The Computational Spectral Problem and a New Classification Theory
 Novel Algorithms, Impossibility Results and Computer Assisted Proofs

> Matthew Colbrook University of Cambridge

Motivation

- Motivating example: spectra of infinite-dimensional operators, vast number of applications. W. Arveson (leading operator theorist U.C. Berkeley) in 90s: "Unfortunately, there is a dearth of literature on this basic problem, and ... there are no proven techniques." Situation even worse for the Schrödinger case:

Motivation

- Motivating example: spectra of infinite-dimensional operators, vast number of applications. W. Arveson (leading operator theorist U.C. Berkeley) in 90s: "Unfortunately, there is a dearth of literature on this basic problem, and ... there are no proven techniques." Situation even worse for the Schrödinger case:
- Given a Schrödinger operator

$$
H=-\Delta+V, \quad V: \mathbb{R}^{d} \rightarrow \mathbb{C}
$$

Can we compute the spectrum from point samples of the potential $V(x)$ (or similar appropriate data)? Very important open problem both in continuous and discrete cases.

Motivation

- Motivating example: spectra of infinite-dimensional operators, vast number of applications. W. Arveson (leading operator theorist U.C. Berkeley) in 90s: "Unfortunately, there is a dearth of literature on this basic problem, and ... there are no proven techniques." Situation even worse for the Schrödinger case:
- Given a Schrödinger operator

$$
H=-\Delta+V, \quad V: \mathbb{R}^{d} \rightarrow \mathbb{C}
$$

Can we compute the spectrum from point samples of the potential $V(x)$ (or similar appropriate data)? Very important open problem both in continuous and discrete cases.

- Naive discretisations can fail spectacularly even when V real valued.

Motivation

- Motivating example: spectra of infinite-dimensional operators, vast number of applications. W. Arveson (leading operator theorist U.C. Berkeley) in 90s: "Unfortunately, there is a dearth of literature on this basic problem, and ... there are no proven techniques." Situation even worse for the Schrödinger case:
- Given a Schrödinger operator

$$
H=-\Delta+V, \quad V: \mathbb{R}^{d} \rightarrow \mathbb{C}
$$

Can we compute the spectrum from point samples of the potential $V(x)$ (or similar appropriate data)? Very important open problem both in continuous and discrete cases.

- Naive discretisations can fail spectacularly even when V real valued.
- Talk will present solution to this problem and how to compute spectra for much more general cases.

Computational Schrödinger Problem

Problem of algorithmically computing $\mathrm{Sp}(H)$ goes at least as far back as Schrödinger himself [1].

Computational Schrödinger Problem

Problem of algorithmically computing $\mathrm{Sp}(H)$ goes at least as far back as Schrödinger himself [1].
Studied by great scientists and mathematicians throughout 20th and 21st centuries. Very incomplete list - P.W. Anderson [2], J. Schwinger [3], A. Weyl [4], T. Digernes, V.S. Varadarajan and S.R.S. Varadhan [5], A. Böttcher [6, 7], P.A. Deift, L.C. Li and C.

Tomei [8], C. Fefferman and L. Seco
[9, 10, 11, 12, 13, 14, 15, 16, 17], P. Hertel, E. Lieb and W.
Thirring [18], L. Demanet and W. Schlag [19], M. Zworski [20, 21].

A curious case of limits

Problem: Given an infinite matrix (acting as a bounded operator on $I^{2}(\mathbb{N})$)

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & \ldots \\
a_{21} & a_{22} & a_{23} & \ldots \\
a_{31} & a_{32} & a_{33} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right),
$$

can we compute the spectrum $\operatorname{Sp}(A)$ from the matrix elements in Hausdorff metric?

A curious case of limits

Problem: Given an infinite matrix (acting as a bounded operator on $I^{2}(\mathbb{N})$)

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & \ldots \\
a_{21} & a_{22} & a_{23} & \ldots \\
a_{31} & a_{32} & a_{33} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right),
$$

can we compute the spectrum $\operatorname{Sp}(A)$ from the matrix elements in Hausdorff metric?
Answer [22]: No! Best one can do is compute using three successive limits:

$$
\lim _{n_{3} \rightarrow \infty} \lim _{n_{2} \rightarrow \infty} \lim _{n_{1} \rightarrow \infty} \Gamma_{n_{3}, n_{2}, n_{1}}(A)=\operatorname{Sp}(A)
$$

Motivation

Motivation: Kepler's conjecture

400 year old problem

Motivation: Kepler's conjecture

Flyspeck program (T. Hales) - fully computer assisted verification via 50000 linear programs with irrational inputs.

