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Also deal with PDEs, integral operators etc. 

“Most operators that arise in practice are not presented in a representation in which
they are diagonalized, and it is often very hard to locate even a single point in the
spectrum. Thus, one often has to settle for numerical approximations […] Unfortunately,
there is a dearth of literature on this basic problem and, so far as we have been able to
tell, there are no proven [general] techniques.” W. Arveson, Berkeley (1994)

Finite-dimensional            ⟹ Infinite-dimensional

Eigenvalues of 𝐵 ∈ ℂ𝑛×𝑛 ⟹ Spectrum, Spec(𝐴)

𝜆𝑗 ∈ ℂ: det 𝐵 − 𝜆𝑗𝐼 = 0 ⟹ 𝜆 ∈ ℂ: 𝐴 − 𝜆𝐼 is not invertible

Canonical basis vectors of 𝑙2(ℕ)

The infinite-dimensional spectral problem
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Applications: Quantum mechanics, structural mechanics, optics, acoustics,
statistical physics, number theory, matter physics, PDEs, data analysis, neural
networks and AI, nuclear scattering, optics, computational chemistry, …

Rich history of computational spectral theory:

D. Arnold (Minnesota), W. Arveson (Berkeley), A. Böttcher (Chemnitz), W. Dahmen
(South Carolina), E. B. Davies (KCL), P. Deift (NYU), L. Demanet (MIT), C. Fefferman
(Princeton), G. Golub (Stanford), A. Iserles (Cambridge), I. Ipsen (NCS), S. Jitomirskaya
(UCI), A. Laptev (Imperial), M. Luskin (Minnesota), S. Mayboroda (Minnesota), W.
Schlag (Yale), E. Schrödinger (DIAS), J. Schwinger (Harvard), N. Trefethen (Oxford), V.
Varadarajan (UCLA), S. Varadhan (NYU), J. von Neumann (IAS), M. Zworski (Berkeley),...

Why spectra?
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In a series of papers in the 1950's and 1960’s, J. Schwinger examined the
foundations of quantum mechanics. A key problem he considered:

Given a self-adjoint Schrödinger operator −∆ + 𝑉 on ℝ,
can we approximate its spectrum?

Partial answer: T. Digernes, V. S. Varadarajan and S. R. S. Varadhan (1994)
gave a convergent algorithm for a class of 𝑉 generating compact resolvent.

For which classes of differential operators on unbounded domains do
there exist algorithms that converge to the spectrum? Can we guarantee
that the output is in the spectrum up to an arbitrarily small tolerance?

A motivating problem

• Digernes, Varadarajan, Varadhan, “Finite approximations to quantum systems,” Rev. Math. Phys., 1994.
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A =
𝑎1

𝑎2
⋱

Assumption: Algorithm can query entries of 𝐴.

Algorithm: Γ𝑛 𝐴 = 𝑎1, 𝑎2, … , 𝑎𝑛 → Spec 𝐴 = 𝑎1, 𝑎2, … in Haus. Metric.

One-sided error control: Γ𝑛 𝐴 ⊂ Spec(𝐴)

Optimal: Can’t obtain ෠Γ𝑛 𝐴 → Spec 𝐴 with Spec(𝐴) ⊂ ෠Γ𝑛 𝐴 .

Warm-up: bounded diagonal operators
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A =
𝑎11 𝑎12 ⋯
𝑎21 𝑎22 ⋯
⋮ ⋮ ⋱

Algorithm: Γ𝑛 𝐴 = Spec 𝑃𝑛𝐴𝑃𝑛 converges to Spec(𝐴) in Haus. Metric.

Question: Can we verify the output?

i.e., Does there exist ෠Γ𝑛(𝐴) → Spec 𝐴 with ෠Γ𝑛 𝐴 ⊂ Spec 𝐴 + 𝐵2−𝑛?

Example: compact operators (still easy?) 

classic method
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Algorithm: Γ𝑛 𝐴 = Spec 𝑃𝑛𝐴𝑃𝑛 converges to Spec(𝐴) in Haus. Metric.

Question: Can we verify the output?

i.e., Does there exist ෠Γ𝑛(𝐴) → Spec 𝐴 with ෠Γ𝑛 𝐴 ⊂ Spec 𝐴 + 𝐵2−𝑛?

Answer: No!

No alg. can do this on whole class, even for self-adjoint compact operators.

Example: compact operators (still easy?) 

classic method
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A =

𝑎1 𝑏1
𝑏1 𝑎2 𝑏2

𝑏2 𝑎3 ⋱

⋱ ⋱

, 𝑏𝑘 > 0, 𝑎𝑘 ∈ ℝ

Non-trivial, e.g., spurious eigenvalues.

What about Jacobi operators?
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A =

𝑎1 𝑏1
𝑏1 𝑎2 𝑏2

𝑏2 𝑎3 ⋱

⋱ ⋱

, 𝑏𝑘 > 0, 𝑎𝑘 ∈ ℝ

Non-trivial, e.g., spurious eigenvalues.

Enlarge class to sparse normal operators - surely now much harder?!

Answer: ∃{Γ𝑛} s.t. lim
𝑛→∞

Γ𝑛 𝐴 = Spec(𝐴) and Γ𝑛 𝐴 ⊂ Spec 𝐴 + 𝐵2−𝑛,

for any sparse normal operator 𝐴

What about Jacobi operators?

