To infinity... and beyond!

The solvability complexity
index and the foundations of
infinite-dimensional spectral

computations

Matthew Colbrook
(m.colbrook@damtp.cam.ac.uk)

University of Cambridge




The infinite-dimensional spectral problem
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Canonical basis vectors of [%(N)

Also deal with PDEs, integral operators etc.

Finite-dimensional — Infinite-dimensional
Eigenvalues of B € C™**" = Spectrum, Spec(4)
{,1]. e C: det(B — ,1].1) — 0} — {1 € C:A4 — Al is notinvertible}

“Most operators that arise in practice are not presented in a representation in which
they are diagonalized, and it is often very hard to locate even a single point in the
spectrum. Thus, one often has to settle for numerical approximations [...] Unfortunately,
there is a dearth of literature on this basic problem and, so far as we have been able to
tell, there are no proven [general] techniques.” W. Arveson, Berkeley (1994)

1/35



2/35

Why spectra?

Applications: Quantum mechanics, structural mechanics, optics, acoustics,
statistical physics, number theory, matter physics, PDEs, data analysis, neural
networks and Al, nuclear scattering, optics, computational chemistry, ...

Rich history of computational spectral theory:

D. Arnold (Minnesota), W. Arveson (Berkeley), A. Bottcher (Chemnitz), W. Dahmen
(South Carolina), E. B. Davies (KCL), P. Deift (NYU), L. Demanet (MIT), C. Fefferman
(Princeton), G. Golub (Stanford), A. Iserles (Cambridge), I. Ipsen (NCS), S. Jitomirskaya
(UCI), A. Laptev (Imperial), M. Luskin (Minnesota), S. Mayboroda (Minnesota), W.
Schlag (Yale), E. Schrodinger (DIAS), J. Schwinger (Harvard), N. Trefethen (Oxford), V.
Varadarajan (UCLA), S. Varadhan (NYU), J. von Neumann (lAS), M. Zworski (Berkeley),...
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A motivating problem

In a series of papers in the 1950's and 1960’s, J. Schwinger examined the
foundations of quantum mechanics. A key problem he considered:

Given a self-adjoint Schrodinger operator —A + IV on R,
can we approximate its spectrum?

Partial answer: T. Digernes, V. S. Varadarajan and S. R. S. Varadhan (1994)
gave a convergent algorithm for a class of V generating compact resolvent.

For which classes of differential operators on unbounded domains do
there exist algorithms that converge to the spectrum? Can we guarantee
that the output is in the spectrum up to an arbitrarily small tolerance?

* Digernes, Varadarajan, Varadhan, “Finite approximations to quantum systems,” Rev. Math. Phys., 1994.



4/35

Warm-up: bounded diagonal operators

o

Assumption: Algorithm can query entries of A.

Algorithm: I, (A) = {a, a,, ..., a,,} = Spec(4) = {aq, a,, ... } in Haus. Metric.
One-sided error control: I, (A) < Spec(4)

Optimal: Can’t obtain [, (4) — Spec(4) with Spec(4) c T, (4).
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Example: compact operators (still easy?)

: a a
classic method 11 12
A — a21 a22

S

Algorithm: I’,, (A) = Spec(P,AP,) converges to Spec(A) in Haus. Metric.
Question: Can we verify the output?

i.e., Does there exist [, (4) — Spec(4) with [, (4) c Spec(4) + B,-n?
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Example: compact operators (still easy?)

: a a
classic method 11 12
A — a21 a22

S

Algorithm: I’,, (A) = Spec(P,AP,) converges to Spec(A) in Haus. Metric.

Question: Can we verify the output?

i.e., Does there exist [, (4) — Spec(4) with [, (4) c Spec(4) + B,-n?

Answer: No!

No alg. can do this on whole class, even for self-adjoint compact operators.
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What about Jacobi operators?

a; by
bi a- b
A= 1 2 2 , b, > 0, a, € R
b, as - k k

Non-trivial, e.g., spurious eigenvalues.
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What about Jacobi operators?

a; by
bi a- b
A= 1 2 2 , b, > 0, a, € R
b, as - k k

Non-trivial, e.g., spurious eigenvalues.
Enlarge class to sparse normal operators - surely now much harder?!

Answer: 3{I},} s.t. lim I},(4) = Spec(4) and I,(A) < Spec(4) + B,-n,
Nn—>00

for any sparse normal operator A

 C., Roman, Hansen, “How to compute spectra with error control,” Phys. Rev. Lett., 2019.
* Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
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A curious case of limits

di1 Qg2
General bounded: A=|ay; ay

Algorithm: 3{I},_,_, }st. lim lim lim [, , . (A4) = Spec(4)

n3—)00’n2—)00n1—)00

Question: Can we do better?

* Hansen, “On the solvability complexity index, the 7+pseudospectrum and approximations of spectra of operators,” ). Amer. Math. Soc., 2011.
e Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
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A curious case of limits

aj; a4y \

General bounded: A=a,; ay, - x\
; ; «\e‘\
so®
: .- \NE
Algorithm: 3{[},_ ,, , }s.t \3“‘5 P:ml‘:(lx) [h,n,n, (A) = Spec(A)
N A% |

Question: Can we do L?’ TN
Answer: No! Canonically embed problems such as:

Given B € {0,1}N¥*N does B have a column with infinitely many 1’s?

= lower bound on number of “successive limits” needed (ind. of comp. model).

Hansen, “On the solvability complexity index, the 7+pseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.
Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
C., “On the computation of geometric features of spectra of linear operators on Hilbert spaces,” Found. Comput. Math., to appear.
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Solvability Complexity Index Hierarchy

Class ) 3 A, want to compute E: Q) = (M, d) €=——— metric space
* Ay: Problems solved in finite time (v. rare for cts problems).

* A;: Problems solved in “one limit” with full error control:
d(l,(4),2(4) < 27"
* A,: Problems solved in “one limit”:
lim [, (4) = E(4)

* A;: Problems solved in “two successive limits”:
lim lim I3, ,,(4) = £(4)

. Nn—00 Mm—0oo

Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.

Hansen, “On the solvability complexity index, the 7+pseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.
McMullen, “Families of rational maps and iterative root-finding algorithms,” Ann. of Math., 1987.