Motivation: Kepler's conjecture

Flyspeck program (T. Hales) - fully computer assisted verification via 50000 linear programs with irrational inputs.
Computational problem: decide whether there is an $x \in \mathbb{R}^{N}$ such that

$$
\text { (1) }\langle x, c\rangle_{K} \leq M \text { subject to } A x=y, \quad x \geq 0
$$

where

$$
\langle x, c\rangle_{K}=\left\lfloor 10^{K}\langle x, c\rangle\right\rfloor 10^{-K}, \quad K \in \mathbb{N}, \quad M \in \mathbb{Q} .
$$

Motivation: Kepler's conjecture

Flyspeck program (T. Hales) - fully computer assisted verification via 50000 linear programs with irrational inputs.
Computational problem: decide whether there is an $x \in \mathbb{R}^{N}$ such that

$$
\text { (1) }\langle x, c\rangle_{K} \leq M \text { subject to } A x=y, \quad x \geq 0
$$

where

$$
\langle x, c\rangle_{K}=\left\lfloor 10^{K}\langle x, c\rangle\right\rfloor 10^{-K}, \quad K \in \mathbb{N}, \quad M \in \mathbb{Q} .
$$

Irrational input numbers means that A and y are only known approximately, however, to any precision one wants.

Motivation: Kepler's conjecture

Flyspeck program (T. Hales) - fully computer assisted verification via 50000 linear programs with irrational inputs.
Computational problem: decide whether there is an $x \in \mathbb{R}^{N}$ such that

$$
\text { (1) }\langle x, c\rangle_{K} \leq M \text { subject to } A x=y, \quad x \geq 0,
$$

where

$$
\langle x, c\rangle_{K}=\left\lfloor 10^{K}\langle x, c\rangle\right\rfloor 10^{-K}, \quad K \in \mathbb{N}, \quad M \in \mathbb{Q} .
$$

Irrational input numbers means that A and y are only known approximately, however, to any precision one wants. Not computable. But if replace $\langle x, c\rangle_{K} \leq M$ by $\langle x, c\rangle_{K}<M$ then problem is verifiable. If there had been cases with equality, the Flyspeck program may never have resolved Kepler's conjecture!

Informal description (can provide formal definitions at end)

$\mathrm{SCI}=$ number of limits needed to solve problem.

Informal description (can provide formal definitions at end)

$\mathrm{SCl}=$ number of limits needed to solve problem.
Work in model of computation α BUT remarkably all results presented today are independent of power of model - NOT a talk about recursivity.

Informal description (can provide formal definitions at end)

$\mathrm{SCl}=$ number of limits needed to solve problem.
Work in model of computation α BUT remarkably all results presented today are independent of power of model - NOT a talk about recursivity.
(i) Δ_{0}^{α} is the set of problems that can be computed in finite time, the $\mathrm{SCl}=0$.

Informal description (can provide formal definitions at end)

$\mathrm{SCI}=$ number of limits needed to solve problem.
Work in model of computation α BUT remarkably all results presented today are independent of power of model - NOT a talk about recursivity.
(i) Δ_{0}^{α} is the set of problems that can be computed in finite time, the $\mathrm{SCI}=0$.
(ii) Δ_{1}^{α} is the set of problems that can be computed using one limit, the $\mathrm{SCI}=1$, however one has error control and one knows an error bound that tends to zero as the algorithm progresses.

Informal description (can provide formal definitions at end)

$\mathrm{SCI}=$ number of limits needed to solve problem.
Work in model of computation α BUT remarkably all results presented today are independent of power of model - NOT a talk about recursivity.
(i) Δ_{0}^{α} is the set of problems that can be computed in finite time, the $\mathrm{SCl}=0$.
(ii) Δ_{1}^{α} is the set of problems that can be computed using one limit, the $\mathrm{SCI}=1$, however one has error control and one knows an error bound that tends to zero as the algorithm progresses.
(iii) Δ_{2}^{α} is the set of problems that can be computed using one limit, the $\mathrm{SCl}=1$, but error control may not be possible.
$\mathrm{SCl}=$ number of limits needed to solve problem.
Work in model of computation α BUT remarkably all results presented today are independent of power of model - NOT a talk about recursivity.
(i) Δ_{0}^{α} is the set of problems that can be computed in finite time, the $\mathrm{SCl}=0$.
(ii) Δ_{1}^{α} is the set of problems that can be computed using one limit, the $\mathrm{SCI}=1$, however one has error control and one knows an error bound that tends to zero as the algorithm progresses.
(iii) Δ_{2}^{α} is the set of problems that can be computed using one limit, the $\mathrm{SCl}=1$, but error control may not be possible.
(iv) Δ_{m+1}^{α}, for $m \in \mathbb{N}$, is the set of problems that can be computed by using m limits, the $\mathrm{SCI} \leq m$.

More Structure (Monotone)

How do we capture 'verifiable' problems that can be used in computer assisted proofs and rigorous numerics?

More Structure (Monotone)

How do we capture 'verifiable' problems that can be used in computer assisted proofs and rigorous numerics?
Easy if computational problem (thing we want to compute) maps to a totally ordered metric space (e.g. \mathbb{R}).