• C., Roman, Hansen, “How to compute spectra with error control,” Phys. Rev. Lett., 2019.
• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
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A curious case of limits

General bounded: A =
𝑎11 𝑎12 ⋯
𝑎21 𝑎22 ⋯
⋮ ⋮ ⋱

Algorithm: ∃{Γ𝑛3,𝑛2,𝑛1} s.t. lim
𝑛3→∞

lim
𝑛2→∞

lim
𝑛1→∞

Γ𝑛3,𝑛2,𝑛1 𝐴 = Spec(𝐴)

Question: Can we do better?

• Hansen, “On the solvability complexity index, the 𝑛-pseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.
• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
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Algorithm: ∃{Γ𝑛3,𝑛2,𝑛1} s.t. lim
𝑛3→∞

lim
𝑛2→∞

lim
𝑛1→∞

Γ𝑛3,𝑛2,𝑛1 𝐴 = Spec(𝐴)

Question: Can we do better?

Answer: No! Canonically embed problems such as:

Given 𝐵 ∈ 0,1 ℕ×ℕ, does 𝐵 have a column with infinitely many 1’s?

⟹ lower bound on number of “successive limits” needed (ind. of comp. model).
• Hansen, “On the solvability complexity index, the 𝑛-pseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.
• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
• C., “On the computation of geometric features of spectra of linear operators on Hilbert spaces,” Found. Comput. Math., to appear.
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Class Ω ∋ 𝐴, want to compute Ξ: Ω → (ℳ, 𝑑)

• ∆0: Problems solved in finite time (v. rare for cts problems).

• ∆1: Problems solved in “one limit” with full error control:

𝑑(Γ𝑛 𝐴 , Ξ(𝐴)) ≤ 2−𝑛

• ∆2: Problems solved in “one limit”:

lim
𝑛→∞

Γ𝑛(𝐴) = Ξ(𝐴)

• ∆3: Problems solved in “two successive limits”:

lim
𝑛→∞

lim
𝑚→∞

Γ𝑛,𝑚(𝐴) = Ξ(𝐴)

• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
• Hansen, “On the solvability complexity index, the 𝑛-pseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.
• McMullen, “Families of rational maps and iterative root-finding algorithms,” Ann. of Math., 1987.
• Doyle, McMullen, “Solving the quintic by iteration,” Acta Math., 1989.
• Smale, “The fundamental theorem of algebra and complexity theory,” Bull. Amer. Math. Soc., 1981.

Solvability Complexity Index Hierarchy
metric space

⋮
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Error control for spectral problems

• Σ1: ∃ alg. Γ𝑛 s.t. lim
𝑛→∞

Γ𝑛 𝐴 = Ξ 𝐴 , max𝑧∈Γ𝑛 𝐴 dist 𝑧, Ξ 𝐴 ≤ 2−𝑛

Ξ 𝐴 = Spec(𝐴)
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Error control for spectral problems

• Σ1: ∃ alg. Γ𝑛 s.t. lim
𝑛→∞

Γ𝑛 𝐴 = Ξ 𝐴 , max𝑧∈Γ𝑛 𝐴 dist 𝑧, Ξ 𝐴 ≤ 2−𝑛

• Π1: ∃ alg. Γ𝑛 s.t. lim
𝑛→∞

Γ𝑛 𝐴 = Ξ 𝐴 , max𝑧∈Ξ(𝐴)dist(𝑧, Γ𝑛 𝐴 ) ≤ 2−𝑛

Such problems can be used in a proof!

Ξ 𝐴 = Spec(𝐴)
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Π0

Σ0

Δ0

=
=

⊊ Δ1 ⊊

Π1

Σ1 ∪ Π1 ⊊

Increasing difficulty

Σ1

Sample: some results for bounded op. on 𝑙2(ℕ)

Error control
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Π0
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Δ0

=
=

⊊ Δ1 ⊊

Π1

Σ1 ∪ Π1 ⊊ Δ2

Increasing difficulty

Σ1

Sample: some results for bounded op. on 𝑙2(ℕ)

One limit, no error control.

One limit: SCI≤1

Error control
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Sample: some results for bounded op. on 𝑙2(ℕ)

Two limits: SCI ≤ 2

Error control
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Three limits: SCI ≤ 3 …

Error control
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Sample: some results for bounded op. on 𝑙2(ℕ)

Normal operators

“Sparse” operators

General operators“Sparse” normal operators

Compact operators

• C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.

Zoo of problems: spectral type (pure point, absolutely continuous, singularly continuous), Lebesgue measure and 
fractal dimensions of spectra, discrete spectra, essential spectra, eigenspaces + multiplicity, spectral radii, essential 
numerical ranges, geometric features of spectrum (e.g., capacity), spectral gap problem, resonances ...

Error control
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Why study these foundations?

• SCI > 1 classifications ⟹ tells us assumptions needed to lower SCI.

• Σ1 and Π1 classifications ⟹ look-up table for computer-assisted proofs.

• Negative results prevent us from trying to prove too much.

• Much of computational literature does not prove sharp results.

Remarks:

• Can use with any model of computation.

