. Hales) - fully computer assisted verification
via 50000 linear programs with irrational inputs.

Computational problem: decide whether there is an x ∈ RN such
that

(1) 〈x , c〉K ≤ M subject to Ax = y , x ≥ 0,

where

〈x , c〉K = b10K 〈x , c〉c10−K , K ∈ N, M ∈ Q.

Irrational input numbers means that A and y are only known
approximately, however, to any precision one wants.
Not computable. But if replace 〈x , c〉K ≤ M by 〈x , c〉K < M then
problem is verifiable. If there had been cases with equality, the
Flyspeck program may never have resolved Kepler’s conjecture!
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Motivation

Motivation: Dirac-Schwinger conjecture

Proven by C. Fefferman and L. Seco in a series of papers
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Motivation

Motivation: Dirac-Schwinger conjecture

E (Z ) ground state energy of non-relativistic atom for nucleus of
charge Z .

The key result: show asymptotic behaviour of E (Z ) for large Z ,

E (Z ) = −c0Z
7/3 +

1

8
Z 2 − c1Z

5/3 +O(Z 5/3−1/2835),

for explicit constants c0 and c1.
To prove this, one verifies that F ′′(ω) ≤ c < 0 for some specific
function F , for some c and for all ω ∈ (0, ωc) where ωc is
specifically defined. The intricate computer assisted proof hinges
on several problems that are not computable but are verifiable.
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The SCI hierarchy

Informal description (can provide formal definitions at end)

SCI=number of limits needed to solve problem.

Work in model of computation α BUT remarkably all results
presented today are independent of power of model - NOT a talk
about recursivity.

(i) ∆α
0 is the set of problems that can be computed in finite time,

the SCI = 0.

(ii) ∆α
1 is the set of problems that can be computed using one

limit, the SCI = 1, however one has error control and one
knows an error bound that tends to zero as the algorithm
progresses.

(iii) ∆α
2 is the set of problems that can be computed using one

limit, the SCI = 1, but error control may not be possible.

(iv) ∆α
m+1, for m ∈ N, is the set of problems that can be

computed by using m limits, the SCI ≤ m.



Introduction Schrödinger and PDEs Discrete operators Numerical Examples Conclusion Definitions

The SCI hierarchy

Informal description (can provide formal definitions at end)

SCI=number of limits needed to solve problem.
Work in model of computation α BUT remarkably all results
presented today are independent of power of model - NOT a talk
about recursivity.

(i) ∆α
0 is the set of problems that can be computed in finite time,

the SCI = 0.

(ii) ∆α
1 is the set of problems that can be computed using one

limit, the SCI = 1, however one has error control and one
knows an error bound that tends to zero as the algorithm
progresses.

(iii) ∆α
2 is the set of problems that can be computed using one

limit, the SCI = 1, but error control may not be possible.

(iv) ∆α
m+1, for m ∈ N, is the set of problems that can be

computed by using m limits, the SCI ≤ m.



Introduction Schrödinger and PDEs Discrete operators Numerical Examples Conclusion Definitions

The SCI hierarchy

Informal description (can provide formal definitions at end)

SCI=number of limits needed to solve problem.
Work in model of computation α BUT remarkably all results
presented today are independent of power of model - NOT a talk
about recursivity.

(i) ∆α
0 is the set of problems that can be computed in finite time,

the SCI = 0.

(ii) ∆α
1 is the set of problems that can be computed using one

limit, the SCI = 1, however one has error control and one
knows an error bound that tends to zero as the algorithm
progresses.

(iii) ∆α
2 is the set of problems that can be computed using one

limit, the SCI = 1, but error control may not be possible.

(iv) ∆α
m+1, for m ∈ N, is the set of problems that can be

computed by using m limits, the SCI ≤ m.



Introduction Schrödinger and PDEs Discrete operators Numerical Examples Conclusion Definitions

The SCI hierarchy

Informal description (can provide formal definitions at end)

SCI=number of limits needed to solve problem.
Work in model of computation α BUT remarkably all results
presented today are independent of power of model - NOT a talk
about recursivity.