More Structure (Monotone)

How do we capture 'verifiable' problems that can be used in computer assisted proofs and rigorous numerics?
Easy if computational problem (thing we want to compute) maps to a totally ordered metric space (e.g. \mathbb{R}).
Σ_{m} - problems requiring m limits but final limit from below.

More Structure (Monotone)

How do we capture 'verifiable' problems that can be used in computer assisted proofs and rigorous numerics?
Easy if computational problem (thing we want to compute) maps to a totally ordered metric space (e.g. \mathbb{R}).
Σ_{m} - problems requiring m limits but final limit from below.
Π_{m} - problems requiring m limits but final limit from above.

More Structure (Monotone)

How do we capture 'verifiable' problems that can be used in computer assisted proofs and rigorous numerics?
Easy if computational problem (thing we want to compute) maps to a totally ordered metric space (e.g. \mathbb{R}).
Σ_{m} - problems requiring m limits but final limit from below.
Π_{m} - problems requiring m limits but final limit from above.
One side version of error control.

More Structure (Monotone)

How do we capture 'verifiable' problems that can be used in computer assisted proofs and rigorous numerics?
Easy if computational problem (thing we want to compute) maps to a totally ordered metric space (e.g. \mathbb{R}).
Σ_{m} - problems requiring m limits but final limit from below.
Π_{m} - problems requiring m limits but final limit from above.
One side version of error control.
What about other spaces such as Hausdorff metric?

Figure: Meaning of Σ_{1} and Π_{1} convergence for problem function $\overline{\text {. }}$. The red area represents $\Xi(A)$ whereas the green areas represent the output of the algorithm $\Gamma_{n}(A)$. Σ_{1} convergence means convergence as $n \rightarrow \infty$ but each output point in $\Gamma_{n}(A)$ is at most distance 2^{-n} from $\bar{\equiv}(A)$. Similarly for Π_{1}, we have convergence as $n \rightarrow \infty$ but any point in $\Xi(A)$ is at most distance 2^{-n} from $\Gamma_{n}(A)$.

Why study the non-computable and why care?

- Lower bounds mean we no longer waste time looking for an algorithm that doesn't exist. Turns out that many everyday problems in numerical analysis are not computable.

Why study the non-computable and why care?

- Lower bounds mean we no longer waste time looking for an algorithm that doesn't exist. Turns out that many everyday problems in numerical analysis are not computable.
- We gain a sharp classification of many real-world problems of interest. E.g. Schrödinger operators, PDEs,...

Why study the non-computable and why care?

- Lower bounds mean we no longer waste time looking for an algorithm that doesn't exist. Turns out that many everyday problems in numerical analysis are not computable.
- We gain a sharp classification of many real-world problems of interest. E.g. Schrödinger operators, PDEs,...
- Construction of towers of algorithms usually can give us information needed to lower SCI. I.e. information needed about the class of objects to help compute the problem.

Why study the non-computable and why care?

- Lower bounds mean we no longer waste time looking for an algorithm that doesn't exist. Turns out that many everyday problems in numerical analysis are not computable.
- We gain a sharp classification of many real-world problems of interest. E.g. Schrödinger operators, PDEs,...
- Construction of towers of algorithms usually can give us information needed to lower SCI. I.e. information needed about the class of objects to help compute the problem.
- It is crucial in rigorous numerical analysis to understand the difference between Δ_{1} (convergence with global error control), Σ_{1} (convergence with error control of output) and Δ_{2} (convergence with no error control).

Why study the non-computable and why care?

- Lower bounds mean we no longer waste time looking for an algorithm that doesn't exist. Turns out that many everyday problems in numerical analysis are not computable.
- We gain a sharp classification of many real-world problems of interest. E.g. Schrödinger operators, PDEs,...
- Construction of towers of algorithms usually can give us information needed to lower SCI. I.e. information needed about the class of objects to help compute the problem.
- It is crucial in rigorous numerical analysis to understand the difference between Δ_{1} (convergence with global error control), Σ_{1} (convergence with error control of output) and Δ_{2} (convergence with no error control).
- Problems in Σ_{1} and Π_{1} can be used in computer assisted proofs in pure maths and mathematical physics.

Schrödinger Operators

- $\operatorname{Sp}(H):=\{z \in \mathbb{C}: H-z l$ not invertible $\}$.

Schrödinger Operators

- $\operatorname{Sp}(H):=\{z \in \mathbb{C}: H-z l$ not invertible $\}$.
- Want to compute spectrum of a Schrödinger operator

$$
H=-\Delta+V, \quad V: \mathbb{R}^{d} \rightarrow \mathbb{C}
$$

Classical problem in computational quantum mechanics. Consider computations using point samples of the potential $V(x)$ (no matrix values are assumed).

Schrödinger Operators

- $\operatorname{Sp}(H):=\{z \in \mathbb{C}: H-z l$ not invertible $\}$.
- Want to compute spectrum of a Schrödinger operator

$$
H=-\Delta+V, \quad V: \mathbb{R}^{d} \rightarrow \mathbb{C}
$$

Classical problem in computational quantum mechanics. Consider computations using point samples of the potential $V(x)$ (no matrix values are assumed).