• Existing hierarchies included as particular cases.
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Example 1: 𝛴1 algorithm for spectra
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The three-limit algorithm

𝜎inf 𝑇 = inf 𝑇𝑣 : 𝑣 ∈ 𝔇 𝑇 , 𝑣 = 1

• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
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The three-limit algorithm

𝜎inf 𝑇 = inf 𝑇𝑣 : 𝑣 ∈ 𝔇 𝑇 , 𝑣 = 1

𝛾𝑛1,𝑛2 𝐴, 𝑧 = min 𝜎inf 𝑃𝑛1[𝐴 − 𝑧]𝑃𝑛2 , 𝜎inf 𝑃𝑛1[𝐴
∗ − ҧ𝑧]𝑃𝑛2

𝑎11 𝑎12 ⋯
𝑎21 𝑎22 ⋯
⋮ ⋮ ⋱

𝑛2

𝑛1

• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
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𝑎11 𝑎12 ⋯
𝑎21 𝑎22 ⋯
⋮ ⋮ ⋱

𝑛2

• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
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𝛾𝑛2 𝐴, 𝑧 ↓ 𝛾 𝐴, 𝑧 ≔ min 𝜎inf 𝐴 − 𝑧 , 𝜎inf 𝐴
∗ − ҧ𝑧 = 𝐴 − 𝑧 −1 −1, as 𝑛2 → ∞

𝑎11 𝑎12 ⋯
𝑎21 𝑎22 ⋯
⋮ ⋮ ⋱

• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
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𝛾𝑛2 𝐴, 𝑧 ↓ 𝛾 𝐴, 𝑧 ≔ min 𝜎inf 𝐴 − 𝑧 , 𝜎inf 𝐴
∗ − ҧ𝑧 = 𝐴 − 𝑧 −1 −1, as 𝑛2 → ∞

Approx. pseudospectrum: lim
𝑛2→∞

lim
𝑛1→∞

෠Γ𝑛1,𝑛2(𝐴, 𝜀) = Spec𝜀 𝐴 = 𝑧: 𝛾 𝐴, 𝑧 ≤ 𝜀

Γ𝑛1,𝑛2,𝑛3 𝐴 = ෠Γ𝑛1,𝑛2(𝐴, 1/𝑛3)

Spec(𝐴)

Spec𝜀 𝐴

• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
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෠Γ𝑛1,𝑛2(𝐴, 𝜀) = Spec𝜀 𝐴 = 𝑧: 𝛾 𝐴, 𝑧 ≤ 𝜀

Γ𝑛1,𝑛2,𝑛3 𝐴 = ෠Γ𝑛1,𝑛2(𝐴, 1/𝑛3)

What assumptions are needed to reduce the number of limits?
• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.

13/35



Example: quasicrystals

Aperiodicity ⟹ interesting physics but very hard to compute spectra!
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Example: quasicrystals

Model: Perpendicular magnetic field (of strength 𝐵).

14/35



Example: quasicrystals
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Typical approach: 𝑛 × 𝑛 truncation (possibly with BCs)

Problems: spectral pollution, which eigenvalues are reliable etc.

Example: quasicrystals
14/35



New approach: 𝑓(𝑛) × 𝑛 truncation.

Naturally captures interactions!

Example: quasicrystals
14/35



Sketch of algorithm

𝜎inf 𝑇 = inf 𝑇𝑣 : 𝑣 ∈ 𝔇 𝑇 , 𝑣 = 1

(𝐴 − 𝑧)−1 −1 = min 𝜎inf 𝐴 − 𝑧 , 𝜎inf 𝐴
∗ − ҧ𝑧

𝜎inf 𝑃𝑓(𝑛)[𝐴 − 𝑧]𝑃𝑛 = 𝜎inf [𝐴 − 𝑧]𝑃𝑛 ↓ 𝜎inf 𝐴 − 𝑧

Suppose we can relate (𝐴 − 𝑧)−1 −1 to dist(𝑧, Spec(𝐴)), e.g., normal operators:

𝜎inf 𝑃𝑓(𝑛)[𝐴 − 𝑧]𝑃𝑛 ↓ 𝐴 − 𝑧 −1 −1 = dist(𝑧, Spec(𝐴))

Final ingredient: local and adaptive search for local minimisers. Error control!
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Example: quasicrystals
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Is it right?
The importance of verification

E.g., ground state of quasicrystal

Spectra with error control Spectral
pollution

• C., Roman, Hansen, “How to compute spectra with error control,” Phys. Rev. Lett., 2019.
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Is it right?
The importance of verification

E.g., ground state of quasicrystal

Spectra with error control

• C., Roman, Hansen, “How to compute spectra with error control,” Phys. Rev. Lett., 2019.
• Johnstone, C., Nielsen, Öhberg, Duncan, “Bulk Localised Transport States in Infinite and Finite Quasicrystals via Magnetic Aperiodicity,” Phys. Rev. B, 2022.

Spectral
pollution

E.g., new physical phenomena: 
bulk localised transport states

Certainty in computed 
spectral properties
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Theorem: Let Ω be class of self-adjoint diff. operators on 𝐿2(ℝ𝑑) of the form

𝑇 = σ
𝑘∈ℤ≥0

𝑑 , 𝑘 ≤𝑁
𝑐𝑘 𝑥 𝜕𝑘 s.t.

