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“Most operators that arise in practice are not presented in a representation in which
they are diagonalized, and it is often very hard to locate even a single point in the
spectrum. Thus, one often has to settle for numerical approximations […] Unfortunately,
there is a dearth of literature on this basic problem and, so far as we have been able to
tell, there are no proven [general] techniques.” W. Arveson, Berkeley (1994)

Finite-dimensional            ⟹ Infinite-dimensional

Eigenvalues of 𝐵 ∈ ℂ𝑛×𝑛 ⟹ Spectrum, Sp(𝐴)

𝜆𝑗 ∈ ℂ: det 𝐵 − 𝜆𝑗𝐼 = 0 ⟹ 𝜆 ∈ ℂ: 𝐴 − 𝜆𝐼 is not invertible

Canonical basis vectors of 𝑙2(ℕ)

Linear spectral problem
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In a series of papers in the 1950's and 1960’s, J. Schwinger examined the
foundations of quantum mechanics. A key problem he considered:

Given a self-adjoint Schrödinger operator −∆ + 𝑉 on ℝ,
can we approximate its spectrum?

Partial answer: T. Digernes, V. S. Varadarajan and S. R. S. Varadhan (1994)
gave a convergent algorithm for a class of 𝑉 generating compact resolvent.

For which classes of differential operators on unbounded domains do
there exist algorithms that converge to the spectrum? Can we guarantee
that the output is in the spectrum up to an arbitrarily small tolerance?

A motivating problem

• Digernes, Varadarajan, Varadhan, “Finite approximations to quantum systems,” Rev. Math. Phys., 1994.
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Matrix case (𝑙2(ℕ)): truncate to 𝒫𝑛𝐴𝒫𝑛
∗ ∈ ℂ𝑛×𝑛.

PDE on unbounded domain: truncate domain then discretise.

Some key issues:

• Spectral pollution (evals accumulate at pts not in Sp(𝐴) as 𝑛 → ∞)

• Spectral invisibility.

• Dealing with essential spectra and continuous spectra.

• Stability, non-normality etc.

• Verification – can we compute spectral properties with error bounds?

What can go wrong?

• Boegli, Marletta, Tretter, The essential numerical range for unbounded linear operators,” J. Funct. Anal., 2020.
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Not all spectral problems are created equal …
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A =
𝑎1

𝑎2
⋱

Assumption: Algorithm can query entries of 𝐴

Algorithm: Γ𝑛 𝐴 = 𝑎1, 𝑎2, … , 𝑎𝑛 → Sp 𝐴 = 𝑎1, 𝑎2, … in Haus. Metric.

One-sided error control: Γ𝑛 𝐴 ⊂ Sp(𝐴)

Optimal: Can’t obtain ෠Γ𝑛 𝐴 → Sp 𝐴 with Sp(𝐴) ⊂ ෠Γ𝑛 𝐴 .

Warm-up: bounded diagonal operators

𝑑H 𝑋, 𝑌 = max sup
𝑥∈𝑋

𝑑(𝑥, 𝑌) , sup
𝑦∈𝑌

𝑑(𝑦, 𝑋)
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Algorithm: Γ𝑛 𝐴 = Sp 𝒫𝑛𝐴𝒫𝑛
∗ converges to Sp(𝐴) in Haus. Metric.

Question: Can we verify the output?

i.e., Does there exist some alg. ෠Γ𝑛(𝐴) → Sp 𝐴 with ෠Γ𝑛 𝐴 ⊂ Sp 𝐴 + 𝐵2−𝑛?

Example: compact self-adjoint operators

classic method
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Algorithm: Γ𝑛 𝐴 = Sp 𝒫𝑛𝐴𝒫𝑛
∗ converges to Sp(𝐴) in Haus. Metric.

Question: Can we verify the output?

i.e., Does there exist some alg. ෠Γ𝑛(𝐴) → Sp 𝐴 with ෠Γ𝑛 𝐴 ⊂ Sp 𝐴 + 𝐵2−𝑛?

Answer: No algorithm can do this on whole class!

