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Introduction Motivation

Motivation

Spectra of infinite-dimensional operators, vast number of applications.

W. Arveson in 90s: “Unfortunately, there is a dearth of literature
on this basic problem, and ... there are no proven techniques.”

Situation even worse for the Schrödinger case:

H = −∆ + V , V : Rd → C,

can we compute Sp(H) from sampling V (x)?

Naive discretisations can fail spectacularly even if V (x) ∈ R.

Talk will present solution to this problem and how to compute spectra
for much more general cases.
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Introduction Motivation

Computational Schrödinger Problem

Problem of algorithmically computing Sp(H) goes at least as far back as
Schrödinger himself [1].

Studied by great scientists and mathematicians throughout 20th and 21st
centuries.

Very incomplete list: P.W. Anderson, J. Schwinger, H. Weyl, T. Digernes,
V.S. Varadarajan and S.R.S. Varadhan, A. Böttcher, P.A. Deift, L.C. Li, C.
Tomei, C. Fefferman, L. Seco, P. Hertel, E. Lieb, W. Thirring, L.
Demanet, W. Schlag, M. Zworski...
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Introduction Motivation

Motivation: a curious case of limits

Problem: Given bounded operator

A =


a11 a12 a13 . . .
a21 a22 a23 . . .
a31 a32 a33 . . .

...
...

...
. . .

 ,

can we compute Sp(A) in Hausdorff metric from matrix values?

Answer [2]: No! Best one can do is compute using three successive limits:

lim
n3→∞

lim
n2→∞

lim
n1→∞

Γn3,n2,n1(A) = Sp(A)
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Introduction Motivation

Motivation: Kepler’s conjecture

400 year old problem

What’s the best way to pack tennis balls (or if your Kepler, cannon balls)
in 3D space?
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Motivation: Kepler’s conjecture

Flyspeck program (T. Hales) - fully computer assisted verification via
50000 linear programs with irrational inputs!

Computational problem: is there is an x ∈ RN such that

(1) 〈x , c〉K ≤ M subject to Ax = y , x ≥ 0,

where 〈x , c〉K = b10K 〈x , c〉c10−K , K ∈ N, M ∈ Q.

Irrational input means A and y only known approximately, to any precision
one wants.

Not computable. But if ≤ M replaced by < M then verifiable.
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Introduction The SCI hierarchy

Informal description

SCI =number of limits needed to solve problem.

(i) ∆0 problems that can be computed in finite time.

(ii) ∆1 problems that can be computed using one limit with error control.

(iii) ∆2 problems that can be computed using one limit, but error control
may not be possible.

(iv) ∆m+1, for m ∈ N: problems that can be computed by using m limits,
the SCI ≤ m.
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Introduction The SCI hierarchy

More Structure (Monotone)

How do we capture ‘verifiable’ problems that can be used in computer
assisted proofs and rigorous numerics?

If computational problem maps to a totally ordered metric space:

Σm - problems requiring m limits but final limit from below.

Πm - problems requiring m limits but final limit from above.

One side version of error control.

What about other spaces such as Hausdorff metric?
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Introduction The SCI hierarchy

Figure: Meaning of Σ1 and Π1 convergence for problem function Ξ. The red area
represents Ξ(A) whereas the green areas represent the output of the algorithm
Γn(A).



Introduction The SCI hierarchy

Why study the non-computable and why care?

Lower bounds stop us looking for algorithms that don’t exist. Many
everyday problems in numerical analysis are not computable!

Sharp classification of many real-world problems of interest. E.g.
Schrödinger operators, PDEs,...

Construction of towers of algorithms give us info on assumptions
needed to lower SCI ⇒ new algorithms.

Crucial in rigorous numerical analysis to understand the difference
between ∆1, Σ1 and ∆2.

Problems in Σ1 and Π1 can be used in computer assisted proofs in
pure maths and mathematical physics.
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Schrödinger and PDEs

Recall

Sp(A) := {z ∈ C : A− zI not invertible}.

Spε(A) := {z ∈ C : ‖(A− zI )−1‖−1 < ε}.

Triple {Ξ,Ω,M} denotes a computational problem.

Ξ : Ω→ (M, d) thing we want to compute

Ω class of objects we work on e.g. class of operators or potentials

(M, d) metric space



Schrödinger and PDEs

Schrödinger Operators

Want to compute spectrum of a Schrödinger operator

H = −∆ + V , V : Rd → C,

from sampling the potential V .

Unsolved for a long time when considering H acting on L2(Rd). Also
allow non self-adjointness (complex potentials).

(M, d) the Attouch-Wets metric defined by

dAW(A,B) =
∞∑
i=1

2−i min

{
1, sup
|x |<i
|d(x ,A)− d(x ,B)|

}
,

for non-empty closed A and B - generalises Hausdorff metric.
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Schrödinger and PDEs

Schrödinger operators: Bounded potential

φ : [0,∞)→ [0,∞) some increasing function.