Doyle, McMullen, “Solving the quintic by iteration,” Acta Math., 1989.

Smale, “The fundamental theorem of algebra and complexity theory,” Bull. Amer. Math. Soc., 1981.
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Solvability Complexity Index Hierarchy

Class (L 3 A, want to compute Z: Q) = (M, d) e . ¢ \S sace
W

* Ag: Problems solved in finite time (v. rare for cts r-. \e\'\

* A;: Problems solved in “one limit” with * " “\\\\“
\ B C:
(T (4 o\,t\\ .

\
\\W lim lim Ty, (A) = Z(4)

. Nn—00 Mm—0oo

Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.

Hansen, “On the solvability complexity index, the 7+pseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.
McMullen, “Families of rational maps and iterative root-finding algorithms,” Ann. of Math., 1987.

Doyle, McMullen, “Solving the quintic by iteration,” Acta Math., 1989.

* Smale, “The fundamental theorem of algebra and complexity theory,” Bull. Amer. Math. Soc., 1981.
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Error control for spectral problems

>.1 convergence

Z(A) = Spec(4)

e ¥ :3alg. {I},} s.t. im[,,(4) = Z2(A4), maxzern(A)dist(z, E(A)) <2"
Nn—>00
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Error control for spectral problems

>.1 convergence II; convergence

-

Z(A) = Spec(4)

e ¥ :3alg. {I},} s.t. im[,,(4) = Z2(A4), maxzern(A)dist(z, E(A)) <2"
Nn—>00

e II;: F alg. {I};, } s.t. im [, (A) = E(A), max,ez(q)dist(z,I;,(4)) < 27"
Nn—>00

Such problems can be used in a proof!
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Sample: some results for bounded op. on [%(N)

Increasing difficulty

Error control

l 1

[1 [l

1 & S
AO ; Al ; 21 U Hl ;
1 S ¢

Iy 2
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Sample: some results for bounded op. on [%(N)

Increasing difficulty

Error control

l 1

One limit, no error control.

[1 I
0 & s J/
Ao & A GZLUILE A,
| Q C.

N #
Iy 2

\ J
|

One limit: SCI<1
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Sample: some results for bounded op. on [%(N)

Increasing difficulty

Error control

l 1

[1 [14 I,

1 & < & <

Ay & A SZ,UILLE A, €3, UL S A,
! < & < G

Iy > >,

\ J
|

Two limits: SCI < 2
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Sample: some results for bounded op. on [%(N)

Increasing difficulty

Error control

l |

1! [l 1, 13
0 G < G < G

A(); Al ;Zluﬂlg Az QZZUHZQ A3 ;ZSUHB
. L & Q< G L

ZO 21 Z2 23

Three limits: SCI < 3 ...
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Sample: some results for bounded op. on [%(N)

Increasing difficulty

Error control “Sparse” operators
A | Compact operators /
HO Hl l HZ H3
I G S G S & :
AO & A1 gzlunlg Az QZZ UHZQ A3 ;23 H3°'°
5 < & < & <
\ General operators

Normal operators
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Sample: some results for bounded op. on [%(N)

Increasing difficulty

Error control “Sparse” operators
A | Compact operators /
1, [14 l [T, [l3
” ¢ S Ve e« -
AO & A1 gzlunlg Az QZZ UHZQ A3 ;23 H3°'°
g < & < & <
0 21 22 2:3
! \
“Sparse” normal operators General operators

Normal operators
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Sample: some results for bounded op. on [%(N)

Increasing difficulty

Error control “Sparse” operators

A )\ Compact operators /

“Sparse” normal operators \ General operators
Normal operators
Zoo of problems: spectral type (pure point, absolutely continuous, singularly continuous), Lebesgue measure and
fractal dimensions of spectra, discrete spectra, essential spectra, eigenspaces + multiplicity, spectral radii, essential
numerical ranges, geometric features of spectrum (e.g., capacity), spectral gap problem, resonances ...

* C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.



Why study these foundations?

e SCI > 1 classifications = tells us assumptions needed to lower SCI.

* X, and Il classifications = look-up table for computer-assisted proofs.

* Negative results prevent us from trying to prove too much.
* Much of computational literature does not prove sharp results.

Remarks:
e Can use with any model of computation.
* Existing hierarchies included as particular cases.

11/35



Example 1: X algorithm for spectra
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The three-limit algorithm

oint(T) = Inf{||Tv||: v € D(T), llv|l = 1}

* Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
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The three-limit algorithm

oint(T) = Inf{||Tv||: v € D(T), llv|l = 1}

Ynin, (4,z) = min{o-inf(Pnl |A — z] Pnz): O-inf(Pnl A" — Z] Pnz)}

np
S
11 A12

n,
a1 QA2

* Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
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The three-limit algorithm

oint(T) = Inf{||Tv||: v € D(T), llv|l = 1}

Ynin, (4,z) = min{o-inf(Pnl |A — z] Pnz): O-inf(Pnl A" — Z] Pnz)}

Ynin, (4,z)1 Yn, (4,z) = min{o-inf([A — Z]Pnz): Uinf([A* - Z_]Pnz)}r asng — &©

np
S

11 A12
a1 QA2

* Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
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The three-limit algorithm

oint(T) = Inf{||Tv||: v € D(T), llv|l = 1}

Ynin, (4,z) = min{ainf(Pnl |A — z] Pnz): Uinf(Pnl A" — Z] Pnz)}

Ynin, (4,z)1 Yn, (4,z) = min{o-inf([A — Z]Pnz)» O-inf([A* - Z_]Pnz)}r asng — &©
Vn,(4,2) L y(4,2) == min{oins(A — 2), 0ips(A* = 2)} = [(A = 2) 71|71, as ny — oo

11 A12
a1 QA2

* Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
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The three-limit algorithm
Spec.(A)

oine(T) = inf{||Tv]: v € D(T), vl =1

Ynin, (4,z) = min{o-inf(Pnl |A — z] Pnz ): O-inf(Pnl A

Ynin, (A: Z) T Yn, (A: Z) = min{Uinf([A - Z]Pnz): O-inf([A* - Z_]Pnz)]r asitg = ©
Vn,(4,2) L y(4,2z) = min{oj¢(4 — 2), oin(A" — 2)} = [[(A = 2)7H|7, as n, »