Example: compact self-adjoint operators

classic method
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𝑎1 𝑏1
𝑏1 𝑎2 𝑏2

𝑏2 𝑎3 ⋱
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, 𝑏𝑘 > 0, 𝑎𝑘 ∈ ℝ

Non-trivial, e.g., spurious eigenvalues.

What about Jacobi operators?
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A =

𝑎1 𝑏1
𝑏1 𝑎2 𝑏2

𝑏2 𝑎3 ⋱

⋱ ⋱

, 𝑏𝑘 > 0, 𝑎𝑘 ∈ ℝ

Non-trivial, e.g., spurious eigenvalues.

Enlarge class to sparse normal operators - surely now much harder?!

Answer: ∃{Γ𝑛} s.t. lim
𝑛→∞

Γ𝑛 𝐴 = Sp(𝐴) and Γ𝑛 𝐴 ⊂ Sp 𝐴 + 𝐵2−𝑛,

for any sparse normal operator 𝐴

What about Jacobi operators?

• C., Roman, Hansen, “How to compute spectra with error control,” Phys. Rev. Lett.,,2019.
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Hansen’s three-limit algorithm

• Hansen, “On the solvability complexity index, the 𝑛-pseudospectrum and approximations of spectra of operators,” J. Am. Math. Soc., 2011.

General bounded:

A =
𝑎11 𝑎12 ⋯
𝑎21 𝑎22 ⋯
⋮ ⋮ ⋱

𝜎inf 𝐴 = inf 𝐴𝑣 : 𝑣 ∈ 𝔇 𝐴 , 𝑣 = 1
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𝑛2

𝑛1

Hansen’s three-limit algorithm

• Hansen, “On the solvability complexity index, the 𝑛-pseudospectrum and approximations of spectra of operators,” J. Am. Math. Soc., 2011.

General bounded:

A =
𝑎11 𝑎12 ⋯
𝑎21 𝑎22 ⋯
⋮ ⋮ ⋱

𝜎inf 𝐴 = inf 𝐴𝑣 : 𝑣 ∈ 𝔇 𝐴 , 𝑣 = 1

𝛾𝑛1,𝑛2 𝐴, 𝑧 = min 𝜎inf 𝒫𝑛1[𝐴 − 𝑧𝐼]𝒫𝑛2
∗ , 𝜎inf 𝒫𝑛1[𝐴

∗ − ҧ𝑧𝐼]𝒫𝑛2
∗
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𝑛2

Hansen’s three-limit algorithm

• Hansen, “On the solvability complexity index, the 𝑛-pseudospectrum and approximations of spectra of operators,” J. Am. Math. Soc., 2011.

General bounded:

A =
𝑎11 𝑎12 ⋯
𝑎21 𝑎22 ⋯
⋮ ⋮ ⋱

𝜎inf 𝐴 = inf 𝐴𝑣 : 𝑣 ∈ 𝔇 𝐴 , 𝑣 = 1

𝛾𝑛1,𝑛2 𝐴, 𝑧 = min 𝜎inf 𝒫𝑛1[𝐴 − 𝑧𝐼]𝒫𝑛2
∗ , 𝜎inf 𝒫𝑛1[𝐴

∗ − ҧ𝑧𝐼]𝒫𝑛2
∗

𝛾𝑛1,𝑛2 𝐴, 𝑧 ↑ 𝛾𝑛2 𝐴, 𝑧 ≔ min 𝜎inf [𝐴 − 𝑧𝐼]𝒫𝑛2
∗ , 𝜎inf [𝐴

∗ − ҧ𝑧𝐼]𝒫𝑛2
∗ , as 𝑛1 → ∞
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Hansen’s three-limit algorithm
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𝜎inf 𝐴 = inf 𝐴𝑣 : 𝑣 ∈ 𝔇 𝐴 , 𝑣 = 1