(i) ∆α
0 is the set of problems that can be computed in finite time,

the SCI = 0.

(ii) ∆α
1 is the set of problems that can be computed using one

limit, the SCI = 1, however one has error control and one
knows an error bound that tends to zero as the algorithm
progresses.

(iii) ∆α
2 is the set of problems that can be computed using one

limit, the SCI = 1, but error control may not be possible.

(iv) ∆α
m+1, for m ∈ N, is the set of problems that can be

computed by using m limits, the SCI ≤ m.



Introduction Schrödinger and PDEs Discrete operators Numerical Examples Conclusion Definitions

The SCI hierarchy

Informal description (can provide formal definitions at end)

SCI=number of limits needed to solve problem.
Work in model of computation α BUT remarkably all results
presented today are independent of power of model - NOT a talk
about recursivity.

(i) ∆α
0 is the set of problems that can be computed in finite time,

the SCI = 0.

(ii) ∆α
1 is the set of problems that can be computed using one

limit, the SCI = 1, however one has error control and one
knows an error bound that tends to zero as the algorithm
progresses.

(iii) ∆α
2 is the set of problems that can be computed using one

limit, the SCI = 1, but error control may not be possible.

(iv) ∆α
m+1, for m ∈ N, is the set of problems that can be

computed by using m limits, the SCI ≤ m.



Introduction Schrödinger and PDEs Discrete operators Numerical Examples Conclusion Definitions

The SCI hierarchy

Informal description (can provide formal definitions at end)

SCI=number of limits needed to solve problem.
Work in model of computation α BUT remarkably all results
presented today are independent of power of model - NOT a talk
about recursivity.

(i) ∆α
0 is the set of problems that can be computed in finite time,

the SCI = 0.

(ii) ∆α
1 is the set of problems that can be computed using one

limit, the SCI = 1, however one has error control and one
knows an error bound that tends to zero as the algorithm
progresses.

(iii) ∆α
2 is the set of problems that can be computed using one

limit, the SCI = 1, but error control may not be possible.

(iv) ∆α
m+1, for m ∈ N, is the set of problems that can be

computed by using m limits, the SCI ≤ m.



Introduction Schrödinger and PDEs Discrete operators Numerical Examples Conclusion Definitions

The SCI hierarchy

More Structure (Monotone)

How do we capture ‘verifiable’ problems that can be used in
computer assisted proofs and rigorous numerics?

Easy if computational problem (thing we want to compute) maps
to a totally ordered metric space (e.g. R).
Σm - problems requiring m limits but final limit from below.
Πm - problems requiring m limits but final limit from above.
One side version of error control.
What about other spaces such as Hausdorff metric?
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The SCI hierarchy

Figure: Meaning of Σ1 and Π1 convergence for problem function Ξ. The
red area represents Ξ(A) whereas the green areas represent the output of
the algorithm Γn(A). Σ1 convergence means convergence as n→∞ but
each output point in Γn(A) is at most distance 2−n from Ξ(A). Similarly
for Π1, we have convergence as n→∞ but any point in Ξ(A) is at most
distance 2−n from Γn(A).
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The SCI hierarchy

Why study the non-computable and why care?

Lower bounds mean we no longer waste time looking for an
algorithm that doesn’t exist. Turns out that many everyday
problems in numerical analysis are not computable.

We gain a sharp classification of many real-world problems of
interest. E.g. Schrödinger operators, PDEs,...

Construction of towers of algorithms usually can give us
information needed to lower SCI. I.e. information needed
about the class of objects to help compute the problem.

It is crucial in rigorous numerical analysis to understand the
difference between ∆1 (convergence with global error control),
Σ1 (convergence with error control of output) and ∆2

(convergence with no error control).

Problems in Σ1 and Π1 can be used in computer assisted
proofs in pure maths and mathematical physics.