Controlled oscillation: BVφ(Rd) = {f : TV(f[−a,a]d ) ≤ φ(a)}
Controlled resolvent growth near spectrum: g : R+ → R+ continuous
increasing function with g(x) ≤ x , limx→∞ g(x) =∞.

g(dist(z ,Sp(H))) ≤ ‖(H − zI )−1‖−1.

Theorem 1 (Bounded potential [2])

∆1 63 {Sp,Ωφ,g} ∈ Σ1, ∆1 63 {Spε,Ωφ,g} ∈ Σ1.



Schrödinger and PDEs

Schrödinger operators: Unbounded sectorial potential

θ1, θ2 ≥ 0 such that θ1 + θ2 < π.

Ω∞ = {V ∈ C(Rd) : arg(V ) ∈ [−θ2, θ1], lim
|x |→∞

|V (x)| =∞}.

Theorem 2 (Unbounded potential [2])

Σ1 ∪ Π1 63 {Sp,Ω∞} ∈ ∆2, Σ1 ∪ Π1 63 {Spε,Ω∞} ∈ ∆2.

Same classification as K(`2(N)), harder than previous problem!
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Schrödinger and PDEs

Generalisations to PDEs

Tu(x) =
∑
|k|≤N

ak(x)∂ku(x), T ∗u(x) =
∑
|k|≤N

ãk(x)∂ku(x).

Formally defined on L2(Rd) and assume

1 C∞0 (Rd) a core of T and T ∗.

2 Exists a positive constant Ak and integer Bk such that a.e.

|ak(x)| , |ãk(x)| ≤ Ak(1 + |x |2Bk ).

3 Can access to functions {gm} such that

gm(dist(z , Sp(T ))) ≤
∥∥(T − zI )−1

∥∥−1
, z ∈ Bm(0).

Coefficients of bounded total variation ⇒ can compute Sp and Spε with
Σ1 error control.



Discrete operators

For simplicity, in rest of talk will consider discrete case on l2(N). Many of
the results extend to continuous case also.

Given an infinite matrix (acting as a bounded operator on l2(N))

A =


a11 a12 a13 . . .
a21 a22 a23 . . .
a31 a32 a33 . . .

...
...

...
. . .

 .

Want to compute the spectrum Sp(A).

Pn denotes projection onto span of first n basis vectors.

Simply taking square truncations Sp(PnAPn) (finite section) can fail
spectacularly even in self-adjoint case (spectral pollution - false
eigenvalues in gaps of essential spectrum)...
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Discrete operators

Magneto-graphene
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Figure: Finite section.



Discrete operators

Can be turned into this
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Resolvent I

First algorithm that computes Sp with error control

Definition 3 (Dispersion - off-diagonal decay)

Dispersion of A ∈ B(l2(N)) is bounded by the function f : N→ N if

max{‖(I − Pf (m))APm‖, ‖PmA(I − Pf (m))‖} → 0 as m→∞.

Definition 4 (Controlled growth of the resolvent - well-conditioned)

Continuous increasing function g : [0,∞)→ [0,∞) with g(x) ≤ x .
Controlled growth of the resolvent by g if

‖(A− zI )−1‖−1 ≥ g(dist(z ,Sp(A))) ∀z ∈ C.
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Resolvent I

What does this mean?

Dispersion - think banded matrices.

Controlled resolvent - g is a measure of the conditioning of the
problem of computing Sp(A) through the formula

Spε(A) =
⋃
‖B‖≤ε

Sp(A + B).

Self-adjoint and normal operators (A commutes with A∗) have well
conditioned spectral problems since∥∥(A− zI )−1

∥∥−1
= dist(z ,Sp(A)), g(x) = x .

Know f , g ⇒ can compute Sp with Σ1 error control [3]!
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Resolvent I

Idea: can we approximate the quantity ‖(A− zI )−1‖−1 locally? Then gain
an upper bound:

‖(A− zI )−1‖−1 ≤dist(z ,Sp(A)) ≤ g−1(‖(A− zI )−1‖−1).

Compute E (n, z) with dist(z , Sp) ≤ E (n, z), E (n, z) ↓ dist(z , Sp).



Resolvent I

Laplacian on Penrose Tile

Aperiodic, no known method for analytic study.



Resolvent I

Näıve Approximations

1 Finite section with open boundary conditions: compute eigenvalues of
truncated matrix PnH0Pn for large n. Similar “Galerkin” methods -
suffer from spectral pollution.

2 Can construct Penrose tile via ”Pentagrid”  “Periodic
Approximants”

These represent state of art in (vast physics/maths) literature. Can we
beat this?
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Resolvent I

Have classifications computing:

Lebesgue measure and fractal dimensions of spectra (different types).

Discrete spectra, essential spectra, eigenvectors (if they exist) +
multiplicity, spectral type...

Spectral radii, essential numerical ranges, geometric features of
spectrum...

Decision problems such as whether compact set intersects spectrum...

For a whole bunch of classes:

Self-adjoint, normal.

Know the function g and/or know the function f .

Even compact case not trivial.

Each problem tends to have a different algorithm and proof of lower bound
of a different flavour. A very rich classification theory.