- Unsolved for a long time when considering H acting on $\mathrm{L}^{2}\left(\mathbb{R}^{d}\right)$. Also allow non self-adjointness (complex potentials).

Schrödinger Operators

- $\operatorname{Sp}(H):=\{z \in \mathbb{C}: H-z l$ not invertible $\}$.
- Want to compute spectrum of a Schrödinger operator

$$
H=-\Delta+V, \quad V: \mathbb{R}^{d} \rightarrow \mathbb{C}
$$

Classical problem in computational quantum mechanics. Consider computations using point samples of the potential $V(x)$ (no matrix values are assumed).

- Unsolved for a long time when considering H acting on $\mathrm{L}^{2}\left(\mathbb{R}^{d}\right)$. Also allow non self-adjointness (complex potentials).
- (\mathcal{M}, d) the Attouch-Wets metric defined by

$$
d_{\mathrm{AW}}(A, B)=\sum_{i=1}^{\infty} 2^{-i} \min \left\{1, \sup _{|x|<i}|d(x, A)-d(x, B)|\right\}
$$

for non-empty close A and B - generalises Hausdorff metric.

Schrödinger operators: Bounded potential

$$
\begin{aligned}
\phi & :[0, \infty) \rightarrow[0, \infty) \text { some increasing function and } M>0 \\
\Omega_{\phi} & :=\left\{H: \mathcal{D}(H)=\mathrm{W}^{2,2}\left(\mathbb{R}^{d}\right), V \in \mathrm{BV}_{\phi}\left(\mathbb{R}^{d}\right),\|V\|_{\infty} \leq M\right\}, \\
\Omega_{\phi, g} & :=\left\{H \in \Omega_{\phi}:\left\|(-\Delta+V-z)^{-1}\right\|^{-1} \geq g(\operatorname{dist}(z, \operatorname{Sp}(H)))\right\},
\end{aligned}
$$

- Controlled oscillation: $\mathrm{BV}_{\phi}\left(\mathbb{R}^{d}\right)=\left\{f: \operatorname{TV}\left(f_{[-a, a]^{d}}\right) \leq \phi(a)\right\}$
- Controlled resolvent growth near spectrum: $g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$ continuous increasing function with $g(x) \leq x$, $\lim _{x \rightarrow \infty} g(x)=\infty$.

$$
g(\operatorname{dist}(z, \operatorname{Sp}(H))) \leq\left\|(H-z l)^{-1}\right\|^{-1}
$$

Schrödinger operators: Bounded potential

$$
\begin{aligned}
\phi & :[0, \infty) \rightarrow[0, \infty) \text { some increasing function and } M>0 \\
\Omega_{\phi} & :=\left\{H: \mathcal{D}(H)=\mathrm{W}^{2,2}\left(\mathbb{R}^{d}\right), V \in \mathrm{BV}_{\phi}\left(\mathbb{R}^{d}\right),\|V\|_{\infty} \leq M\right\}, \\
\Omega_{\phi, g} & :=\left\{H \in \Omega_{\phi}:\left\|(-\Delta+V-z)^{-1}\right\|^{-1} \geq g(\operatorname{dist}(z, \operatorname{Sp}(H)))\right\},
\end{aligned}
$$

- Controlled oscillation: $\mathrm{BV}_{\phi}\left(\mathbb{R}^{d}\right)=\left\{f: \operatorname{TV}\left(f_{[-a, a]^{d}}\right) \leq \phi(a)\right\}$
- Controlled resolvent growth near spectrum: $g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$ continuous increasing function with $g(x) \leq x$, $\lim _{x \rightarrow \infty} g(x)=\infty$.

$$
g(\operatorname{dist}(z, \operatorname{Sp}(H))) \leq\left\|(H-z l)^{-1}\right\|^{-1} .
$$

Theorem 1 (Bounded potential [22])

$$
\Delta_{1}^{G} \nexists\left\{\operatorname{Sp}(\cdot), \Omega_{\phi}\right\} \in \Pi_{2}^{A}, \quad \Delta_{1}^{G} \nexists\left\{\operatorname{Sp}(\cdot), \Omega_{\phi, g}\right\} \in \Sigma_{1}^{A} .
$$

Extensions

Can extend the above to

- Unbounded potentials.
- PDEs $T u(x)=\sum_{|k| \leq N} a_{k}(x) \partial^{k} u(x)$ with polynomially bounded coefficients.
- Different domains (such as half line, polygons etc.) and different boundary conditions.

Recall the problem

Given an infinite matrix (acting as a bounded operator on $I^{2}(\mathbb{N})$)

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & \cdots \\
a_{21} & a_{22} & a_{23} & \cdots \\
a_{31} & a_{32} & a_{33} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right) .
$$

Want to compute the spectrum $\operatorname{Sp}(A)$.