Introduction Schrödinger and PDEs Discrete operators Numerical Examples Conclusion Definitions

The SCI hierarchy

Why study the non-computable and why care?

Lower bounds mean we no longer waste time looking for an
algorithm that doesn’t exist. Turns out that many everyday
problems in numerical analysis are not computable.

We gain a sharp classification of many real-world problems of
interest. E.g. Schrödinger operators, PDEs,...

Construction of towers of algorithms usually can give us
information needed to lower SCI. I.e. information needed
about the class of objects to help compute the problem.

It is crucial in rigorous numerical analysis to understand the
difference between ∆1 (convergence with global error control),
Σ1 (convergence with error control of output) and ∆2

(convergence with no error control).

Problems in Σ1 and Π1 can be used in computer assisted
proofs in pure maths and mathematical physics.



Introduction Schrödinger and PDEs Discrete operators Numerical Examples Conclusion Definitions

The SCI hierarchy

Why study the non-computable and why care?

Lower bounds mean we no longer waste time looking for an
algorithm that doesn’t exist. Turns out that many everyday
problems in numerical analysis are not computable.

We gain a sharp classification of many real-world problems of
interest. E.g. Schrödinger operators, PDEs,...

Construction of towers of algorithms usually can give us
information needed to lower SCI. I.e. information needed
about the class of objects to help compute the problem.

It is crucial in rigorous numerical analysis to understand the
difference between ∆1 (convergence with global error control),
Σ1 (convergence with error control of output) and ∆2

(convergence with no error control).

Problems in Σ1 and Π1 can be used in computer assisted
proofs in pure maths and mathematical physics.



Introduction Schrödinger and PDEs Discrete operators Numerical Examples Conclusion Definitions

The SCI hierarchy

Why study the non-computable and why care?

Lower bounds mean we no longer waste time looking for an
algorithm that doesn’t exist. Turns out that many everyday
problems in numerical analysis are not computable.

We gain a sharp classification of many real-world problems of
interest. E.g. Schrödinger operators, PDEs,...

Construction of towers of algorithms usually can give us
information needed to lower SCI. I.e. information needed
about the class of objects to help compute the problem.

It is crucial in rigorous numerical analysis to understand the
difference between ∆1 (convergence with global error control),
Σ1 (convergence with error control of output) and ∆2

(convergence with no error control).

Problems in Σ1 and Π1 can be used in computer assisted
proofs in pure maths and mathematical physics.
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Recall

Sp(A) := {z ∈ C : A− zI not invertible}.

Spε(A) := {z ∈ C : ‖(A− zI )−1‖−1 < ε}.

Notation: {Ξ,Ω,M} denotes a computational problem.

Ξ : Ω→ (M, d) thing we want to compute

Ω class of objects we work on e.g. class of operators or potentials

(M, d) metric space
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Schrödinger Operators

Want to compute spectrum of a Schrödinger operator

H = −∆ + V , V : Rd → C,

Classical problem in computational quantum mechanics.
Consider computations using point samples of the potential
V (x) (no matrix values are assumed).

Unsolved for a long time when considering H acting on
L2(Rd). Also allow non self-adjointness (complex potentials).

(M, d) the Attouch-Wets metric defined by

dAW(A,B) =
∞∑
i=1

2−i min

{
1, sup
|x |<i
|d(x ,A)− d(x ,B)|

}
,

for non-empty close A and B - generalises Hausdorff metric.
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Schrödinger operators: Bounded potential

φ : [0,∞)→ [0,∞) some increasing function and M > 0

Ωφ,g := {H ∈ Ωφ : ‖(−∆ + V − zI )−1‖−1 ≥ g(dist(z ,Sp(H)))},

Controlled oscillation: BVφ(Rd) = {f : TV(f[−a,a]d ) ≤ φ(a)}
Controlled resolvent growth near spectrum: g : R+ → R+

continuous increasing function with g(x) ≤ x ,
limx→∞ g(x) =∞.

g(dist(z , Sp(H))) ≤ ‖(H − zI )−1‖−1.