Approx. pseudospectrum: lim lim ﬁnl,nz (A,e) = Spec.(4) ={z:y(A,2) < &}

nz—)OO nl—)OO

Fnl,nz,n3 (4) = fnl,nz (4,1/n3)

* Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
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The three-limit algorithm

oint(T) = Inf{||Tv||: v € D(T), llv|l = 1}

Ynin, (4,z) = min{o-inf(Pnl |A — z] Pnz): Uinf(Pnl A" — Z] Pnz)}

Ynin, (4,z)1 Yn, (4,z) = min{o-inf([A — Z]Pnz)» Uinf([A* - Z_]Pnz)}r asng — &©
Vn,(4,2) L y(4,2) == min{oins(A — 2), 0ips(A* = 2)} = [(A = 2) 71|71, as ny — oo

Approx. pseudospectrum: lim lim fnl,nz (A,e) = Spec.(4) ={z:y(A,2) < &}

nz—)OO n1—>OO

Fnl,nz,n3 (4) = rnl,nz (4,1/n3)
What assumptions are needed to reduce the number of limits?

* Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
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Example: quasicrystals
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Aperiodicity = interesting physics but very hard to compute spectra!



Example: quasicrystals

Model: Perpendicular magnetic field (of strength B).

Matrix equation

X1
X2
X3

_— — Z eiejk(B)Xk’

k connected to j

Matrix sparsity

14/35
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Example: quasicrystals
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Example: quasicrystals

vae'e
s‘c.‘ & a.‘.a
a":‘ g" :.‘:‘o ::‘0
#8808, 98 (0 808 Y
o> Yo’ €
«’qe ¢ o0
88082 o0nd
2% . 0%

missed info

Typical approach: n X n truncation (possibly with BCs)
Problems: spectral pollution, which eigenvalues are reliable etc.
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Example: quasicrystals

YA NI AT
QI ZHSIAISK
098 %% 297 Yodo o 00 o
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‘ X <
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X
O 8% " e'ws " 0-/n
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RO PR O

New approach: f(n) X n truncation.
Naturally captures interactions!
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Sketch of algorithm

oinf(T) = inf{||Tv||: v € D(T), [[v|| = 1}
”(A _ Z)_lll_l — min{a—inf(A _ Z): O-inf(A>I< T Z_)}

Uinf(Pf(n) [A — Z]Pn) = Oinf([A — z]By) | oine(A — 2)

Suppose we can relate || (4 — z) || to dist(z, Spec(4)), e.g., normal operators:

Oine(Pray[A — z]Py) L I(A — 2)7H|7 = dist(z, Spec(4))

\

Final ingredient: local and adaptive search for local minimisers. Error control!
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Magnetic Field Strength

o
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Example: quasicrystals

Square truncations
Spectral pollution.

2 1 0 1 2

- Ene-rgy (Spectrum)

Does not converge
No error control

New method
Convergent computation.

o
w
T

Magnetic Field Strength

]
=
T

2

o

-4 -3 2 -1

Energy (Spectrum)

Converges
Error control



s it right? s
The importance of verification

Articles published week ending 28 JUNE 2019

Published by
American Physical Society o Volume 122, Number 25

E.g., ground state of quasicrystal

C., Roman, Hansen, “How to compute spectra with error control,” Phys. Rev. Lett., 2019.



IS it right? - PHYSICAL REVIEW B o
The importance of verification

covering condensed matter and materials physics

Highlights
/I/
PHYSICAL Bulk localized transport states in
I REVIEW infinite and finite quasicrystals via
4 LETTERS magnetic aperiodicity

Phys. Rev. B

' Anticles published week ending 28 JUNE 2019

| Spectra with error control

Certainty in computed
spectral properties

Published by
American Physical Society Shot Volume 122, Number 25

E.g., ground state of quasicrystal

E.g., new physical phenomena:
bulk localised transport states

 C.,,Roman, Hansen, “How to compute spectra with error control,” Phys. Rev. Lett., 2019.
 Johnstone, C., Nielsen, Ohberg, Duncan, “Bulk Localised Transport States in Infinite and Finite Quasicrystals via Magnetic Aperiodicity,” Phys. Rev. B, 2022.
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Example (local uniform convergence)

Theorem: Let ) be class of self-adjoint diff. operators on L?(R%) of the form
T = Zkezg0,|k|5N Ck(x) ak S.t.

 Smooth compactly supported functions form a core of T.

* {c;} are polynomially bounded and of locally bounded total variation.
Assume algorithm can:

* Point sample {c,(q)} for g € Q% to arbitrary prec.

* Evaluate a polynomial that bounds {c,} on R€.

Then...

* C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022
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Example (local uniform convergence)

Theorem: Let ) be class of self-adjoint diff. operators on L?(R%) of the form
T = ZkengJleN Ck(X) ak S.t.

 Smooth compactly supported functions form a core of T.

* {c;} are polynomially bounded and of locally bounded total variation.
Assume algorithm can:

* Point sample {c,(q)} for g € Q% to arbitrary prec.
* Evaluate a polynomial that bounds {c,} on R€. /Verifiable

[ Not verifiable
(a) Know bound TV,_,, 1a(cx) < by, = {Sp, Q} € £;. /

(b) Only know asymp. bound TV;_,, 1a(ck) = O(by) = {Sp, 2} € A;\(Z1 U IIy).

* C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022



19/35

Back to Schwinger: —A + V on L?(R%)

Increasing difficulty

Error control Bounded V
A Bounded V with
‘ Eerllzg:gltj;d, /Iocally bounded TV /
I1 [T, 1 I, [l
0

] & < & < G
Ay & A €SS, UILE A, €3, UILS A, ©3. UIlLL
; S & S % S
2 >, >, >,

/

Self-adjoint, bounded V' with
locally bounded TV

* Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
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Back to Schwinger: —A + V on L?(R%)

Increasing difficulty

Error control Bounded V
A Bounded V with
‘ Eerllfc)(c)):;d;d, /Iocally bounded TV /
[1 Hl HZ H3
0 ¢ ¢ ¢ :

\ -4 S\Q X S\Q % ‘.
Ay & A GZUILGE A, €X, UL E Az SE3 UG-
: < % IS 2 IS

Ny > >, >,

Self-adjoint, bounded V with NB: Most existing convergence results for spectra, even on bounded
locally bounded TV domains, prove A, results and miss the optimal X, convergence!