𝛾𝑛1,𝑛2 𝐴, 𝑧 = min 𝜎inf 𝒫𝑛1[𝐴 − 𝑧𝐼]𝒫𝑛2
∗ , 𝜎inf 𝒫𝑛1[𝐴

∗ − ҧ𝑧𝐼]𝒫𝑛2
∗

𝛾𝑛1,𝑛2 𝐴, 𝑧 ↑ 𝛾𝑛2 𝐴, 𝑧 ≔ min 𝜎inf [𝐴 − 𝑧𝐼]𝒫𝑛2
∗ , 𝜎inf [𝐴

∗ − ҧ𝑧𝐼]𝒫𝑛2
∗ , as 𝑛1 → ∞

𝛾𝑛2 𝐴, 𝑧 ↓ 𝛾 𝐴, 𝑧 ≔ min 𝜎inf 𝐴 − 𝑧𝐼 , 𝜎inf 𝐴
∗ − ҧ𝑧𝐼 = 𝐴 − 𝑧𝐼 −1 −1, as 𝑛2 → ∞
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𝜎inf 𝐴 = inf 𝐴𝑣 : 𝑣 ∈ 𝔇 𝐴 , 𝑣 = 1

𝛾𝑛1,𝑛2 𝐴, 𝑧 = min 𝜎inf 𝒫𝑛1[𝐴 − 𝑧𝐼]𝒫𝑛2
∗ , 𝜎inf 𝒫𝑛1[𝐴

∗ − ҧ𝑧𝐼]𝒫𝑛2
∗

𝛾𝑛1,𝑛2 𝐴, 𝑧 ↑ 𝛾𝑛2 𝐴, 𝑧 ≔ min 𝜎inf [𝐴 − 𝑧𝐼]𝒫𝑛2
∗ , 𝜎inf [𝐴

∗ − ҧ𝑧𝐼]𝒫𝑛2
∗ , as 𝑛1 → ∞

𝛾𝑛2 𝐴, 𝑧 ↓ 𝛾 𝐴, 𝑧 ≔ min 𝜎inf 𝐴 − 𝑧𝐼 , 𝜎inf 𝐴
∗ − ҧ𝑧𝐼 = 𝐴 − 𝑧𝐼 −1 −1, as 𝑛2 → ∞

Approx. pseudospectrum: lim
𝑛2→∞

lim
𝑛1→∞

෠Γ𝑛1,𝑛2(𝐴, 𝜀) = Sp𝜀 𝐴 = 𝑧: 𝛾 𝐴, 𝑧 ≤ 𝜀

Γ𝑛1,𝑛2,𝑛3 𝐴 = ෠Γ𝑛1,𝑛2(𝐴, 1/𝑛3)

Sp(𝐴)

Sp𝜀 𝐴
Hansen’s three-limit algorithmGeneral bounded:

A =
𝑎11 𝑎12 ⋯
𝑎21 𝑎22 ⋯
⋮ ⋮ ⋱

• Hansen, “On the solvability complexity index, the 𝑛-pseudospectrum and approximations of spectra of operators,” J. Am. Math. Soc., 2011.
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𝜎inf 𝐴 = inf 𝐴𝑣 : 𝑣 ∈ 𝔇 𝐴 , 𝑣 = 1

𝛾𝑛1,𝑛2 𝐴, 𝑧 = min 𝜎inf 𝒫𝑛1[𝐴 − 𝑧𝐼]𝒫𝑛2
∗ , 𝜎inf 𝒫𝑛1[𝐴

∗ − ҧ𝑧𝐼]𝒫𝑛2
∗

𝛾𝑛1,𝑛2 𝐴, 𝑧 ↑ 𝛾𝑛2 𝐴, 𝑧 ≔ min 𝜎inf [𝐴 − 𝑧𝐼]𝒫𝑛2
∗ , 𝜎inf [𝐴

∗ − ҧ𝑧𝐼]𝒫𝑛2
∗ , as 𝑛1 → ∞

𝛾𝑛2 𝐴, 𝑧 ↓ 𝛾 𝐴, 𝑧 ≔ min 𝜎inf 𝐴 − 𝑧𝐼 , 𝜎inf 𝐴
∗ − ҧ𝑧𝐼 = 𝐴 − 𝑧𝐼 −1 −1, as 𝑛2 → ∞

Approx. pseudospectrum: lim
𝑛2→∞

lim
𝑛1→∞

෠Γ𝑛1,𝑛2(𝐴, 𝜀) = Sp𝜀 𝐴 = 𝑧: 𝛾 𝐴, 𝑧 ≤ 𝜀

Γ𝑛1,𝑛2,𝑛3 𝐴 = ෠Γ𝑛1,𝑛2(𝐴, 1/𝑛3)

Hansen’s three-limit algorithm

• Hansen, “On the solvability complexity index, the 𝑛-pseudospectrum and approximations of spectra of operators,” J. Am. Math. Soc., 2011.
• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
• C., “On the computation of geometric features of spectra of linear operators on Hilbert spaces,” Found. Comput. Math., 2022.