Theorem 2 (Bounded potential [25])

∆G
1 63 {Ξsp,Ωφ,g} ∈ ΣA

1 , ∆G
1 63 {Ξsp,ε,Ωφ,g} ∈ ΣA

1 .
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Schrödinger operators: Unbounded sectorial potential

θ1, θ2 ≥ 0 such that θ1 + θ2 < π.

Ω∞ = {V ∈ C(Rd) : ∀x arg(V (x)) ∈ [−θ2, θ1], |V (x)| → ∞ as x →∞}.

H = h∗∗, h = −∆ + V , D(h) = C∞c (Rd).

Theorem 3 (Unbounded potential [25])

ΣG
1 ∪ ΠG

1 63 {Ξsp,Ω∞} ∈ ∆A
2 , ΣG

1 ∪ ΠG
1 63 {Ξsp,ε,Ω∞} ∈ ∆A

2 .

Exactly same classification as compact operators acting on l2(N).
Strictly harder than previous problem despite compact resolvent.
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Generalisations to PDEs

Tu(x) =
∑
|k|≤N

ak(x)∂ku(x), T ∗u(x) =
∑
|k|≤N

ãk(x)∂ku(x).

Formally defined on L2(Rd) and assume

1 C∞0 (Rd) a core of T and T ∗.

2 Exists a positive constant Ak and integer Bk such that a.e.

|ak(x)| , |ãk(x)| ≤ Ak(1 + |x |2Bk ).

3 Can access to functions {gm} such that

gm(dist(z ,Sp(T ))) ≤
∥∥(T − zI )−1

∥∥−1
, z ∈ Bm(0).
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Generalisations to PDEs

‖f ‖Ar
= ‖f ‖∞ + (3d + 1)TV[−r ,r ]d (f ).

Assume ak , ãk ∈ Ar for all r > 0.

Ω1 : given positive cn with ‖ak‖An
, ‖ãk‖An

≤ cn,

Ω2 : given positive bn with sup
n∈N

max{‖ak‖An
, ‖ãk‖An

: |k| ≤ N}
bn

<∞.

Theorem 4 (PDEs [26])

With Ξ = Sp(·) or Spε(·)

∆G
1 63 {Ξ,Ω1} ∈ ΣA

1 , ΣG
1 ∪ ΠG

1 63 {Ξ,Ω2} ∈ ∆A
2 .
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Generalisations to PDEs

Similar state of affairs (including distinction) for analytic
coefficients replacing TV norm by decay rates of Taylor series.

Can extend to super-polynomial growth at infinity too.

Easy to extend to different domains (such as half line,
polygons etc.) and different boundary conditions.
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Recall the problem

Given an infinite matrix (acting as a bounded operator on l2(N))

A =


a11 a12 a13 . . .
a21 a22 a23 . . .
a31 a32 a33 . . .

...
...

...
. . .

 .

Want to compute the spectrum Sp(A).

What about other properties like discrete spectra, fractal
dimensions, spectral gaps,...?
What structure do we need to lower the SCI?
Simply taking square truncations Sp(PnAPn) (finite section) can
fail spectacularly even in self-adjoint case (spectral pollution - false
eigenvalues in gaps of essential spectrum).
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First ever algorithm that computes spectrum without
spectral pollution

Definition 5 (Dispersion - off-diagonal decay)

We say that the dispersion of A ∈ B(l2(N)) is bounded by the
function f : N→ N if

Df ,m(A) := max{‖(I−Pf (m))APm‖, ‖PmA(I−Pf (m))‖} → 0 as m→∞.

Definition 6 (Controlled growth of the resolvent - well-conditioned)

g : [0,∞)→ [0,∞) continuous, strictly increasing, vanishing only
at x = 0 and tending to infinity as x →∞ with g(x) ≤ x .
Controlled growth of the resolvent by g if

‖(A− zI )−1‖−1 ≥ g(dist(z ,Sp(A))) ∀z ∈ C.
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What does this mean?