Recall the problem

Given an infinite matrix (acting as a bounded operator on $I^{2}(\mathbb{N})$)

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & \ldots \\
a_{21} & a_{22} & a_{23} & \ldots \\
a_{31} & a_{32} & a_{33} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Want to compute the spectrum $\operatorname{Sp}(A)$.
What about other properties like discrete spectra, fractal dimensions, spectral gaps,...?

Recall the problem

Given an infinite matrix (acting as a bounded operator on $I^{2}(\mathbb{N})$)

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & \ldots \\
a_{21} & a_{22} & a_{23} & \ldots \\
a_{31} & a_{32} & a_{33} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Want to compute the spectrum $\operatorname{Sp}(A)$.
What about other properties like discrete spectra, fractal dimensions, spectral gaps,...?
What structure do we need to lower the SCI?

Recall the problem

Given an infinite matrix (acting as a bounded operator on $I^{2}(\mathbb{N})$)

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & \ldots \\
a_{21} & a_{22} & a_{23} & \ldots \\
a_{31} & a_{32} & a_{33} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Want to compute the spectrum $\mathrm{Sp}(A)$.
What about other properties like discrete spectra, fractal dimensions, spectral gaps,...?
What structure do we need to lower the SCI ?
Simply taking square truncations $\operatorname{Sp}\left(P_{n} A P_{n}\right)$ (finite section) can fail spectacularly even in self-adjoint case (spectral pollution - false eigenvalues in gaps of essential spectrum).

First ever algorithm that computes spectrum without

 spectral pollution
Definition 2 (Dispersion - off-diagonal decay)

We say that the dispersion of $A \in \mathcal{B}\left(I^{2}(\mathbb{N})\right)$ is bounded by the function $f: \mathbb{N} \rightarrow \mathbb{N}$ if
$D_{f, m}(A):=\max \left\{\left\|\left(I-P_{f(m)}\right) A P_{m}\right\|,\left\|P_{m} A\left(I-P_{f(m)}\right)\right\|\right\} \rightarrow 0 \quad$ as $m \rightarrow \infty$.

First ever algorithm that computes spectrum without spectral pollution

Definition 2 (Dispersion - off-diagonal decay)

We say that the dispersion of $A \in \mathcal{B}\left(I^{2}(\mathbb{N})\right)$ is bounded by the function $f: \mathbb{N} \rightarrow \mathbb{N}$ if
$D_{f, m}(A):=\max \left\{\left\|\left(I-P_{f(m)}\right) A P_{m}\right\|,\left\|P_{m} A\left(I-P_{f(m)}\right)\right\|\right\} \rightarrow 0 \quad$ as $m \rightarrow \infty$.

Definition 3 (Controlled growth of the resolvent - well-conditioned)
$g:[0, \infty) \rightarrow[0, \infty)$ continuous, strictly increasing, vanishing only at $x=0$ and tending to infinity as $x \rightarrow \infty$ with $g(x) \leq x$.
Controlled growth of the resolvent by g if

$$
\left\|(A-z l)^{-1}\right\|^{-1} \geq g(\operatorname{dist}(z, \operatorname{Sp}(A))) \quad \forall z \in \mathbb{C} .
$$

What does this mean?

- Dispersion - think banded matrices.

What does this mean?

- Dispersion - think banded matrices.
- Controlled resolvent - g is a measure of the conditioning of the problem of computing $\operatorname{Sp}(A)$ through the formula

$$
\left\{z \in \mathbb{C}:\left\|(A-z I)^{-1}\right\|^{-1} \leq \epsilon\right\}=\bigcup_{\|B\| \leq \epsilon} \operatorname{Sp}(A+B) .
$$

What does this mean?

- Dispersion - think banded matrices.
- Controlled resolvent - g is a measure of the conditioning of the problem of computing $\operatorname{Sp}(A)$ through the formula

$$
\left\{z \in \mathbb{C}:\left\|(A-z I)^{-1}\right\|^{-1} \leq \epsilon\right\}=\bigcup_{\|B\| \leq \epsilon} \operatorname{Sp}(A+B)
$$

- Self-adjoint and normal operators (A commutes with A^{*}) have well conditioned spectral problems since

$$
\left\|(A-z I)^{-1}\right\|^{-1}=\operatorname{dist}(z, \operatorname{Sp}(A)), \quad g(x)=x
$$

What does this mean?

- Dispersion - think banded matrices.
- Controlled resolvent - g is a measure of the conditioning of the problem of computing $\operatorname{Sp}(A)$ through the formula

$$
\left\{z \in \mathbb{C}:\left\|(A-z I)^{-1}\right\|^{-1} \leq \epsilon\right\}=\bigcup_{\|B\| \leq \epsilon} \operatorname{Sp}(A+B)
$$

- Self-adjoint and normal operators (A commutes with A^{*}) have well conditioned spectral problems since

$$
\left\|(A-z I)^{-1}\right\|^{-1}=\operatorname{dist}(z, \operatorname{Sp}(A)), \quad g(x)=x
$$

Turns out if we know f and g we can compute the spectrum with Σ_{1} error control! A completely different method to other previous approaches - local, fast and rigorous [23].