General bounded:

A =
𝑎11 𝑎12 ⋯
𝑎21 𝑎22 ⋯
⋮ ⋮ ⋱
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Class Ω ∋ 𝐴, want to compute Ξ: Ω → (ℳ, 𝑑)

• ∆0: Problems solved in finite time (v. rare for cts problems).

• ∆1: Problems solved in “one limit” with full error control:

𝑑(Γ𝑛 𝐴 , Ξ(𝐴)) ≤ 2−𝑛

• ∆2: Problems solved in “one limit”:

lim
𝑛→∞

Γ𝑛(𝐴) = Ξ(𝐴)

• ∆3: Problems solved in “two successive limits”:

lim
𝑛→∞

lim
𝑚→∞

Γ𝑛,𝑚(𝐴) = Ξ(𝐴)

• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
• Hansen, “On the solvability complexity index, the 𝑛-pseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.
• McMullen, “Families of rational maps and iterative root-finding algorithms,” Ann. of Math., 1987.
• Doyle, McMullen, “Solving the quintic by iteration,” Acta Math., 1989.
• Smale, “The fundamental theorem of algebra and complexity theory,” Bull. Amer. Math. Soc., 1981.

Solvability Complexity Index Hierarchy
metric space

⋮
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Solvability Complexity Index Hierarchy
metric space

⋮

Can work in any computational
model. BUT in infinite
dimensions, spectral problems
are just as hard from a
foundations point of view if we
use a BSS machine, Turing
machine, interval arithmetic etc.
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Error control for spectral problems

• Σ1: ∃ alg. Γ𝑛 s.t. lim
𝑛→∞

Γ𝑛 𝐴 = Ξ 𝐴 , max𝑧∈Γ𝑛 𝐴 dist 𝑧, Ξ 𝐴 ≤ 2−𝑛

Ξ 𝐴 = Sp(𝐴)
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Error control for spectral problems

• Σ1: ∃ alg. Γ𝑛 s.t. lim
𝑛→∞

Γ𝑛 𝐴 = Ξ 𝐴 , max𝑧∈Γ𝑛 𝐴 dist 𝑧, Ξ 𝐴 ≤ 2−𝑛

• Π1: ∃ alg. Γ𝑛 s.t. lim
𝑛→∞

Γ𝑛 𝐴 = Ξ 𝐴 , max𝑧∈Ξ(𝐴)dist(𝑧, Γ𝑛 𝐴 ) ≤ 2−𝑛

Such problems can be used in a proof!

Ξ 𝐴 = Sp(𝐴)
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Π0

Σ0

Δ0

=
=

⊊ Δ1 ⊊

Π1

Σ1 ∪ Π1 ⊊ Δ2 ⊊

Π2

Σ2

Σ2 ∪ Π2 ⊊ Δ3 ⊊

Π3

Σ3

Σ3 ∪ Π3⋯

Σ1

Sample: some results for bounded op. on 𝑙2(ℕ)
increasing difficulty

Error control 2 limits 3 limits1 limit 3 limits
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Zoo of problems: spectral type (pure point, absolutely continuous, singularly continuous), Lebesgue measure and 
fractal dimensions of spectra, discrete spectra, essential spectra, eigenspaces + multiplicity, spectral radii, essential 
numerical ranges, geometric features of spectrum (e.g., capacity), spectral gap problem, resonances ...
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Approx. sparse normal op