CHALLENGE: Can you get Z; for your problem/method?

* Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
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Example 2: A, alg. for spectral meas.
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Spectral measures — diagonalisation

* Fin.-dim.: B € C™*" B*B = BB*, o.n. basis of e-vectors {vj}?ﬂ

*

Vjv;
1

' n
U:

|/

U,

. i
3

Bv = Eljvjvj v,
J=1 )

Vv e Ch

* Inf.-dim.: Operator A: D(4) — H . Typically, no basis of e-vectors!
Spectral theorem: (projection-valued) spectral measure E

f=

j 1dE(A)
Spec(4) |

f

Af =

] AdE Q)
Spec(4) |

f, YfEN

* Spectral measures: 11-(U) = (E(U)f, f) (lIf|l = 1) prob. Measure on R.
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A two-limit algorithm (Stone’s formula)

Smoothed spectral measure:

1 eduys() ((A-[x+ie)'—(A—[x—ieD)'If. f)

€ — — —
y (%) = m) (x—A)?+e? 21Ti
R

X
o

o

¢ = “smoothing parameter”
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A two-limit algorithm (Stone’s formula)

Smoothed spectral measure:

1 eduys() ((A-[x+ie)'—(A—[x—ieD)'If. f)

&
X) = — —
Hy () ) (x—A)2+e? 21Tl
R
Discretize RHS with size n,, to get u; ,, . Set X
[py i, (A) = p/ 2 o
ni,n; fing 06
Converges in weak sense. ¢ = “smoothing parameter”

Without extra assumptions, this is sharp!!
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A two-limit algorithm (Stone’s formula)

Smoothed spectral measure:

1 eduys() ((A-[x+ie)'—(A—[x—ieD)'If. f)

&
X) = — —
Hy (1) ) (x—A)2+e? 21Tl
R

Discretize RHS with size n,, to get u; ,, . Set X

T VR ¢ B
ni,n; fing 06
Converges in weak sense. ¢ = “smoothing parameter”

Without extra assumptions, this is sharp!!

If we can compute RHS with error control (e.g., residuals), choose nq(¢).



Example: integral operator

1

[Au] (%) = xu(x) + f e~(2+7) 4 (y)dy

-1

Discretize using adaptive Chebyshev collocation method.
3/2x

Look at s for f(x) =

107 ¢

102 ¢

pg (x)

107 ¢

23/35
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Example: integral operator

1 (%) — 15 (30) /|15 (x0)

pr(x0) — pe(x0)l/ |Pfl(l><|0?_|

100 pes
,/’// b
/\'\\/////
6 L
107} cﬁét/’
O\
.
1025
& » T
1072 107" 10°
€

Slow convergence (more than five digits infeasible). Can we do better?



24/35

0

High-order versions of Stone’s formula K(x)
m=6_,
=l m=5
mth order rational “smoothing” kernels: M= Lﬂ: —
m = |
1 a i aq 0.5+ B |
K(x) =—=X",—L—-—L,K.(x) =K / m =1
(x) 211 Zf—lx—aj xX—aj (X) (x/g)/g /&
| N . >

[Ks * ﬂf] (%)
i Zral[y(A — [~ eq )~ @ (A~ [x = gD 7] f)

2TT1L

= larger ¢ for a given accuracy = smaller n, (&) for a given accuracy
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Demo: radial Schroédinger

d?u (€(€+1) : 1

[Lul(r) = = (r) - (e7" — 1)) u(r), r > 0.

r? r

normf = sqrt(pi/8)*(2-igamma(1/2,8)/gamma(1/2)); % Normalization

f = @(r) exp(-(r-2).72)/sqrt(normf) ; %» Measure wrt f(r)
V={@(r) 0, @(r) exp(-r)-1, 1}; 7%, Potential, 1=1
[xi, wi] = chebpts(20, [1/2 2]); % Quadrature rule
mu = rseMeas(V, f, xi, 0.1, ‘Order’, 4) % epsilon=0.1, m=4

ion_prob = wil * mu,; %» Ionization prob
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Demo: radial Schroédinger

lor = [Ke = el 2/l

100g

102¢
ol
10 C
L _— 6
" - 10

Wavefunction « e~ ("—T0)?
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Eigenvalues of Dirac operator

100 o

-

5L
107 PPt
"

15| . ]
: . UU :
L II o
| 3.1% 107 32x 107 3.3x 107 ]

107 107 1072 10°
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Spectral measures of seIf—ad Jomt operators

Horizontal slice = spectral measure at constant magnetic field strength.

Software package

SpecSolve available at https://github.com/SpecSolve
Capabilities: ODEs, PDEs, integral operators, discrete operators.

e C., Horning, Townsend “Computing spectral measures of self-adjoint operators,” SIAM Rev., 2021.


https://github.com/SpecSolve
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Executive summary of theorems

Input an open (or closed) set

"4
* Generic assumptions: Computing (4, f,U) © us(U) has SCI = 1 but
error control or rate impossible (even for discrete Schrodinger).

* If spectral measure py is a.c. on interval I, with C™% density P, then
lof — |Ke * Mf]HLOOU) = O(e™% + £™log(1/¢))

* Weak convergence always O(e™log(1/¢)) for C™ test functions.

 Splitting into spectral type: SCI = 2 or 3.

NB: Constants can be made explicit.

* C., “Computing spectral measures and spectral types,” Comm. Math. Phys., 2021
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Further areas
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Other areas with SCl results

* PDEs e.g.:

* Can you solve Schrédinger eq. on L? (]Rd) with error control?

e Can you predict blow-up of non-linear PDEs?

Optimization
* Inverse problems (e.g., imaging)

* Polynomial root-finding: Smale (settled by McMullen), “Is there a purely
iterative convergent algorithm for polynomial zero finding ?”

* Topology

e As well as ... (computer-assisted proofs, Al, dynamical systems etc.)
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Computer-assisted proof: Dirac-Schwinger conjecture

E(Z) = ground state e:% N: # of electrons, Z: charge of nucleus
_ ~1
H = 2( Dy, — Zlxp|™1) + Z‘x] — x|

=1 j<k

Theorem: E(Z) = —co,Z7/3 + %Zz — ¢, Z>3 + 0(Z>/371/2835) 35 7 — o0

Proof involves spectral analysis, analytic number theory, ...,
computer-assisted bound involving solutions of an ODE.