• Smooth compactly supported functions form a core of 𝑇.
• 𝑐𝑘 are polynomially bounded and of locally bounded total variation.
Assume algorithm can:
• Point sample 𝑐𝑘(𝑞) for 𝑞 ∈ ℚ𝑑 to arbitrary prec.
• Evaluate a polynomial that bounds 𝑐𝑘 on ℝ𝑑.
Then…

(a) Know bound TV −𝑛,𝑛 𝑑 𝑐𝑘 ≤ 𝑏𝑛 ⟹ Sp,Ω ∈ Σ1.

(b) Only know asymp. bound TV −𝑛,𝑛 𝑑 𝑐𝑘 = 𝑂(𝑏𝑛)⟹ Sp, Ω ∈ Δ2\(Σ1 ∪ Π1). 

Example (local uniform convergence)

• C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022
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Verifiable

Not verifiable
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Π0

Σ0

Δ0

=
=

⊊ Δ1 ⊊

Π1

Σ1 ∪ Π1 ⊊ Δ2 ⊊

Π2

Σ2

Σ2 ∪ Π2 ⊊ Δ3 ⊊

Π3

Σ3

Σ3 ∪ Π3⋯

Increasing difficulty

Σ1

Back to Schwinger: −∆ + 𝑉 on 𝐿2(ℝ𝑑)

Bounded 𝑉 with
locally bounded TV

Self-adjoint, bounded 𝑉 with
locally bounded TV

Unbounded,
sectorial 𝑉

• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.

Error control
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Bounded 𝑉
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• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.

Error control
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Bounded 𝑉

NB: Most existing convergence results for spectra, even on bounded 
domains, prove Δ2 results and miss the optimal Σ1 convergence!

CHALLENGE: Can you get Σ1 for your problem/method?



Example 2: Δ2 alg. for spectral meas.
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• Fin.-dim.: 𝐵 ∈ ℂ𝑛×𝑛, 𝐵∗𝐵 = 𝐵𝐵∗, o.n. basis of e-vectors 𝑣𝑗 𝑗=1

𝑛

𝑣 = ෍

𝑗=1

𝑛

𝑣𝑗𝑣𝑗
∗ 𝑣, 𝐵𝑣 = ෍

𝑗=1

𝑛

𝜆𝑗𝑣𝑗𝑣𝑗
∗ 𝑣, ∀𝑣 ∈ ℂ𝑛

• Inf.-dim.: Operator 𝐴:𝒟(𝐴) → ℋ. Typically, no basis of e-vectors! 
Spectral theorem: (projection-valued) spectral measure 𝐸

𝑓 = න
Spec 𝐴

1d𝐸(𝜆) 𝑓, 𝐴𝑓 = න
Spec 𝐴

𝜆 d𝐸(𝜆) 𝑓, ∀𝑓 ∈ ℋ

• Spectral measures: 𝜇𝑓 𝑈 = 𝐸 𝑈 𝑓, 𝑓 ( 𝑓 = 1) prob. Measure on ℝ.

Spectral measures → diagonalisation
21/35



Smoothed spectral measure:

𝜇𝑓
𝜀 𝑥 =

1

𝜋
න

ℝ

𝜀 d𝜇𝑓(𝜆)

(𝑥 − 𝜆)2+𝜀2
=

(𝐴 − [𝑥 + 𝑖𝜀])−1−(𝐴 − [𝑥 − 𝑖𝜀])−1 𝑓, 𝑓

2𝜋𝑖

A two-limit algorithm (Stone’s formula)

𝑥
• 𝑂(𝜀)

𝜀 = “smoothing parameter”
•

𝑂(𝜀)
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𝜀 . Set

Γ𝑛1,𝑛2 𝐴 = 𝜇𝑓,𝑛1
1/𝑛2

Converges in weak sense.

Without extra assumptions, this is sharp!!
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Γ𝑛1,𝑛2 𝐴 = 𝜇𝑓,𝑛1
1/𝑛2

Converges in weak sense.

Without extra assumptions, this is sharp!!

If we can compute RHS with error control (e.g., residuals), choose 𝑛1(𝜀).

A two-limit algorithm (Stone’s formula)

𝑥
• 𝑂(𝜀)

𝜀 = “smoothing parameter”
•

𝑂(𝜀)
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Example: integral operator

𝐴𝑢 𝑥 = 𝑥𝑢 𝑥 + න
−1

1

𝑒− 𝑥2+𝑦2 𝑢 𝑦 d𝑦

Discretize using adaptive Chebyshev collocation method.

Look at 𝜇𝑓 for 𝑓 𝑥 = 3/2𝑥
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Example: integral operator

Slow convergence (more than five digits infeasible). Can we do better?