Compact operators “Sparse” operators

• C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.
• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
• C., Horning, Townsend, “Computing spectral measures of self-adjoint operators,” SIAM Rev., 2021.
• Ben-Artzi, Marletta, Rösler, “Computing the sound of the sea in a seashell,” Found. Comput. Math., 2022.
• Ben-Artzi, Marletta, Rösler, “Computing scattering resonances,” J. Eur. Math. Soc., 2022.
• C., “On the computation of geometric features of spectra of linear operators on Hilbert spaces,” Found. Comput. Math., 2022.
• Webb, Olver, “Spectra of Jacobi operators via connection coefficient matrices,” Commun. Math. Phys., 2021.
• Rösler, Stepanenko, “Computing eigenvalues of the Laplacian on rough domains,” preprint.
• Rösler, Tretter, “Computing Klein-Gordon Spectra,” prepint.
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Theorem: Let Ω be class of self-adjoint diff. operators on 𝐿2(ℝ𝑑) of the form

𝑇 = σ
𝑘∈ℤ≥0

𝑑 , 𝑘 ≤𝑁
𝑐𝑘 𝑥 𝜕𝑘 s.t.

• Smooth compactly supported functions form a core of 𝑇.
• 𝑐𝑘 are polynomially bounded and of locally bounded total variation.
Assume algorithm can:
• Point sample 𝑐𝑘(𝑞) for 𝑞 ∈ ℚ𝑑 to arbitrary prec.
• Evaluate a polynomial that bounds 𝑐𝑘 on ℝ𝑑.
Then…

(a) Know bound TV −𝑛,𝑛 𝑑 𝑐𝑘 ≤ 𝑏𝑛 ⟹ Sp,Ω ∈ Σ1.

(b) Only know asymp. bound TV −𝑛,𝑛 𝑑 𝑐𝑘 = 𝑂(𝑏𝑛)⟹ Sp, Ω ∈ Δ2\(Σ1 ∪ Π1). 

• C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022

Back to Schwinger: −∆ + 𝑉 on 𝐿2(ℝ𝑑)
12/25



Theorem: Let Ω be class of self-adjoint diff. operators on 𝐿2(ℝ𝑑) of the form

𝑇 = σ
𝑘∈ℤ≥0

𝑑 , 𝑘 ≤𝑁
𝑐𝑘 𝑥 𝜕𝑘 s.t.

• Smooth compactly supported functions form a core of 𝑇.
• 𝑐𝑘 are polynomially bounded and of locally bounded total variation.
Assume algorithm can:
• Point sample 𝑐𝑘(𝑞) for 𝑞 ∈ ℚ𝑑 to arbitrary prec.
• Evaluate a polynomial that bounds 𝑐𝑘 on ℝ𝑑.
Then

(a) Know bound TV −𝑛,𝑛 𝑑 𝑐𝑘 ≤ 𝑏𝑛 ⟹ Sp,Ω ∈ Σ1.

(b) Only know asymp. bound TV −𝑛,𝑛 𝑑 𝑐𝑘 = 𝑂(𝑏𝑛)⟹ Sp, Ω ∈ Δ2\(Σ1 ∪ Π1). 

• C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022

Verifiable

Not verifiable

Back to Schwinger: −∆ + 𝑉 on 𝐿2(ℝ𝑑)
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Π0

Σ0

Δ0

=
=

⊊ Δ1 ⊊

Π1

Σ1 ∪ Π1 ⊊ Δ2 ⊊

Π2

Σ2

Σ2 ∪ Π2 ⊊ Δ3 ⊊

Π3

Σ3

Σ3 ∪ Π3⋯

Σ1

Back to Schwinger: −∆ + 𝑉 on 𝐿2(ℝ𝑑)

Bounded 𝑉 with
locally bounded TV

Self-adjoint, bounded 𝑉 with
locally bounded TV

Unbounded,
sectorial 𝑉

Bounded 𝑉

NB: Most existing convergence results for spectra, even on bounded 
domains, prove Δ2 results and miss the optimal Σ1 convergence!

CHALLENGE: Can you get Σ1 for your problem/method?

Can “nearly” do it for
imaginary cubic oscillator!

increasing difficulty

Error control 2 limits 3 limits1 limit 3 limits
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Why study this hierarchy?

FOUNDATIONS  ⟷ NUMERICS

• SCI > 1 classifications ⟹ tells us assumptions needed to lower SCI.

