Spectral Computations in Infinite Dimensions

Matthew Colbrook

University of Cambridge

m.colbrook@damtp.cam.ac.uk
www.damtp.cam.ac.uk/user/mjc249/home.html

Left to right: Vegard Antun (Oslo), Lorna Ayton (Cambridge), Jonathan Ben-Artzi (Cardiff), Anders Hansen (Cambridge), Andrew Horning (MIT), Olavi Nevanlinna (Aalto), Bogdan Roman (Cambridge), Markus Seidel (West Saxon), Matt Szőke (Virginia Tech), Kyle Thicke (Texas A\&M), Alex Townsend (Cornell), Alex Watson (Minnesota)

Linear spectral problem

$$
A^{\prime \prime}=\text { " }\left(\begin{array}{ccc}
a_{11} & a_{12} & \cdots \\
a_{21} & a_{22} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right), \quad A\left(\sum_{k=1}^{\infty} x_{k} e_{k}\right)=\sum_{j=1}^{\infty}\left(\sum_{k=1}^{\infty} a_{j k} x_{k}\right) e_{j}
$$

Finite-dimensional
 \Rightarrow Infinite-dimensional

Eigenvalues of $B \in \mathbb{C}^{n \times n} \quad \Rightarrow$ Spectrum, $\operatorname{Sp}(A)$
$\left\{\lambda_{j} \in \mathbb{C}: \operatorname{det}\left(B-\lambda_{j} I\right)=0\right\} \quad \Rightarrow\{\lambda \in \mathbb{C}: A-\lambda I$ is not invertible $\}$
"Most operators that arise in practice are not presented in a representation in which they are diagonalized, and it is often very hard to locate even a single point in the spectrum. Thus, one often has to settle for numerical approximations [...] Unfortunately, there is a dearth of literature on this basic problem and, so far as we have been able to tell, there are no proven [general] techniques." W. Arveson, Berkeley (1994)

A motivating problem

In a series of papers in the 1950's and 1960's, J. Schwinger examined the foundations of quantum mechanics. A key problem he considered:

Given a self-adjoint Schrödinger operator $-\Delta+V$ on \mathbb{R}, can we approximate its spectrum?

Partial answer: T. Digernes, V. S. Varadarajan and S. R. S. Varadhan (1994) gave a convergent algorithm for a class of V generating compact resolvent.

For which classes of differential operators on unbounded domains do there exist algorithms that converge to the spectrum? Can we guarantee that the output is in the spectrum up to an arbitrarily small tolerance?

What can go wrong?

Matrix case $\left(l^{2}(\mathbb{N})\right)$: truncate to $\mathcal{P}_{n} A \mathcal{P}_{n}^{*} \in \mathbb{C}^{n \times n}$. PDE on unbounded domain: truncate domain then discretise.

Some key issues:

- Spectral pollution (evals accumulate at pts not in $\operatorname{Sp}(A)$ as $n \rightarrow \infty$)
- Spectral invisibility.
- Dealing with essential spectra and continuous spectra.
- Stability, non-normality etc.
- Verification - can we compute spectral properties with error bounds?

Not all spectral problems are created equal ...

Warm-up: bounded diagonal operators

$$
A=\left(\begin{array}{lll}
a_{1} & & \\
& a_{2} & \\
& & \ddots
\end{array}\right)
$$

Assumption: Algorithm can query entries of A
Algorithm: $\Gamma_{n}(A)=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \rightarrow \operatorname{Sp}(A)=\overline{\left\{a_{1}, a_{2}, \ldots\right\}}$ in Haus. Metric.
One-sided error control: $\Gamma_{n}(A) \subset \operatorname{Sp}(A)$

$$
d_{\mathrm{H}}(X, Y)=\max \left\{\sup _{x \in X} d(x, Y), \sup _{y \in Y} d(y, X)\right\}
$$

Optimal: Can't obtain $\hat{\Gamma}_{n}(A) \rightarrow \operatorname{Sp}(A)$ with $\operatorname{Sp}(A) \subset \hat{\Gamma}_{n}(A)$.

Example: compact self-adjoint operators

$$
A=\left(\begin{array}{ccc}
a_{11} & a_{12} & \cdots \\
a_{21} & a_{22} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right)
$$

Algorithm: $\Gamma_{n}(A)=\operatorname{Sp}\left(\mathcal{P}_{n} A \mathcal{P}_{n}^{*}\right)$ converges to $\operatorname{Sp}(A)$ in Haus. Metric. Question: Can we verify the output?
i.e., Does there exist some alg. $\hat{\Gamma}_{n}(A) \rightarrow \operatorname{Sp}(A)$ with $\hat{\Gamma}_{n}(A) \subset \operatorname{Sp}(A)+B_{2}-n$?