Fefferman and Seco implicitly prove X'; classifications!

Fefferman, Phong, “On the lowest eigenvalue of a pseudo-differential operator,” Proc. Natl. Acad. Sci. USA, 1979.
Fefferman, “The N-body problem in quantum mechanics,” Comm. Pure Appl. Math., 1986.
Fefferman, Seco, “Interval arithmetic in quantum mechanics,” Applications of interval computations, 1996.



32/35

Computer-assisted proof: Kepler conjecture
(Hilbert’s 18th problem)

Proof shows potential counterexamples
would satisfy infeasible inequalities

relaxed to = 10,000s linear programs

These can’t always be decided!

Hales, “A proof of the Kepler conjecture,” Ann. of Math., 2005.
Hales et al., “A formal proof of the Kepler conjecture,” Forum Math. Pi, 2017. «~
Bastounis, Hansen, Vlaci¢, “The extended Smale's 9th problem,” preprint.

Account of Flyspeck project (formal proof)
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Example: Barriers of deep learning

@ UNIVERSITY OF
% CAMBRIDGE

Study at Cambridge About the University Research at Cambridge

PNAS Q

/ Research / News / Mathematical paradox demonstrates the limits of AL

Research

RESEARCH ARTICLE APPLIED MATHEMATICS

The difficulty of computing stable and
accurate neural networks: On the barriers of
deep learning and Smale’s 18th problem

Matthew 1 C C £

thew j. COIDrook Vegard Antun & and Anders C Hansen & Authors Info & Affiliations

FULL ACCESS

fyine 2

Research home Our people Spotlights About research Business and enterprise

Mathematical paradox demonstrates the limits of Al

March 16, 2022 - N ) i N
.
mw FOR THE TECHMOLOGY INSIDER 0' _.-:e o :A ‘ ‘ ... ‘,‘ ‘-.‘. ‘w‘:;‘
p— Some Al Sy ty good at recognising when they get things wrong, but
Some Al Systems May Be Impossible to Compute >

Instability is the Achilles” heel of modern artificial intelligence |
training algorithms finding unstable neural networks (NNs) d¢
ones. This foundational issue relates to Smale’s 18th mathem
century on the limits of Al. By expanding methodologies initia
demonstrate limitations on the existence of (even randomize
NNs. Despite numerous existence results of NNs with great a|
only in specific cases do there also exist algorithms that can ¢
classification theory on which NNs can be trained and introdu
suitable conditions—are robust to perturbations and exponel

number of hidden layers.

New research suggests there are limitations to what deep
neural networks can do

BY CHARLES Q. CHOI | 30 MAR 2022 | 4 MIN READ | []

:ems are not. According to a new study, Al generally suffers
s due to a century-old mathematical paradox.

n have a degree of confidence that far
like an overconfident person, many Al
making mistakes. Sometimes it's even more
when it's making a mistake than to produce

 Cambridge and the University of Oslo say
of modern Al and that a mathematical

&€ There are fundamental
limits inherent in
mathematics and,
similarly, AI
algorithms can't exist
for certain problems b))

— Matthew Colbrook

e C., Antun, Hansen, “The difficulty of computing stable and accurate neural networks:

Smale’s 18th problem,” Proc. Natl. Acad. Sci. USA.

On the barriers of deep learning and
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Example: Rigorous Koopmania!

e State x € Q) € R%, unknown function F: Q — Q governs dynamics
Xn+1 = F(xy)
* Goal: Learn about system from data {x(m),y(m) = F(x(m))}:i:l

* Koopman operator K acts on functions g: (0 - C

[Kgl(x) = g(F(x))
K is linear but acts on an infinite-dimensional space.

* Often spectral info encodes the features of the system we want.

* 35,000 papers over last decade, hardly anything on NA of this problem!

* C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.
* C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., under minor rev.
* Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition



https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
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Summary

SCI hierarchy: a tool that allows us to
e Classify difficulty of continuous and discrete computational problems.
* Prove that algorithms are optimal (in any given computational model).

* Framework = find assumptions and methods for computational goals.

http://www.damtp.cam.ac.uk/user/mjc249/home.html: slides, papers, and code



Additional slides



Problem: hallucinations and instability

Hallucinations in image reconstruction Instabilities in medical diagnosis
Original image AT reconstruction Original Mole Perturbed Mole

| Benign
,l ,,,,, Malignant Malignant
Model confidence Model confidence
“Al generated hallucination”, from Facebook and NYU’s From Finlayson et al., “Adversarial attacks on
FastMRI challenge 2020 medical machine learning,” Science, 20109.

When can we make Al robust and trustworthy?



Example of the limits of deep learning

Paradox: “Nice” linear inverse problems where a stable and accurate neural
network for image reconstruction exists, but it can never be trained!

E.g., suppose we want to solve (holds for much more general problems)

(P1) argmin o~ Fi'(z) = |zll;1 , such that [|[Az —y|;2 <€,
(P2) argming_en Fi'(z,y,\) = Allzlfn + [[Az —y 2%,
(P3) argmin o~ Fi'(z,y, \) = Allzll;n + [[Az — yll;2.

A € C™*N (modality, m < N), S = {y]} _(samples)

Arises when giveny = Ax + e.



Arbitrary precision of training data

In practice, A not known exactly or cannot be stored to infinite precision.

Assume access to: {)’k:n}ﬁzl and A, (rational approximations, e.g., floats) such that

Iven —yill <277 ||A, — Al £27". VneNl.

Training set for (A, S) € Q:

LAS = {(ykjn,An) ‘k —=1,....,Rand n€ N}

In a nutshell: allow access to arbitrary precision training data.

”~

Question: Given a collection Q2 of (A, S), does there exist a neural network
approximating = (solution map of (P;)), and can it be trained by an algorithm?