List of classifications

Have classifications of:

List of classifications

Have classifications of:

- Lebesgue measure and fractal dimensions of spectra (different types).

List of classifications

Have classifications of:

- Lebesgue measure and fractal dimensions of spectra (different types).
- Discrete spectra, essential spectra, eigenvectors (if they exist) + multiplicity, spectral type, point spectra etc.

List of classifications

Have classifications of:

- Lebesgue measure and fractal dimensions of spectra (different types).
- Discrete spectra, essential spectra, eigenvectors (if they exist) + multiplicity, spectral type, point spectra etc.
- Spectral radii, essential numerical ranges, geometric features of spectrum etc.

List of classifications

Have classifications of:

- Lebesgue measure and fractal dimensions of spectra (different types).
- Discrete spectra, essential spectra, eigenvectors (if they exist) + multiplicity, spectral type, point spectra etc.
- Spectral radii, essential numerical ranges, geometric features of spectrum etc.
- Decision problems such as whether compact set intersects spectrum etc.

List of classifications

Have classifications of:

- Lebesgue measure and fractal dimensions of spectra (different types).
- Discrete spectra, essential spectra, eigenvectors (if they exist) + multiplicity, spectral type, point spectra etc.
- Spectral radii, essential numerical ranges, geometric features of spectrum etc.
- Decision problems such as whether compact set intersects spectrum etc.
For a whole bunch of classes:

List of classifications

Have classifications of:

- Lebesgue measure and fractal dimensions of spectra (different types).
- Discrete spectra, essential spectra, eigenvectors (if they exist) + multiplicity, spectral type, point spectra etc.
- Spectral radii, essential numerical ranges, geometric features of spectrum etc.
- Decision problems such as whether compact set intersects spectrum etc.
For a whole bunch of classes:
- Self-adjoint, normal, diagonal.

List of classifications

Have classifications of:

- Lebesgue measure and fractal dimensions of spectra (different types).
- Discrete spectra, essential spectra, eigenvectors (if they exist) + multiplicity, spectral type, point spectra etc.
- Spectral radii, essential numerical ranges, geometric features of spectrum etc.
- Decision problems such as whether compact set intersects spectrum etc.
For a whole bunch of classes:
- Self-adjoint, normal, diagonal.
- Know the function g and/or know the function f.

List of classifications

Have classifications of:

- Lebesgue measure and fractal dimensions of spectra (different types).
- Discrete spectra, essential spectra, eigenvectors (if they exist) + multiplicity, spectral type, point spectra etc.
- Spectral radii, essential numerical ranges, geometric features of spectrum etc.
- Decision problems such as whether compact set intersects spectrum etc.
For a whole bunch of classes:
- Self-adjoint, normal, diagonal.
- Know the function g and/or know the function f.
- Even compact case not trivial.

List of classifications

Have classifications of:

- Lebesgue measure and fractal dimensions of spectra (different types).
- Discrete spectra, essential spectra, eigenvectors (if they exist) + multiplicity, spectral type, point spectra etc.
- Spectral radii, essential numerical ranges, geometric features of spectrum etc.
- Decision problems such as whether compact set intersects spectrum etc.

For a whole bunch of classes:

- Self-adjoint, normal, diagonal.
- Know the function g and/or know the function f.
- Even compact case not trivial.

ALL constructed algorithms can cope with inexact input using only arithmetic over \mathbb{Q}, are stable and recursive.

- Quantum mechanics, quasicrystals

Figure: Left: Dan Shechtman, Nobel Prize in Chemistry 2011. Right: Electron diffraction pattern of quasicrystal.

- Quantum mechanics, quasicrystals

Figure: Left: Dan Shechtman, Nobel Prize in Chemistry 2011.
Right: Electron diffraction pattern of quasicrystal.

- Intensely investigated since the 1950s, still very active today.

Figure: Left: Artur Avila, Fields Medal 2014. Right: Hofstadter butterfly.

Laplacian on Penrose Tile

Naïve Approximations

(1) Finite section with open boundary conditions: compute eigenvalues of truncated matrix $P_{n} H_{0} P_{n}$ for large n. Similar "Galerkin" methods - suffer from spectral pollution.

Naïve Approximations

(1) Finite section with open boundary conditions: compute eigenvalues of truncated matrix $P_{n} H_{0} P_{n}$ for large n. Similar "Galerkin" methods - suffer from spectral pollution.
(2) Can construct Penrose tile via "Pentagrid" \rightsquigarrow "Periodic Approximants"

Naïve Approximations

(1) Finite section with open boundary conditions: compute eigenvalues of truncated matrix $P_{n} H_{0} P_{n}$ for large n. Similar "Galerkin" methods - suffer from spectral pollution.
(2) Can construct Penrose tile via "Pentagrid" \rightsquigarrow "Periodic Approximants"

These represent state of art in (vast physics/maths) literature. Can we beat this?