ALL constructed algorithms can cope with inexact input using only
arithmetic over Q, are stable and recursive.
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Resolvent I

QUIZ

1 What’s the classification of detecting if spectral pollution occurs on
an interval (for banded self-adjoint operators)?

Answer [4]: Σ3 - two limits more than computing spectrum, which
the finite section method was designed for!

2 Given self-adjoint A, what’s the classification of computing the
Hausdorff dimension of Sp(A)?
Answer [4]: Σ4 (but Σ3 for Schrödinger case). Non trivial and uses
ideas from descriptive set theory (Baire/Borel hierarchies).
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Resolvent II

What about spectral measures?

If T normal (commutes with adjoint) then has associated
projection-valued measure (resolution of the identity) ET s.t.

Tx =

∫
Sp(T )

λdET (λ)x , ∀x ∈ D(T ),

View this as diagonalisation - allows computation of functional
calculus, has interesting physics etc.

We can compute Sp(T ) but not the measure. Thus the current state
of affairs in infinite dimensional spectral computations is analogous in
finite dimensions to being able to compute the location of eigenvalues
but not eigenvectors!



Resolvent II

Idea: Use the formula

(T − zI )−1 =

∫
Sp(T )

1

λ− z
dET (λ),

Cauchy transform. A load of complex analysis and careful approximation
theory...

Know f ⇒ can compute measure in one limit [5]!

But impossible to gain any form of error control, even for discrete
Schrödinger operators.
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Resolvent II

Extensions

Can extend this to get SCI classifications for:

Pure point, absolutely continuous, singular continuous parts of
measure.

Pure point, absolutely continuous, singular continuous parts of
spectrum (as sets in complex plane).

Functional calculus.

Radon–Nikodym derivative of absolutely continuous part (very useful
in physics).



Resolvent II

Example 1

J =


b1 a1 0 · · ·
a1 b2 a2 · · ·
0 a2 b3 · · ·
...

...
...

. . .

 .

Measure associated with the orthonormal polynomials. Jacobi polynomials
defined for α, β > −1 which have

ak = 2

√
k(k + α)(k + β)(k + α + β)

(2k + α + β − 1)(2k + α + β)2(2k + α + β)
,

bk =
β2 − α2

(2k + α + β)(2k − 2 + α + β)
.

Measure on [−1, 1]:

dµJ =
(1− x)α(1 + x)β

N(α, β)
dx = fα,β(x)dx .



Resolvent II

Example 1
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Figure: Convergence in L1 for various parameters α, β as we increase the matrix
size n. Fast O(n) solver!



Resolvent II

Example 2: Point Spectrum

Charlier polynomials are generated by

ak =
√
αk , bk = k + α− 1

for α > 0 and have measure

dµJ = exp(−α)
∞∑

m=0

αm

m!
δm,

where δx denotes a Dirac measure located at the point x .



Resolvent II

Example 2: Point Spectrum

-5 0 5 10 15 20 25 30 35
10 -20
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10 0

Error ≈ 10−13. Could be used to compute embedded eigenvalues (very
hard problem).



Resolvent II

Example 3: Back to Graphene

B
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Figure: Left: Honeycomb structure of graphene with the spinor structure shown
via the circled lattice vertices. Right: Sparsity structure of the first 103 × 103

block of the infinite matrix.



Resolvent II

Example 3: Back to Graphene

Beautiful fractal structure!
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Resolvent II

Example 3: Back to Graphene

Add random potential of strength W , study time evolution of the
Schrödinger equation

du

dt
= −iHu, ut=0 = e1.

Increase W ⇒ localisation. Consider the moments of the evolution given
by

Mp(t;W ) =

〈∑
x

|x |p |u(x , t)|2
〉
.

Different power law scalings Mp ∝ tαp .

Can compute time evolution efficiently with error control with new class of
algorithms. No diagonalisation needed and completely parallelisable.
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Resolvent II

Example 3: Back to Graphene

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Diffusive Regime

Localized Regime

Ballistic Regime

Subdiffusive Regime

Figure: Exponent αp as a function of W for p = 1, 2, 3, 4 and 5 with labelled the
different transport regimes. Similar curves were noted for different values of Φ.



Conclusion

Open Problems

How to compute ‘g ’ in general - applications in rigorous numerics for
resonances in arbitrary dimension etc.

Non-linear eigenvalue problems, extensions to Banach spaces...

Current work is looking at this framework applied to rigorous
computability results for stable neural networks (this can be done).

Want to hear about problems like these that interest people like yourselves
for future work!



Thank you for listening!
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Erwin Schrödinger.

A method of determining quantum-mechanical eigenvalues and eigenfunctions.
In Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, volume 46, pages 9–16.
JSTOR, 1940.

Jonathan Ben-Artzi, Matthew Colbrook, Anders Hansen, Olavi Nevanlinna, and Markus Seidel.

On the solvability complexity index hierarchy and towers of algorithms.

Matthew Colbrook, Bogdan Roman, and Anders Hansen.

How to compute spectra with error control.

Matthew Colbrook.

The foundations of spectral computations via the solvability complexity index hierarchy: Part II.

Matthew Colbrook.

Computing spectral measures and spectral types: new algorithms and classifications.
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