23/35



𝑚th order rational “smoothing” kernels:

𝐾 𝑥 =
1

2𝜋𝑖
σ𝑗=1
𝑚 𝛼𝑗

𝑥−𝑎𝑗
−

𝛼𝑗

𝑥−𝑎𝑗
, 𝐾𝜀 𝑥 = 𝐾(𝑥/𝜀)/𝜀

𝐾𝜀 ∗ 𝜇𝑓 𝑥

=
−1

2𝜋𝑖
σ𝑗=1
𝑚 𝛼𝑗(𝐴 − [𝑥 − 𝜀𝑎𝑗])

−1 − ഥ𝛼𝑗(𝐴 − [𝑥 − 𝜀 ഥ𝑎𝑗])
−1 𝑓, 𝑓

⟹ larger 𝜺 for a given accuracy ⟹ smaller 𝑛1 𝜀 for a given accuracy

High-order versions of Stone’s formula
24/35



Demo: radial Schrödinger
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Demo: radial Schrödinger

𝜌𝑓 − 𝐾𝜀 ∗ 𝜇𝑓 𝐿1
/ 𝜌𝑓 𝐿1

Wavefunction ∝ 𝑒−(𝑟−𝑟0)
2
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Eigenvalues of Dirac operator
26/35



Software package

SpecSolve available at https://github.com/SpecSolve
Capabilities: ODEs, PDEs, integral operators, discrete operators.

Spectral measures of self-adjoint operators

• C., Horning, Townsend “Computing spectral measures of self-adjoint operators,” SIAM Rev., 2021.

27/35
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• Generic assumptions: Computing (𝐴, 𝑓, 𝑈) ↪ 𝜇𝑓(𝑈) has SCI = 1 but 
error control or rate impossible (even for discrete Schrödinger).

• If spectral measure 𝜇𝑓 is a.c. on interval 𝐼, with 𝒞𝑛,𝛼 density 𝜌𝑓, then
𝜌𝑓 − 𝐾𝜀 ∗ 𝜇𝑓 𝐿∞(𝐼)

= 𝒪(𝜀𝑛+𝛼 + 𝜀𝑚log(1/𝜀))

• Weak convergence always 𝒪(𝜀𝑚log(1/𝜀)) for 𝒞𝑚 test functions.

• Splitting into spectral type: SCI = 2 or 3.

NB: Constants can be made explicit.

Executive summary of theorems

Input an open (or closed) set

• C., “Computing spectral measures and spectral types,” Comm. Math. Phys., 2021
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Further areas
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• PDEs e.g.:

• Can you solve Schrödinger eq. on 𝐿2 ℝ𝑑 with error control?

• Can you predict blow-up of non-linear PDEs?

• Optimization

• Inverse problems (e.g., imaging)

• Polynomial root-finding: Smale (settled by McMullen), “Is there a purely 
iterative convergent algorithm for polynomial zero finding?”

• Topology

• As well as … (computer-assisted proofs, AI, dynamical systems etc.)

Other areas with SCI results
30/35



𝐸 𝑍 = ground state energy of

𝐻 = ෍

𝑘=1

𝑁

−∆𝑥𝑘 − 𝑍 𝑥𝑘
−1 +෍

𝑗<𝑘

𝑥𝑗 − 𝑥𝑘
−1
.

Proof involves spectral analysis, analytic number theory, …, 
computer-assisted bound involving solutions of an ODE.

Fefferman and Seco implicitly prove 𝜮𝟏 classifications!

Computer-assisted proof: Dirac-Schwinger conjecture

• Fefferman, Phong, “On the lowest eigenvalue of a pseudo-differential operator,” Proc. Natl. Acad. Sci. USA, 1979.
• Fefferman, “The N-body problem in quantum mechanics,” Comm. Pure Appl. Math., 1986.
• Fefferman, Seco, “Interval arithmetic in quantum mechanics,” Applications of interval computations, 1996.

Theorem: 𝐸 𝑍 = −𝑐0𝑍
7/3 +

1

8
𝑍2 − 𝑐1𝑍

5/3 + 𝑂(𝑍5/3−1/2835), as 𝑍 → ∞

𝑁: # of electrons, 𝑍: charge of nucleus
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Computer-assisted proof: Kepler conjecture
(Hilbert’s 18th problem)

• Hales, “A proof of the Kepler conjecture,” Ann. of Math., 2005.
• Hales et al., “A formal proof of the Kepler conjecture,” Forum Math. Pi, 2017.
• Bastounis, Hansen, Vlačić, “The extended Smale's 9th problem,” preprint.

Proof shows potential counterexamples
would satisfy infeasible inequalities

relaxed to ≈ 10,000s linear programs

These can’t always be decided!

Account of Flyspeck project (formal proof)
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• C., Antun, Hansen, “The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and 
Smale’s 18th problem,” Proc. Natl. Acad. Sci. USA.

Example: Barriers of deep learning
33/35



Example: Rigorous Koopmania!

• State 𝑥 ∈ Ω ⊆ ℝ𝑑, unknown function 𝐹: Ω → Ω governs dynamics

𝑥𝑛+1 = 𝐹(𝑥𝑛)

• Goal: Learn about system from data 𝑥(𝑚), 𝑦(𝑚) = 𝐹(𝑥(𝑚))
𝑚=1

𝑀

• Koopman operator 𝒦 acts on functions 𝑔: Ω → ℂ

𝒦𝑔 𝑥 = 𝑔(𝐹(𝑥))

• 𝒦 is linear but acts on an infinite-dimensional space.

• Often spectral info encodes the features of the system we want.

• 35,000 papers over last decade, hardly anything on NA of this problem!

• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.
• C., Ayton, Szőke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., under minor rev.
• Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
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Summary

SCI hierarchy: a tool that allows us to

• Classify difficulty of continuous and discrete computational problems.

• Prove that algorithms are optimal (in any given computational model).

• Framework ⇒ find assumptions and methods for computational goals.

http://www.damtp.cam.ac.uk/user/mjc249/home.html: slides, papers, and code
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Additional slides



When can we make AI robust and trustworthy?

“AI generated hallucination”, from Facebook and NYU’s
FastMRI challenge 2020

From Finlayson et al., “Adversarial attacks on
medical machine learning,” Science, 2019.

Problem: hallucinations and instability 



Example of the limits of deep learning

Paradox: “Nice” linear inverse problems where a stable and accurate neural 
network for image reconstruction exists, but it can never be trained!

E.g., suppose we want to solve (holds for much more general problems)

min
𝑥∈ℂ𝑁

𝑥 𝑙1 + 𝜆 𝐴𝑥 − 𝑦 𝑙2
2

𝐴 ∈ ℂ𝑚×𝑁 modality,𝑚 < 𝑁 , 𝑆 = 𝑦𝑗 𝑗=1

𝑅
samples

Arises when given 𝑦 ≈ 𝐴𝑥 + 𝑒.



Arbitrary precision of training data



Given Ω ⊆ ℂ𝑛, define

Act Ω = 𝑗: ∃𝑥, 𝑦 ∈ Ω, 𝑥𝑗 ≠ 𝑦𝑗 ,        ΩAct = 𝑥: ∃𝑦 ∈ Ω, 𝑥Act Ω 𝑐 = 𝑦Act Ω 𝑐

• Condition of a mapping Ξ: ෡Ω ⇉ ℂ𝑚 with Ω ⊆ ෡Ω:

Cond Ξ, Ω = sup
𝑥∈Ω

lim
𝜀→0+

sup
𝑥+𝑧∈ΩAct∩෡Ω
0< 𝑧 ∞<𝜀

dist(Ξ 𝑥 + 𝑧 , Ξ(𝑥))

𝑧 ∞

• For problems with constraints (e.g., basis pursuit 𝑃1 or LPs)

𝜈 𝐴, 𝑦 = inf 𝜀 ≥ 0: ො𝑦 − 𝑦 2, መ𝐴 − 𝐴 ≤ 𝜀, መ𝐴, ො𝑦 ∈ ΩAct and infeasible

𝐶FP 𝐴, 𝑦 =
max 𝑦 2, 𝐴

𝜈 𝐴, 𝑦

• Renegar condition number
𝜇 𝐴, 𝑦 = inf 𝜀 ≥ 0: ො𝑦 − 𝑦 2, መ𝐴 − 𝐴 ≤ 𝜀, መ𝐴, ො𝑦 ∈ ΩAct, Ξ multivalued

𝐶RCC 𝐴, 𝑦 =
max 𝑦 2, 𝐴

𝜇 𝐴, 𝑦

Condition numbers



Theorem: For any of prev. problems, integer 𝐾 ≥ 3 and 𝐿 ∈ ℕ, ∃ a well-conditioned class Ω(𝐾)
of inputs s.t. simultaneously 
1. No deterministic alg. can, given a training set 𝜄𝐴,𝑆 ∈ Ω𝒯, produce a neural network (NN) 𝜙with

1 min
𝑦∈𝑆

inf
𝑥∗∈Ξ(𝐴,𝑦)

𝜙 𝑦 −𝑥∗ 2 ≤ 10−𝐾 ∀ 𝐴,𝑆 ∈ Ω 𝐾 .

For any 𝑝 > 1/2, no random alg. (any model of comp.) can produce a NN 𝜙 s.t. (1) holds with prob. ≥ 𝑝.

2.      (a) ∃deterministic alg. that , given a training set 𝜄𝐴,𝑆 ∈ Ω𝒯, produces a neural network (NN) 𝜙with

2 max
𝑦∈𝑆

inf
𝑥∗∈Ξ(𝐴,𝑦)

𝜙 𝑦 − 𝑥∗ 2 ≤ 10− 𝐾−1 ∀ 𝐴,𝑆 ∈ Ω 𝐾 .

(b) However, for any probabilistic Turing Machine that produces such a NN, any 𝑀 ∈ ℕ and

𝑝 ∈ 0,
𝑁−𝑚

𝑁+1−𝑚
, there exists a training set 𝜄𝐴,𝑆 ∈ Ω𝒯 s.t.∀𝑦 ∈ 𝑆

ℙ inf
𝑥∗∈Ξ(𝐴,𝑦)

𝜙 𝑦 − 𝑥∗ 2 > 10−(𝐾−1) or sizeof trainingdata to construct𝜙 exceeds𝑀 > 𝑝.

3.     ∃deterministic alg. that, given a training set 𝜄𝐴,𝑆 ∈ Ω𝒯, produces a NN 𝜙 accessing at most 𝐿

bl     training samples of 𝜄𝐴,𝑆 s.t.

3 max
𝑦∈𝑆

inf
𝑥∗∈Ξ(𝐴,𝑦)

𝜙 𝑦 − 𝑥∗ 2 ≤ 10− 𝐾−2 ∀ 𝐴,𝑆 ∈ Ω 𝐾 .