• Sharp classifications ⟹ new algorithms.

• Σ1 and Π1 classifications ⟹ look-up table for computer-assisted proofs.

• Negative results prevent us from trying to prove too much.

• Much of computational literature does not prove sharp results!

Remarks:

• Can use with any model of computation.

• Existing hierarchies (e.g., arithmetic, Baire etc.) included as particular cases.

14/25



𝑇 𝜆 :𝒟 𝑇 ↦ ℋ, 𝜆 ∈ Ω ⊂ ℂ

𝜆 ⟶ 𝑇 𝜆 𝑢 holomorphic for all      𝑢 ∈ 𝒟 𝑇

Sp 𝑇 = 𝜆 ∈ Ω: 𝑇 𝜆 is not invertible

Spd 𝑇 = 𝜆 ∈ Sp 𝑇 : 𝑇 𝜆 Fredholm

Spess 𝑇 = Sp 𝑇 \Spd 𝑇

Sp𝜀 𝑇 = Closure 𝜆 ∈ Ω: 𝑇 𝜆 −1 > 1/𝜀

Current known classifications:
• Sp𝜀 𝐴 is Σ1 (sharp) for “generic” diff. operators, discrete operators etc.
• Hence spectrum is at worst Π2.
• Spd 𝑇 is Δ2 (one limit, no error control) in regions with no ess. spec.

Nonlinear spectral problems (NEPs)
15/25



Keldysh’s Theorem

Theorem: Suppose Spess 𝑇 ∩ Ω = ∅ and Sp 𝑇 ≠ Ω. Then for 𝑧 ∈ Ω\Sp 𝑇

𝑇(𝑧)−1 = 𝑉(𝑧 − 𝐽)−1𝑊∗ + 𝑅(𝑧)

• 𝑉 & 𝑊 are quasimatrices with 𝑚 cols of right & left generalised eigenvectors.

• 𝐽 consists of Jordan blocks.

• 𝑚 is sum of all algebraic multiplicities of eigenvalues inside Ω.

• 𝑅(𝑧) is a bounded holomorphic remainder.

• Keldysh, “On the characteristic values and characteristic functions of certain classes of non-self-adjoint equations,” Dokl. Akad. Nauk, 1951.
• Keldysh, “ On the completeness of the eigenfunctions of some classes of non-self-adjoint linear operators,” UMN, 1971.

⟹ use contour integration to convert to a linear pencil...
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Let Γ ⊂ Ω be a contour enclosing 𝑚 eigenvalues (and not touching Sp 𝑇 ).

𝐴0 =
1

2𝜋𝑖
න
Γ

𝑇(𝑧)−1𝒱 d𝑧, 𝐴1 =
1

2𝜋𝑖
න
Γ

𝑧𝑇(𝑧)−1𝒱 d𝑧

Approximate these through quadrature to obtain ሚ𝐴0 and ሚ𝐴1.

Truncated SVD: ሚ𝐴0 ≈ ෨𝒰Σ0 ෨𝑉0
∗.

Form the linear pencil: ෨𝐹 𝑧 = ෨𝒰∗ ሚ𝐴1 ෨𝑉0 − 𝑧 ෨𝒰∗ ሚ𝐴0 ෨𝑉0 ∈ ℂ
𝑚×𝑚.

NB: 𝑚 = Trace
1

2𝜋𝑖
Γ׬ 𝑇′(𝑧)𝑇(𝑧)−1 d𝑧 can compute this (another story).

InfBeyn Algorithm

Random vectors
drawn form a
Gaussian process

• Beyn, “An integral method for solving nonlinear eigenvalue problems,” Linear Algebra Appl., 2012.
• C., Townsend, “Avoiding discretization issues for nonlinear eigenvalue problem”, preprint.

Eigenpairs 𝜆𝑗 , 𝑥𝑗
The eigenvectors of 
original problem 
are ≈ 𝒰Σ0𝑥𝑗
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• Horning, Townsend, “FEAST for differential eigenvalue problems,” SIAM J. Math. Anal., 2020.
• C., “Computing semigroups with error control,” SIAM J. Math. Anal., 2022.