Dispersion - think banded matrices.

Controlled resolvent - g is a measure of the conditioning of
the problem of computing Sp(A) through the formula

Spε(A) =
⋃
‖B‖≤ε

Sp(A + B).

Self-adjoint and normal operators (A commutes with A∗) have
well conditioned spectral problems since∥∥(A− zI )−1

∥∥−1
= dist(z ,Sp(A)), g(x) = x .

Turns out if we know f and g we can compute the spectrum with
Σ1 error control! A completely different method to other previous
approaches - local, fast and rigorous [27].
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Point spectrum

Spp(A) = {λ ∈ C : λ is an eigenvalue of A}

In theory of random and ergodic Schrödinger operators
Spp(A) very well studied (e.g. Anderson localisation yields
over 2.5 million hits in google scholar).

Is there an algorithm that can compute the closure of the
point spectrum (could also be empty)?

Turns out for general bounded operators the problem is in ΣA
2 .

Can we do better with more structure?
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No. Even with nice Schrödinger operators on l2(Z):

A =



. . .
. . .

. . . q−1 1
1 q0 1

1 q1
. . .

. . .
. . .


.

Potential {qn}n∈Z ⊂ R a bounded sequence.

There does NOT exist a one limit algorithm [28]. Proof uses a
nice non-trivial construction of Anderson localisation via fractional
moment method.
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Some further fun questions

1 What’s the classification of detecting if spectral pollution
occurs (on an open set U) for banded self-adjoint operators?

Answer [29]: ΣA
3 - two limits more than computing spectrum,

which the finite section method was designed for!

2 Given self-adjoint A, what’s the classification of computing
the Hausdorff dimension of Sp(A)?
Answer [29]: ΣA

4 (but ΣA
3 for Schrödinger case). Non trivial

and uses ideas from descriptive set theory (Baire/Borel
hierarchies).
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Have classifications of:

Lebesgue measure and fractal dimensions of spectra (different
types).
Discrete spectra, essential spectra, eigenvectors (if they exist)
+ multiplicity, spectral type etc.
Spectral radii, essential numerical ranges, geometric features
of spectrum...
Decision problems such as whether compact set intersects
spectrum etc.
Spectral measures.

For a whole bunch of classes:

Self-adjoint, normal, diagonal.
Know the function g and/or know the function f .
Even compact case not trivial.

Each problem tends to have an algorithm/proof of lower bound of
a different flavour. A very rich classification theory.
ALL constructed algorithms can cope with inexact input using only
arithmetic over Q, are stable and recursive.
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Graphene

Graphene is a two-dimensional material with carbon atoms
situated at the vertices of a honeycomb lattice with interesting
spectral properties (and has won some people Nobel prizes).

Magnetic properties of graphene important due to
experimental observation of quantum Hall effect and
Hofstadter’s butterfly.
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Figure: Finite section.
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Quantum mechanics, quasicrystals

Figure: Left: Dan Shechtman, Nobel Prize in Chemistry 2011.
Right: Electron diffraction pattern of quasicrystal.

Intensely investigated since the 1950s, still very active today.

Figure: Left: Artur Avila, Fields Medal 2014. Right: Hofstadter butterfly.
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Laplacian on Penrose Tile
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Näıve Approximations

1 Finite section with open boundary conditions: compute
eigenvalues of truncated matrix PnH0Pn for large n. Similar
“Galerkin” methods - suffer from spectral pollution.

2 Can construct Penrose tile via ”Pentagrid”  “Periodic
Approximants”

These represent state of art in (vast physics/maths) literature.
Can we beat this?
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Laplacian on Penrose Tile
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Laplacian on Penrose Tile
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Discrete Spectrum for Normal Operators

(Hαx)n = xn−1 + xn+1 + 2 cos(2πnα + ν)xn, acts on l2(Z).