• C., Antun, Hansen, “The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and 
Smale’s 18th problem,” Proc. Natl. Acad. Sci. USA.
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• C., Antun, Hansen, “The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and 
Smale’s 18th problem,” Proc. Natl. Acad. Sci. USA.

Holds for any architecture, any precision of training data.
⟹ Classification theory telling us what can and cannot be done



The world of neural networks

Given a problem and conditions, where does it sit in this diagram?



The world of neural networks

Given a problem and conditions, where does it sit in this diagram?



Example counterpart theorem
Certain conditions: stable neural networks trained with exponential accuracy. 
E.g., approximate Łojasiewicz-type inequality:

1 min
𝑥∈ℂ𝑁

𝑓(𝑥) s. t. 𝐴𝑥 − 𝑦 ≤ ε

dist 𝑥, solution ≤ 𝛼([𝑓 𝑥 − 𝑓∗] + [ 𝐴𝑥 − 𝑦 − 𝜀] + 𝛿)

Fast Iterative REstarted NETworks (FIRENETs)
(unrolled primal-dual with novel restart scheme)

Theorem: Training algorithm that, under above assumption, produces stable neural 
networks 𝜑𝑛 of width 𝑂(𝑁), depth 𝑂(𝑛), guaranteed worst bound

dist 𝜑𝑛(𝑦), solution ≲ 𝑒−𝑛 + 𝛿

• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.
• C., “WARPd: A linearly convergent first-order method for inverse problems with approximate sharpness conditions,” SIAM J. Imaging Sci., 2022.



Numerical example of GHA

• C., Antun, Hansen, “The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and 
Smale’s 18th problem,” Proc. Natl. Acad. Sci. USA.



• C., Antun, Hansen, “The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and 
Smale’s 18th problem,” Proc. Natl. Acad. Sci. USA.

Numerical example of GHA



Example of severe instability

• Zhu et al., “Image reconstruction by domain-transform manifold learning,” Nature, 2018.
• Antun et al., “On instabilities of deep learning in image reconstruction and the potential costs of AI,” PNAS, 2020.

MRI: discrete 2D 
Fourier transform, 
60% subsampling.

Perturbations 
computed in real 
space, mapped to 
measurement space.



FIRENET: provably stable (even to adversarial examples) and accurate

• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.

Assumptions on sampling 
and approximate sparseness 
give approximate Łojasiewicz



MRI: discrete 2D 
Fourier transform, 
15% subsampling.

All networks 
trained on 5000 
images of ellipses

Key pillars: stability and accuracy

• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.



U-Net with no noise: accurate but unstable

U-Net: standard 
neural network 
architecture for 
imaging. Approx 4 
million parameters.

• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.



U-Net with noise: stable but inaccurate

• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.



FIRENET: balances stability and accuracy?

• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.



FIRENET: balances stability and accuracy?

• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.

Open problem: use the toolkit to precisely prove theorems 
about optimal trade-offs.



Stabilising unstable neural networks



• State 𝑥 ∈ Ω ⊆ ℝ𝑑, unknown function 𝐹:Ω → Ω governs dynamics

𝑥𝑛+1 = 𝐹(𝑥𝑛)

• Goal: Learn about system from data 𝑥(𝑚), 𝑦(𝑚) = 𝐹(𝑥(𝑚))
𝑚=1

𝑀

• E.g., data from trajectories, experimental measurements, simulations, …

• E.g., used for forecasting, control, design, understanding, …

• Applications: chemistry, climatology, 
electronics, epidemiology, finance, 
fluids, molecular dynamics, 
neuroscience, plasmas, robotics, 
video processing, …

Can we develop verified methods?

Data-driven dynamical systems



Operator viewpoint

• Koopman operator 𝒦 acts on functions 𝑔:Ω → ℂ

𝒦𝑔 𝑥 = 𝑔(𝐹(𝑥))

• 𝒦 is linear but acts on an infinite-dimensional space.

• Work in 𝐿2(Ω, 𝜔) for positive measure 𝜔, with inner product ∙,∙ .

• Koopman, “Hamiltonian systems and transformation in Hilbert space,” Proceedings of the National Academy of Sciences, 1931.
• Koopman, v. Neumann, “Dynamical systems of continuous spectra,” Proceedings of the National Academy of Sciences, 1932.

𝑥1 𝑥2 𝑥3 … 𝑥𝑛

𝑔(𝑥1) 𝑔(𝑥2) 𝑔(𝑥3) … 𝑔(𝑥𝑛)

𝐹 𝐹 𝐹 𝐹

𝒦𝑔 𝒦𝑔 𝒦𝑔 𝒦𝑔

State

Functions
of state

Non-linear

Linear



Given dictionary 𝜓1, … , 𝜓𝑁𝐾 of functions 𝜓𝑗: Ω → ℂ

𝒦 𝕂 = Ψ𝑋
∗𝑊Ψ𝑋

−1Ψ𝑋
∗𝑊Ψ𝑌 ∈ ℂ

𝑁𝐾×𝑁𝐾

𝜓𝑘 , 𝜓𝑗 ≈ σ𝑚=1
𝑀 𝑤𝑚𝜓𝑗 𝑥

𝑚 𝜓𝑘 𝑥 𝑚 =

𝜓1(𝑥
(1)) ⋯ 𝜓𝑁𝐾(𝑥

(1))