Condition numbers

Given () € C", define

Act() ={j:Ix,y € Qx; #y;}, Q4 ={x:3y € Q xpc ()¢ = Vac)<)
« Condition of a mapping Z: Q1 = C™ with Q € Q:

dist(E(x + z), E(x
Cond(Z, Q) = sup lim sup ( ()
x€Q €204 1 -ecnActn ”Z”oo
0<||z]|l0<e

* For problems with constraints (e.g., basis pursuit P; or LPs)
v(4,y) = inf{e = 0: 19 — yll,, ||/T — A|| < ¢ (4,9) € Q4 and infeasible}
max{||y|l,, [|All}
Cep(4,y) =
rp(4,) v(4,y)

* Renegar condition number
u(4,y) = infle = 0: |9 — yll, |

CRCC (A, y) —

A— A|| < g, (/i, 37) € QACt = multivalued}
max{||y|l,, | All}
u(4,y)




Theorem: For any of prev. problems, integer K = 3 and L € N, 3 a well-conditioned class (A(K)
of inputs s.t. simultaneously

1. No deterministic alg. can, given a training set 14 ¢ € ), produce a neural network (NN) ¢ with

. . Ak < —K
(D r;lelgx*elzn(g,y)llcﬁ(y) x|l <10 V(4,5) € Q(K).

Foranyp > 1/2, no random alg. (any model of comp.) can produce a NN ¢ s.t. (1) holds with prob. = p.

2. (a) 3 deterministic alg. that , given a training set 14 5 € ()7, produces a neural network (NN) ¢ with

(2) max inf [|¢(y) —x*[|, < 107E"D  v(4,5) € Q(K).
YES x*€E(A,y)

(b) However, for any probabilistic Turing Machine that produces such a NN, any M € N and

p € [O, N]:ilm), there exists a training set iy ¢ € (yr st.Vy €S
IP( *EiHn(E )llqb(y) — x*||, > 10~%=1D or size of training data to construct ¢ exceeds M ) > p.
X*EZ(Ay

3. ddeterministic alg. that, given a training set 14 s € (), produces a NN ¢ accessing at most L
training samples of 14 ¢ s.t.

(3) max inf [|¢(y) —x*[|, < 107%=2)  v(4,5) € Q(K).
YES x*€E(A,y)

* C., Antun, Hansen, “The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and
Smale’s 18th problem,” Proc. Natl. Acad. Sci. USA.




Theorem: For any of prev. problems, integer K = 3 and L € N, 3 a well-conditioned class (A(K)
of inputs s.t. simultaneously
1. No deterministic alg. can, given a training set 14 ¢ € ), produce a neural network (NN) ¢ with

. . Ak < —K
(D r;lelgx*elzn(g,y)llcb(y) x|l <10 V(4,5) € Q(K).

Foranyp > 1/2, no random alg. (any model of comp.) can produce a NN ¢ s.t. (1) holds with prob. = p.

2. (a) 3 deterministic alg. that , given a training set 14 5 € ()7, produces a neural network (NN) ¢ with
(2) max _inf [l¢p(y) —x*|l; <1075V v(4,S) € Q(K).

n,*f":/ A '\1\

Holds for any architecture, any precision of training data.

— Classification theory telling us what can and cannot be done
P ( *EiHn(E )llqb(y) — x*||, > 10~%=1D or size of training data to construct ¢ exceeds M ) > p.
xX*€E(A,y
3. ddeterministic alg. that, given a training set 14 s € (), produces a NN ¢ accessing at most L
training samples of 14 ¢ s.t.

(3) max inf [|¢(y) —x*[|, < 107%=2)  v(4,5) € Q(K).
YES x*€E(A,y)

* C., Antun, Hansen, “The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and
Smale’s 18th problem,” Proc. Natl. Acad. Sci. USA.




The world of neural networks

Existence of NNs
& training algorithms

B trainable w/ 1 datum

O trainable w/ 2 data

arb. large training data

[] NN exists ~—

Given a problem and conditions, where does it sit in this diagram?



The world of neural networks

Existence of NNs Achievable accuracy
& training algorithms of computation

B trainable w/ 1 datum arbitrary accuracy

[ trainable w/ 2 data

3 digits of accuracy

arb. large training data 2 digits of accuracy

NN exists ~_ 1 digit of accuracy

Given a problem and conditions, where does it sit in this diagram?



Example counterpart theorem

Certain conditions: stable neural networks trained with exponential accuracy.
E.g., approximate tojasiewicz-type inequality:

(D min f(x) st |Ax —yll < €
dist(x, solution) < a([f(x) — f*] + [l|Ax — y|| — €] + 9)

Fast Iterative REstarted NETworks (FIRENETS)
(unrolled primal-dual with novel restart scheme)

Theorem: Training algorithm that, under above assumption, produces stable neural
networks ¢,, of width O(N), depth O(n), guaranteed worst bound

dist(¢p,,(y), solution) S e ™™+ 6§

e C,, Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.
* C, “WARPd: A linearly convergent first-order method for inverse problems with approximate sharpness conditions,” SIAM J. Imaging Sci., 2022.



Numerical example of GHA

Image Fourier Sampling
V" i ‘ E =

Figure: Images corrupted with 2% Gaussian noise and reconstructed using 15% sampling.

Walsh Sampling

* C., Antun, Hansen, “The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and
Smale’s 18th problem,” Proc. Natl. Acad. Sci. USA.



Relative Error

Numerical example of GHA

Convergence, Fourier Sampling

100 ¢

107

102

reconstruction error

06_/@
c 9 '0 o E
1I0 210 3I0 410 5I0
Number of Hidden Layers

60

Relative Error

107k

102 F

100 ¢

Convergence, Walsh Sampling

reconstruction error

0 10 20 30 40 50

Number of Hidden Layers

60

C., Antun, Hansen, “The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and

Smale’s 18th problem,” Proc. Natl. Acad. Sci. USA.



VIRIsdiscrete 20 Example of severe instability

Fourier transform, |  Original « |z + 71| |z + 7o)
60% subsampling.

Perturbations
computed in real
space, mapped to
measurement space.

* Zhu et al., “Image reconstruction by domain-transform manifold learning,” Nature, 2018.
* Antun et al., “On instabilities of deep learning in image reconstruction and the potential costs of Al,” PNAS, 2020.




FIRENET: provably stable (even to adversarial examples) and accurate

Original x |z + v3]

Assumptions on sampling
and approximate sparseness
give approximate tojasiewicz

e C,, Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.