Laplacian on Penrose Tile

Laplacian on Penrose Tile

Open Problems

- Sharp classification for continuous non-Hermitian Schrödinger operators (recall only know $\in \Pi_{2}^{A}$) and more general PDEs applications in rigorous numerics for resonances in arbitrary dimension etc.

Open Problems

- Sharp classification for continuous non-Hermitian Schrödinger operators (recall only know $\in \Pi_{2}^{A}$) and more general PDEs applications in rigorous numerics for resonances in arbitrary dimension etc.
- Non-linear eigenvalue problems, extensions to Banach spaces...

Open Problems

- Sharp classification for continuous non-Hermitian Schrödinger operators (recall only know $\in \Pi_{2}^{A}$) and more general PDEs applications in rigorous numerics for resonances in arbitrary dimension etc.
- Non-linear eigenvalue problems, extensions to Banach spaces...
- Current work is looking at rigorous computability results for stable neural networks (looking increasingly likely that this can be done).

Thank you for listening

Erwin Schrödinger.
A method of determining quantum-mechanical eigenvalues and eigenfunctions.
In Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, volume 46, pages 9-16. JSTOR, 1940.

Philip W Anderson.
Absence of diffusion in certain random lattices.
Phys. Rev., 109(5):1492, 1958.
J Schwinger.
Unitary operator bases.
Proc. Natl. Acad. Sci. U.S.A., 46(4):570-579, 041960.
H. Weyl.

The Theory of Groups and Quantum Mechanics.
Dover Books on Mathematics. Dover Publications, 1950.
T. Digernes, V. S. Varadarajan, and S. R. S. Varadhan.

Finite approximations to quantum systems.
Rev. Math. Phys., 6(4):621-648, 1994.
A Böttcher.
Infinite matrices and projection methods.
In Lectures on operator theory and its applications (Waterloo, ON, 1994), volume 3 of Fields Inst. Monogr., pages 1-72. Amer. Math. Soc., Providence, RI, 1996.
A. Böttcher.

Pseudospectra and singular values of large convolution operators.
J. Integral Equations Appl., 6(3):267-301, 1994.
P. Deift, L. C. Li, and C. Tomei.

Toda flows with infinitely many variables.
J. Funct. Anal., 64(3):358-402, 1985.

Charles Fefferman and Luis Seco.
On the energy of a large atom.
Bull. Amer. Math. Soc. (N.S.), 23(2):525-530, 101990.
C. Fefferman and L. Seco.

Eigenvalues and eigenfunctions of ordinary differential operators.
Adv. Math., 95(2):145-305, 1992.
Charles Fefferman and Luis Seco.
Aperiodicity of the Hamiltonian flow in the Thomas-Fermi potential.
Revista Matemática Iberoamericana, 9(3):409-551, 1993.
C. Fefferman and L. Seco.

The eigenvalue sum for a one-dimensional potential.
Adv. Math., 108(2):263-335, 1994.
C. Fefferman and L. Seco.

On the Dirac and Schwinger corrections to the ground-state energy of an atom. Adv. Math., 107(1):1-185, 1994.
C. Fefferman and L. Seco.

The density in a three-dimensional radial potential.
Adv. Math., 111(1):88-161, 1995.

Charles Fefferman and Luis Seco.
Interval arithmetic in quantum mechanics.
In Applications of interval computations, pages 145-167. Springer, 1996.

C. Fefferman and L. Seco.

The eigenvalue sum for a three-dimensional radial potential.
Adv. Math., 119(1):26-116, 1996.
Charles Fefferman and Luis Seco.

The density in a one-dimensional potential.
Adv. Math, 107, 051997.
Peter Hertel, Elliot H. Lieb, and Walter Thirring.
Lower bound to the energy of complex atoms, pages 63-64.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1997.
Laurent Demanet and Wilhelm Schlag.
Numerical verification of a gap condition for a linearized nonlinear schrdinger equation.
Nonlinearity, 19(4):829, 2006.
M. Zworski.

Scattering resonances as viscosity limits.
In Algebraic and Analytic Microlocal Analysis, Springer. to appear.
M Zworski.
Resonances in physics and geometry.
Notices of the AMS, 46(3):319-328, 1999.
Jonathan Ben-Artzi, Matthew Colbrook, Anders Hansen, Olavi Nevanlinna, and Markus Seidel.
On the solvability complexity index hierarchy and towers of algorithms.
Matthew Colbrook, Bogdan Roman, and Anders Hansen.
How to compute spectra with error control.
Anders C. Hansen.
On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators.
J. Amer. Math. Soc., 24(1):81-124, 2011.