Stability and convergence result
Keldysh: 𝑇(𝑧)−1 = 𝑉(𝑧 − 𝐽)−1𝑊∗ + 𝑅(𝑧), let 𝑀 = sup𝑧∈Ω 𝑅(𝑧) .

Suppose that ሚ𝐴𝑗 − 𝐴𝑗 ≤ 𝜀𝑗 and let 𝜅 =
𝑉𝑊∗

𝜎𝑚(𝑉𝑊
∗)

(condition number).

Theorem: For sufficiently oversampled 𝒱, with overwhelming probability,

𝜎inf(𝐹 𝑧 ) − 𝜎inf( ෨𝐹 𝑧 ) ≤ 2 𝜀1 + 𝑉𝐽𝑊∗ 𝜀0/𝜎𝑚 𝑉𝑊∗ + 𝑧 𝜀0 (quad. err.)

Moreover, if 2𝑀𝜅𝜀 < 1, then

Sp𝜀
𝜅
𝑇 ⊂ Sp2 𝑉𝑊∗ 2

𝜅−𝑀𝜀
𝜀
𝐹 ⊂ Sp 4𝜅𝜀

1−2𝑀𝜅𝜀
𝑇 .

NOT a statement on 
computing Sp𝜀 𝑇
(another algorithm 
does that!!!)

⟹ converges without spectral pollution or invisibility + method is stable.

How to control quad error
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Keldysh: 𝑇(𝑧)−1 = 𝑉(𝑧 − 𝐽)−1𝑊∗ + 𝑅(𝑧), let 𝑀 = sup𝑧∈Ω 𝑅(𝑧) .

Introduce: 𝐿1 = (𝑉𝑊∗)+, 𝐿2 = (𝑉𝑊∗𝒱𝑉0)
+.

𝑇 𝑧 −1𝐿1𝐹 𝑧 = −𝑉𝑊∗𝒱𝑉0 + 𝑅 𝑧 𝐿1𝐹 𝑧

𝜎inf 𝐹 𝑧 < 𝜀 ⟹ 𝑇 𝑧 −1 >
𝜎𝑚 𝑉𝑊∗ 𝜎𝑚 𝑉𝑊∗𝒱

𝜀
− 𝑀

𝐹 𝑧 𝐿2 𝑇 𝑧 −1 − 𝑅 𝑧 = −𝑉𝑊∗

𝑇 𝑧 −1 > 𝜀 ⟹ 𝜎inf 𝐹 𝑧 <
𝑉𝑊∗ 𝑉𝑊∗𝒱

1 −𝑀𝜀
𝜀

Use results from inf dim randomized NLA to bound terms with a 𝒱.

Proof sketch

• C., Townsend, “Avoiding discretization issues for nonlinear eigenvalue problem”, preprint.
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acoustic_wave_2d from NLEVP collection.

𝑝 corresponds to acoustic pressure.

𝜆 correspond to resonant frequencies.

Discretised using FEM.

Example: two-dimensional acoustic wave

(0,0) (1,0)

(1,1)(0,1)

𝜕2𝑝

𝜕𝑥2
+
𝜕2𝑝

𝜕𝑦2
+ 4𝜋2𝜆2𝑝 = 0

• Betcke, Higham, Mehrmann, Schröder, Tisseur, “NLEVP: A collection of nonlinear eigenvalue problems,” ACM Trans. Math. Soft., 2013.
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Example: two-dimensional acoustic wave

(0,0) (1,0)

(1,1)(0,1)

• Betcke, Higham, Mehrmann, Schröder, Tisseur, “NLEVP: A collection of nonlinear eigenvalue problems,” ACM Trans. Math. Soft., 2013.

25 out of 52 come from an infinite-
dimensional problem!

acoustic_wave_2d from NLEVP collection.

𝑝 corresponds to acoustic pressure.

𝜆 correspond to resonant frequencies.

Discretised using FEM.