Key pillars: stability and accuracy

Original « Original Original + detail (x + h1)

(full size) (cropped, red frame) (cropped, blue frame)

MRI: discrete 2D
Fourier transform,
15% subsampling.

All networks
trained on 5000
images of ellipses

C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.



U-Net with no noise: accurate but unstable

Original « Original Original + detail (x + h1)
(full size) (cropped, red frame) (cropped, blue frame)

U-Net: standard
neural network
architecture for
imaging. Approx 4
million parameters.

e C,, Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.



U-Net with noise: stable but inaccurate

Original « Original Original + detail (x + h1)
(full size) (cropped, red frame) (cropped, blue frame)

e C,, Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.



FIRENET: balances stability and accuracy?

Original « Original Original + detail (x + h1)
(full size) (cropped, red frame) (cropped, blue frame)

Can u
see 1t?

C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.



FIRENET: balances stability and accuracy?

Original « Original Original + detail (x + h1)
(full size) (cropped, red frame) (cropped, blue frame)

Open problem: use the toolkit to precisely prove theorems
about optimal trade-offs.

Can u
see 1t?

e C,, Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.



Stabilising unstable neural networks

AUTOMAP+FIRENET rec. from
Yy = Ax + é3

D (g,¥(g)) FIRENET rec. fromy = Ax + é3




Data-driven dynamical systems

e State x € Q € R%, unknown function F: Q — Q governs dynamics
Xn+1 = F(xp)
* Goal: Learn about system from data {x(m),y(m) = F(x(m))}j::l

* E.g., data from trajectories, experimental measurements, simulations, ...
* E.g., used for forecasting, control, design, understanding, ...

* Applications: chemistry, climatology,
electronics, epidemiology, finance,
fluids, molecular dynamics,
neuroscience, plasmas, robotics,
video processing, ...

Can we develop verified methods

°



Operator viewpoint

* Koopman operator K acts on functions g: () = C

[Kgl(x) = g(F(x))
* K is linear but acts on an infinite-dimensional space.

State x x x xn Non linear
I

Functlons \ \ \ \ Lmear

of state g(x1) g(xz) g(x3) : g(xn)

« Work in L?(Q, w) for positive measure w, with inner product {,-).

Koopman, “Hamiltonian systems and transformation in Hilbert space,” Proceedings of the National Academy of Sciences, 1931.
Koopman, v. Neumann, “Dynamical systems of continuous spectra,” Proceedings of the National Academy of Sciences, 1932.



Build the matrix

S

x(m)
L{ ,y(m) _ F(x(m))}M
m=1

Given dictionary {1/)1, - leK} of functions ¢;: Q — C

—_———

P (x®) o Yy D\ fwy P (D) ey (x D)
(Wi ;) = T Winth; Cx ) (x ) = S s g S i
P (x™M) ey (M) wy ) \ P (x®) o Py (x@D)

Py % Py L
VA G BRIV 1) AN ATA YD) o Yy O]
(Kie, ;) = Tipmg Wty () (™) = S s g S i
[ (M) l,bl(x(M)) ¢NK(x(M)) Wy l/J1(3’(M)) ‘/)NK()’(M))
i Yy w Py “Jjk

:K,‘ > K —_ (LIJX*WLIJX)_]'LPX*WLPY (S (CNKXNK



Residual DMD: Approx. K and KX*K

(Wi ) = i Winth; (x (™) e (x ™)) = [wx WWX]

m=1 jk
M
(Kb, ) = > with; (x) iy (y) = [LPX W%]
m=1 (K] (x (™) jk
M
(Kipie, Kpj) = > w1 () i (y)) = FJY*W‘PZ]
m=1 K jk

Residuals: g = Z 18V, IKXg —2glI” = g"[K, — AK," — 2Ky + |1A]°Glg

 C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,”

Communications on Pure and Applied Mathematics, under review.

* Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition



https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

Example: Trustworthy computation for large d

Periodic

conditions / Inlet
~ St

Blade Outlet

/"« Reynolds number = 3.9 x 10°
 Ambient dimension (d) = 300,000

(number of measurement points)

*Raw measurements provided by Stephane Moreau (Sherbrooke)

404 mm
Outlet
Rel. Error = 7? Rel. Error =7
1 el . 0.08
| 0.25 A — eO71l
0.8 —_
0.2 ; 0.06
0.6 \. acoustic source?
i % )X 0.04
104 - ;
g L o05 E \& 10.02
10 10 10
0.2 -0.05 .
0.4 0.1
0.6 0.15 -0.04
-0.2 -0.06
0.8
e 0.25
-1 -0.08

 C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.



Example: Trustworthy computation for large d

Inlet

Periodic

conditions
e G /, Blade Outlet

/"« Reynolds number = 3.9 x 10°

 Ambient dimension (d) = 300,000
(number of measurement points)

*Raw measurements provided by Stephane Moreau (Sherbrooke)

Rel. Error < 0.0054 Rel. Error < 0.0128 Rel. EFFOF 00196
0.11i ' o

A — eO.Sll 0.25

0.2

=€

0.06

turbulent

: 0.15
fluctuations

0.04

404 ™
\ 10.02
0 02 i 1005
S , oo
S _ = 1-0.02
3 - 401
-0.04
0.6 1 s
# 0.2 -0.06

-0.08
acoustic vibrations

 C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.




jonary

Verify the dicti

Example

res(4;, g;), linear dictionary

res(4;, g;), nonlinear dictionary

05}
-0.5}

Un
e

6.4 x 10%

* Reynolds number =
 Ambient dimension (d) = 100,000

(velocity at measurement points)
*Raw measurements provided by Maté Sz6ke (Virginia Te«

Re(1)

0.8948 + 0.1065i, error < 0.1105

Re(A)

1=

A=

0.9439 + 0.2458i, error < 0.0765
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C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., under minor rev.



Example: molecular dynamics (Adenylate Kinase)

Adenylate Kinase
¢ key parts
N

 Ambient dimension (d) = 20,000
(positions and momenta of atoms)
 6th order kernel (spec res 107°)

*Dataset: www.mdanalysis.org/MDAnalysisData/adk_equilibrium.html

o g | b

0.22} /

0.2

0.18 ¢

0.14 ¢

 C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.