Solvability Complexity Index (SCI) [24, Hansen, JAMS]

Ω is some set, called the primary set,
Λ is a set of complex valued functions on Ω, called the evaluation set, \mathcal{M} is a metric space, where the thing we compute lives
三 is a mapping $\Omega \rightarrow \mathcal{M}$, called the problem function.
E.g. $\Omega=\mathcal{B}(\mathcal{H})$, problem function \equiv maps $A \mapsto \operatorname{Sp}(A)$, (\mathcal{M}, d) set of all compact subsets of \mathbb{C} with Hausdorff metric and evaluation functions in Λ consist of $f_{i, j}: A \mapsto\left\langle A e_{j}, e_{i}\right\rangle, i, j \in \mathbb{N}$, which provide the entries of the matrix representation of A w.r.t. an orthonormal basis $\left\{e_{i}\right\}_{i \in \mathbb{N}}$.

Definition 4 (General Algorithm)

Given a computational problem $\{\equiv, \Omega, \mathcal{M}, \Lambda\}$, a general algorithm is a mapping $\Gamma: \Omega \rightarrow \mathcal{M}$ such that for each $A \in \Omega$:
(i) there exists a finite subset of evaluations $\Lambda_{\Gamma}(A) \subset \Lambda$,
(ii) the action of Γ on A only depends on $\left\{A_{f}\right\}_{f \in \Lambda_{\Gamma}(A)}$ where $A_{f}:=f(A)$,
(iii) for every $B \in \Omega$ such that $B_{f}=A_{f}$ for every $f \in \Lambda_{\Gamma}(A)$, it holds that $\Lambda_{\Gamma}(B)=\Lambda_{\Gamma}(A)$.

No restrictions on the operations allowed (can consult any fixed oracle etc.). But can consider different types of towers. E.g. type-2 Turing machines, allow radicals, BSS model, ...

Definition 5 (Tower of algorithms)

Given $\{三, \Omega, \mathcal{M}, \Lambda\}$, a tower of algorithms of height k for $\{\equiv, \Omega, \mathcal{M}, \Lambda\}$ is a collection of sequences of functions

$$
\Gamma_{n_{k}}: \Omega \rightarrow \mathcal{M}, \quad \Gamma_{n_{k}, n_{k-1}}: \Omega \rightarrow \mathcal{M}, \ldots, \Gamma_{n_{k}, \ldots, n_{1}}: \Omega \rightarrow \mathcal{M}
$$

where $n_{k}, \ldots, n_{1} \in \mathbb{N}$ and the functions $\Gamma_{n_{k}, \ldots, n_{1}}$ are general algorithms. Moreover, for every $A \in \Omega$,

$$
\lim _{n_{k} \rightarrow \infty} \ldots \lim _{n_{1} \rightarrow \infty} \Gamma_{n_{k}, \ldots, n_{1}}(A)=\equiv(A)
$$

with convergence in metric space \mathcal{M}.

Definition 6 (Solvability Complexity Index)

$\{\equiv, \Omega, \mathcal{M}, \Lambda\}$ is said to have $\operatorname{SCI}(\equiv, \Omega, \mathcal{M}, \Lambda)_{\alpha}=k$ with respect to a tower of algorithms of type α if k is the smallest integer for which there exists a tower of algorithms of type α of height k.

If no such tower exists then $\operatorname{SCI}(\equiv, \Omega, \mathcal{M}, \Lambda)_{\alpha}=\infty$.
If there exists a tower $\left\{\Gamma_{n}\right\}_{n \in \mathbb{N}}$ of type α and height one such that $\equiv=\Gamma_{n_{1}}$ for some finite n_{1}, then we define $\operatorname{SCI}(\equiv, \Omega, \mathcal{M}, \Lambda)_{\alpha}=0$.

Definition 7 (The Solvability Complexity Index Hierarchy)

Consider a collection \mathcal{C} of computational problems and let \mathcal{T} be the collection of all towers of algorithms of type α for the computational problems in \mathcal{C}. Define

$$
\begin{aligned}
\Delta_{0}^{\alpha} & :=\left\{\{\equiv, \Omega\} \in \mathcal{C} \mid \operatorname{SCI}(\equiv, \Omega)_{\alpha}=0\right\} \\
\Delta_{m+1}^{\alpha} & :=\left\{\{\equiv, \Omega\} \in \mathcal{C} \mid \operatorname{SCI}(\equiv, \Omega)_{\alpha} \leq m\right\}, \quad m \in \mathbb{N},
\end{aligned}
$$

as well as
$\Delta_{1}^{\alpha}:=\left\{\{三, \Omega\} \in \mathcal{C} \mid \exists\left\{\Gamma_{n}\right\}_{n \in \mathbb{N}} \in \mathcal{T}\right.$ s.t. $\left.\forall A d\left(\Gamma_{n}(A), \equiv(A)\right) \leq 2^{-n}\right\}$