⋮ ⋱ ⋮
𝜓1(𝑥

(𝑀)) ⋯ 𝜓𝑁𝐾(𝑥
(𝑀))

Ψ𝑋

∗
𝑤1

⋱
𝑤𝑀

𝑊

𝜓1(𝑥
(1)) ⋯ 𝜓𝑁𝐾(𝑥

(1))

⋮ ⋱ ⋮
𝜓1(𝑥

(𝑀)) ⋯ 𝜓𝑁𝐾(𝑥
(𝑀))

Ψ𝑋 𝑗𝑘

Build the matrix

𝒦𝜓𝑘 , 𝜓𝑗 ≈ σ𝑚=1
𝑀 𝑤𝑚𝜓𝑗 𝑥

𝑚 𝜓𝑘 𝑦 𝑚

[𝒦𝜓𝑘] 𝑥 𝑚

=

𝜓1(𝑥
(1)) ⋯ 𝜓𝑁𝐾(𝑥

(1))

⋮ ⋱ ⋮
𝜓1(𝑥

(𝑀)) ⋯ 𝜓𝑁𝐾(𝑥
(𝑀))

Ψ𝑋

∗
𝑤1

⋱
𝑤𝑀

𝑊

𝜓1(𝑦
(1)) ⋯ 𝜓𝑁𝐾(𝑦

(1))

⋮ ⋱ ⋮
𝜓1(𝑦

(𝑀)) ⋯ 𝜓𝑁𝐾(𝑦
(𝑀))

Ψ𝑌 𝑗𝑘



Residuals: 𝑔 = σ𝑗=1
𝑁𝐾 𝐠𝑗𝜓𝑗 , 𝒦𝑔 − 𝜆𝑔 2 ≈ 𝐠∗ 𝐾2 − 𝜆𝐾1

∗ − ҧ𝜆𝐾1 + 𝜆 2𝐺 𝐠

Residual DMD: Approx. 𝒦 and 𝒦∗𝒦

• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” 
Communications on Pure and Applied Mathematics, under review.

• Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

𝜓𝑘 , 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥
𝑚 𝜓𝑘 𝑥 𝑚 = Ψ𝑋

∗𝑊Ψ𝑋
𝐺 𝑗𝑘

𝒦𝜓𝑘 , 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥
𝑚 𝜓𝑘 𝑦 𝑚

[𝒦𝜓𝑘] 𝑥
𝑚

= Ψ𝑋
∗𝑊Ψ𝑌
𝐾1 𝑗𝑘

𝒦𝜓𝑘 , 𝒦𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑦
𝑚 𝜓𝑘 𝑦 𝑚 = Ψ𝑌

∗𝑊Ψ𝑌
𝐾2 𝑗𝑘

https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition


Example: Trustworthy computation for large 𝑑

𝜆 = 𝑒0.11𝑖 𝜆 = 𝑒0.51𝑖 𝜆 = 𝑒0.71𝑖
?

Rel. Error = ? Rel. Error = ? Rel. Error = ?

• Reynolds number ≈ 3.9 × 105

• Ambient dimension (𝑑) ≈ 300,000
(number of measurement points)

*Raw measurements provided by Stephane Moreau (Sherbrooke)

• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.



𝜆 = 𝑒0.11𝑖 𝜆 = 𝑒0.51𝑖 𝜆 = 𝑒0.71𝑖
Rel. Error ≤ 0.0054 Rel. Error ≤ 0.0128 Rel. Error ≤ 0.0196

• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.

Example: Trustworthy computation for large 𝑑

• Reynolds number ≈ 3.9 × 105

• Ambient dimension (𝑑) ≈ 300,000
(number of measurement points)

*Raw measurements provided by Stephane Moreau (Sherbrooke)



𝜆 = 0.9439 + 0.2458𝑖, error ≤ 0.0765 𝜆 = 0.8948 + 0.1065𝑖, error ≤ 0.1105

• Reynolds number ≈ 6.4 × 104

• Ambient dimension (𝑑) ≈ 100,000
(velocity at measurement points)

*Raw measurements provided by Máté Szőke (Virginia Tech)

Spectral pollution

Example: Verify the dictionary

• C., Ayton, Szőke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., under minor rev.



Example: molecular dynamics (Adenylate Kinase)

• Ambient dimension (𝑑) ≈ 20,000
(positions and momenta of atoms)

• 6th order kernel (spec res 10−6)
*Dataset: www.mdanalysis.org/MDAnalysisData/adk_equilibrium.html

LID NMP

• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.

Adenylate Kinase



extremely efficient
compression

Number of modes
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unseen shockwave
prediction
from 40 modes

Example: Trustworthy Koopman mode decomposition

Time(10−5s)

P
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• C., Ayton, Szőke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., under minor rev.



Bulk localised transport

• Johnstone, C., Nielsen, Öhberg, Duncan, “Bulk Localised Transport States in Infinite and Finite Quasicrystals via 
Magnetic Aperiodicity,” Phys. Rev. B, 2022.