Example: Trustworthy Koopman mode decomposition

Pressure

-50 1

-100

b)t =10 us

true
o modulus ordering
o residual ordering

......
vy R AR vy e re ey

\ unseen shockwi

prediction
from 40 modes
0 2 4 6 8
Time(10~°s)

Relative MSE

d) = 20 us

—residual ordering
—modulus ordering

compression

extremely efficient f

50

100 150

Number of modes

200

* C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., under minor rev.



Bulk localised transport

~x107(c)  t=500J"  x107(d) t=1000/"

X
AT e c
3 - /)
o 1

16 &

x1073(g) t=500J"
(116 R

» Johnstone, C., Nielsen, Ohberg, Duncan, “Bulk Localised Transport States in Infinite and Finite Quasicrystals via
Magnetic Aperiodicity,” Phys. Rev. B, 2022.
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Hm\ucr publishing a
study can be undesirable. For example,
medical data in particular include personal
information that—if published in full—
would violate patients’ privacy and poten-
tially expose them to harm. Similarly. many

Original
Data

Differential Frivncy
Preprocessin

Vine Copula
Model

o s
Wy
0=

Figure 1. Jn addition to
the data set Sabastion Gambs’” dferental
privacy-by ocesses it with
an et tecty aigorthm 1o ol

data that—in_principle:
‘orvacy of the peopié nvoNed. Figure
court f5<‘/<" the author.

dding noise o

Unfoetunately, mulipre
that simply anonymizing the data—by
removing individuals' names before publi-
cation, for instance—Is insufficient, as out-
siders can use context clues o reconstruct
missing information and expose research
subjects. “We want to generate synthetic
data for public release to replace the origi-
nal data set.” Bei Jiang of the University of
Alberta said. “When we design our frame-
work, we have this main goal in mind: we
want 1o produce the same inference results
as in the original data set.”

In contrast with falsified data, which is
one of the deadliest scientific sins, research-
ers can generate synthetic data directly from
oniginal data sets. If the construction process
is done propesly, other scientists can then
analyze this synthetic data and trust that their
conclusions are no different from what they
would have obtained with full
original raw data — ideally. at le:
you [create] synthetic data. what does it mean
10 be private yet realistic?” Séhastien Gambs

lenges in the o
stakes are higher than ever. “There is always
a trade-off between utility and risk.” Jiang
said. “If you want 10 protect people [who
are at a higher risk, then you perturb their
data. But the utility will be lowered the more
you perturh. A better approach is 10 account
for their risks to begin with.”

Unfortunately, malicious actors have access
10 the same algorithmic tools as research-
ens. Therefore, protection of confidentially
also involves testing synthetic data against
the types of attacks that such players might
utlize. “In practice, this helps one really
understand the translation between an abstract
privacy parameter and a practical guarantee.”
Gambs said. In other woeds, the robustness
of a formal mathematical model is irrel-
evant if the model is not well implemented.

htips:/fanas.confex.com/aaas/2022/
meetingapp.cgi

on poge 3

Extract
“.I.__ Statistics
n Apply Multiple

Imputation Model

Synthetic
Data

da &
fo construct 2 synthetic data set th
exactly the same statistical character
Figure courtesy of the author

23
TRE
S8csey
£322%
a-aEE
B4 EL
25 &3

”

4

g

5

H

@

E

g

2

H

w

£

< 3

T2

5

528

E4

Es3

2§

3é

258

BE

55
» wzg

g8z

Proving Existence Is Not Enough:

Mathematical Paradoxes Unravel the Limits
of Neural Networks in Artificial Intelligence

By Vegard Antun, Matthew J.
Colbrook, and Anders C. Hansen

he impact of deep leaming (DL), neural
networks (NNs), and artificial intelli-

gence (Al) over the last decade has been
profound. Advances in computer vision and
natural language processing have yielded
smart speakers in our homes, driving assis-
tance in our cars, and automated diagnoses
in medicine. Al has also rapidly entered sci-
entific computing. However, overwhelming
amounts of empirical evidence [3, 8] suggest
that modern Al is often non-robust (unstable),
‘may generate hallucinations, and can produce
nansensical output with high levels of predic-
tion confidence (see Figure 1). These issues
present a sesious concern foe Al use within
legal frameworks. As stated by the European
Commission's Joint Rescarch Centre, “In
the light of the recent advances in Al the
serious negative consequences of its use for
EU citizens and organisations have led to
multiple initiatives [...] Among the idensified
requirements, the concepts of robustness and
explainability of Al systems have emerged
as key elements for a future regulation.™

Robustness and trust of algorithms lie
at the heart of numerical analysis [9]. The
lack of robustness and trust in Al is hence
the Achilles' heel of DL and has become a
serious political issue. Classical approxima-
tion theorems show that a continuous func-
n be approximated arbitrarily well
[5). Therefore, stable problems
that are described by stable functions can
be solved stably with a NN. These results
inspire the following fundamental question:
Why does DL iead to unstable methods and

Our main result reveals 4 serious issue
for centain problems: while stable and accu-
rate NNs may provably exist. no training
algorithm can obtain them (see Figure 2,
on page 4). As such, existence theorems
on approximation qualities of NNs ¢
universal approximation) represent only the
fist step towards a complete understanding
of modern AL Sometimes

results about the feasible achievements of
mathematics and digital computers.

A similar program on the boundaries of
Alis necessary. Stephen Smale already sug-
gested such 4 program in the 18th problem
on his list of mathematical problems for the
2istcentury: What are the limits of AI? [11].

See Mathematical Paradoxes on poge 4

they cven provide overly

optimistic estimates of pos- Original
sible NN achievements.

The Limits of Al:
Smale’s 18th Problem

‘The strong optimism that
surrounds Al is evident in
computer scientist Geoffrey
Hinton’s 2017 quote: “They
should sop_ teaining radi- | [EY}
ologists now.”* Such opti-
mism is comparable 1o the
confidence that surrounded
mathematics in the early
20th century, as summed
up in David Hilbert's senti-
ment: “Wir miissen wissen.
Wir werden wissen” [
must know. We will know”]

Hilbert believed that
‘mathematics could prove o
disprove any statement, and
that there were no restric- =
tions on which problems

algorithms could solve. The
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