No discrete spectrum. To generate a discrete spectrum, add

V (n) = Vn/(|n|+ 1),

where Vn are independent and uniformly distributed in [−2, 2].
Perturbation compact so preserves essential spectrum.
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Pseudospectra of NSA Schrödinger operators - no
discretisation!

Computed pseudospectra converge and guaranteed to be in true
pseudospectra.
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Figure: Left: V (x) = ix3. Note the clear presence of eigenvalues. Right:
V (x) = ix (has empty spectrum).
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Open Problems

How to compute ‘g ’ in general - applications in rigorous
numerics for resonances in arbitrary dimension etc.

What information is needed to lower SCI - for example what
conditions (or information) on a potential {qn} are needed to
be able to compute point spectra of Schrödinger operator in
one limit or with error control?

Current work is looking at rigorous computability results for
stable neural networks (looking increasingly likely that this
can be done).
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Solvability Complexity Index (SCI) [30, Hansen, JAMS]

Ω is some set, called the primary set,

Λ is a set of complex valued functions on Ω, called the evaluation set,

M is a metric space, where the thing we compute lives

Ξ is a mapping Ω→M, called the problem function.

E.g. Ω = B(H), problem function Ξ maps A 7→ Sp(A), (M, d) set
of all compact subsets of C with Hausdorff metric and evaluation
functions in Λ consist of fi ,j : A 7→ 〈Aej , ei 〉, i , j ∈ N, which provide
the entries of the matrix representation of A w.r.t. an orthonormal
basis {ei}i∈N.
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Definition 7 (General Algorithm)

Given a computational problem {Ξ,Ω,M,Λ}, a general algorithm
is a mapping Γ : Ω→M such that for each A ∈ Ω:

(i) there exists a finite subset of evaluations ΛΓ(A) ⊂ Λ,

(ii) the action of Γ on A only depends on {Af }f ∈ΛΓ(A) where
Af := f (A),

(iii) for every B ∈ Ω such that Bf = Af for every f ∈ ΛΓ(A), it
holds that ΛΓ(B) = ΛΓ(A).

No restrictions on the operations allowed (can consult any fixed
oracle etc.). But can consider different types of towers. E.g.
type-2 Turing machines, allow radicals, BSS model, ...
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Definition 8 (Tower of algorithms)

Given {Ξ,Ω,M,Λ}, a tower of algorithms of height k for
{Ξ,Ω,M,Λ} is a collection of sequences of functions

Γnk : Ω→M, Γnk ,nk−1
: Ω→M, . . . , Γnk ,...,n1 : Ω→M,

where nk , . . . , n1 ∈ N and the functions Γnk ,...,n1 are general
algorithms. Moreover, for every A ∈ Ω,

lim
nk→∞

... lim
n1→∞

Γnk ,...,n1(A) = Ξ(A)

with convergence in metric space M.
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Definition 9 (Solvability Complexity Index)

{Ξ,Ω,M,Λ} is said to have SCI(Ξ,Ω,M,Λ)α = k with respect
to a tower of algorithms of type α if k is the smallest integer for
which there exists a tower of algorithms of type α of height k.

If no such tower exists then SCI(Ξ,Ω,M,Λ)α =∞.

If there exists a tower {Γn}n∈N of type α and height one such that
Ξ = Γn1 for some finite n1, then we define SCI(Ξ,Ω,M,Λ)α = 0.
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Definition 10 (The Solvability Complexity Index Hierarchy)

Consider a collection C of computational problems and let T be
the collection of all towers of algorithms of type α for the
computational problems in C. Define

∆α
0 := {{Ξ,Ω} ∈ C | SCI(Ξ,Ω)α = 0}

∆α
m+1 := {{Ξ,Ω} ∈ C | SCI(Ξ,Ω)α ≤ m}, m ∈ N,

as well as

∆α
1 := {{Ξ,Ω} ∈ C | ∃ {Γn}n∈N ∈ T s.t. ∀A d(Γn(A),Ξ(A)) ≤ 2−n}.
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