𝜕2𝑝

𝜕𝑥2
+
𝜕2𝑝

𝜕𝑦2
+ 4𝜋2𝜆2𝑝 = 0
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Example: two-dimensional acoustic wave

• C., Townsend, “Avoiding discretization issues for nonlinear eigenvalue problem”, preprint.
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Example: butterfly

• C., Townsend, “Avoiding discretization issues for nonlinear eigenvalue problem”, preprint.

Discretised 𝒫𝑛𝑇 𝜆 𝒫𝑛
∗ (𝑛 = 500) Method based on 𝜎inf 𝑇 𝜆 𝒫𝑛

∗

butterfly from NLEVP collection
𝑇 𝜆 = 𝐹 𝜆, 𝑆
𝑆 bilateral shift on 𝑙2 ℤ
𝐹 a rational function
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Example: planar waveguide

𝑥

𝜂(𝑥)

truncated domain

planar_waveguide from NLEVP collection.

𝑑2𝜙

𝑑𝑥2
+ 𝑘2 𝜂2 − 𝜇 𝜆 𝜙 = 0

𝜇 𝜆 =
𝛿+
𝑘2

+
𝛿−

8𝑘2𝜆2
+
𝜆2

𝑘2

𝑑𝜙

𝑑𝑥
0 +

𝛿−
2𝜆

− 𝜆 𝜙 0 = 0

𝑑𝜙

𝑑𝑥
2 +

𝛿−
2𝜆

+ 𝜆 𝜙 2 = 0

𝜂 corresponds to refractive index.

𝜆 correspond to guided and leaky modes.

Discretised using FEM (𝑛 = 129, default)

𝑥

𝜂(𝑥)

truncated domain
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Example: planar waveguide

• C., Townsend, “Avoiding discretization issues for nonlinear eigenvalue problem”, preprint.
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Example: planar waveguide

ℓ = number of quad points

• C., Townsend, “Avoiding discretization issues for nonlinear eigenvalue problem”, preprint.
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Example: planar waveguide

• C., Townsend, “Avoiding discretization issues for nonlinear eigenvalue problem”, preprint.

spurious modes

collapse onto essential spectra
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Key Foundations Developments

• Classify difficulty of computational problems.

• Prove that algorithms are optimal (in any given computational model).

• Find assumptions and methods for computational goals.

+ Structure of SCI hierarchy allows us to mix and match.

• Leads to universal algorithms for classes of operators.

This framework is now entering computational PDEs, computer-assisted
proofs, foundations of AI, and optimization.
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Key Algorithmic Developments

• A new suite of “infinite-dimensional” algorithms. Solve-then-discretise.

• Methods built on 𝝈𝐢𝐧𝐟(𝑨), e.g., compute 𝜎inf(𝐴𝒫𝑛
∗) or 𝜎inf(𝒫𝑛𝐴

∗𝐴𝒫𝑛
∗)

• Spectra with error control (including essential spectrum).

• Pseudospectra, stability bounds etc.

• More exotic features such as fractal dimensions.

• Methods built on adaptively computing (𝑨 − 𝒛𝑰)−𝟏 or 𝑻(𝒛)−𝟏

• Contour methods: discrete spectra for linear and nonlinear pencils.

• Convolution methods: spectral measures of self-adjoint and unitary operators.

• Functions of operators with error control.

• C., Horning, Townsend “Computing spectral measures of self-adjoint operators,” SIAM Rev., 2021.
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Open Problems Related to Workshop!

• Structure-preserving infinite-dimensional methods for NEPs.

• Essential spectra of NEPs.

• Expect SCI > 1 for essential spectra, even if pencil is Hermitian.

• Foundations of data-driven spectral problems.

• Characterising spectral pollution for eigenvalue-dependent boundary 
conditions (e.g., problems like acoustic_wave_2d, polynomial pencils)

• Stability and convergence results for InfBeyn with higher moments.

• Π1 algorithm (cover) for 2D aperiodic discrete Schrödinger operators.
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Example: quasicrystals (discrete aperiodic Hamiltonian)

• C., Roman, Hansen, “How to compute spectra with error control,” Phys. Rev. Lett.,,2019.

Verified error bounds

Naïve Method Careful Methodperpendicular
magnetic field

𝑥

𝑦

Infinite matrix: discrete
Schrödinger operator
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