Example: compact self-adjoint operators

$$
A=\left(\begin{array}{ccc}
a_{11} & a_{12} & \cdots \\
a_{21} & a_{22} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right)
$$

Algorithm: $\Gamma_{n}(A)=\operatorname{Sp}\left(\mathcal{P}_{n} A \mathcal{P}_{n}^{*}\right)$ converges to $\operatorname{Sp}(A)$ in Haus. Metric. Question: Can we verify the output?
i.e., Does there exist some alg. $\hat{\Gamma}_{n}(A) \rightarrow \operatorname{Sp}(A)$ with $\hat{\Gamma}_{n}(A) \subset \operatorname{Sp}(A)+B_{2^{-n}}$?

Answer: No algorithm can do this on whole class!

What about Jacobi operators?

$$
A=\left(\begin{array}{cccc}
a_{1} & b_{1} & & \\
b_{1} & a_{2} & b_{2} & \\
& b_{2} & a_{3} & \ddots \\
& & \ddots & \ddots
\end{array}\right), \quad b_{k}>0, \quad a_{k} \in \mathbb{R}
$$

Non-trivial, e.g., spurious eigenvalues.

What about Jacobi operators?

$$
A=\left(\begin{array}{cccc}
a_{1} & b_{1} & & \\
b_{1} & a_{2} & b_{2} & \\
& b_{2} & a_{3} & \ddots \\
& & \ddots & \ddots
\end{array}\right), \quad b_{k}>0, \quad a_{k} \in \mathbb{R}
$$

Non-trivial, e.g., spurious eigenvalues.
Enlarge class to sparse normal operators - surely now much harder?!

What about Jacobi operators?

$$
A=\left(\begin{array}{cccc}
a_{1} & b_{1} & & \\
b_{1} & a_{2} & b_{2} & \\
& b_{2} & a_{3} & \ddots \\
& & \ddots & \ddots
\end{array}\right), \quad b_{k}>0, \quad a_{k} \in \mathbb{R}
$$

Non-trivial, e.g., spurious eigenvalues.
Enlarge class to sparse normal operators - surely now much harder?!
Answer: $\exists\left\{\Gamma_{n}\right\}$ s.t. $\lim _{n \rightarrow \infty} \Gamma_{n}(A)=\operatorname{Sp}(A)$ and $\Gamma_{n}(A) \subset \operatorname{Sp}(A)+B_{2^{-n}}$, for any sparse normal operator A

$$
\sigma_{\mathrm{inf}}(A)=\inf \{\|A v\|: v \in \mathfrak{D}(A),\|v\|=1\}
$$

$$
A=\left(\begin{array}{ccc}
a_{11} & a_{12} & \cdots \\
a_{21} & a_{22} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right)
$$

Hansen's three-limit algorithm
 $$
\sigma_{\mathrm{inf}}(A)=\inf \{\|A v\|: v \in \mathfrak{D}(A),\|v\|=1\}
$$

$$
\gamma_{n_{1}, n_{2}}(A, z)=\min \left\{\sigma_{\mathrm{inf}}\left(\mathcal{P}_{n_{1}}[A-z I] \mathcal{P}_{n_{2}}^{*}\right), \sigma_{\mathrm{inf}}\left(\mathcal{P}_{n_{1}}\left[A^{*}-\bar{z} I\right] \mathcal{P}_{n_{2}}^{*}\right)\right\}
$$

[^0]\[

A=\left($$
\begin{array}{ccc}
a_{11} & a_{12} & \cdots \\
a_{21} & a_{22} & \cdots \\
\vdots & \vdots & \ddots
\end{array}
$$\right)
\]

Hansen's three-limit algorithm

$$
\sigma_{\mathrm{inf}}(A)=\inf \{\|A v\|: v \in \mathfrak{D}(A),\|v\|=1\}
$$

$$
\gamma_{n_{1}, n_{2}}(A, z)=\min \left\{\sigma_{\mathrm{inf}}\left(\mathcal{P}_{n_{1}}[A-z I] \mathcal{P}_{n_{2}}^{*}\right), \sigma_{\mathrm{inf}}\left(\mathcal{P}_{n_{1}}\left[A^{*}-\bar{z} I\right] \mathcal{P}_{n_{2}}^{*}\right)\right\}
$$

$$
\gamma_{n_{1}, n_{2}}(A, z) \uparrow \gamma_{n_{2}}(A, z):=\min \left\{\sigma_{\inf }\left([A-z I] \mathcal{P}_{n_{2}}^{*}\right), \sigma_{\mathrm{inf}}\left(\left[A^{*}-\bar{z} I\right] \mathcal{P}_{n_{2}}^{*}\right)\right\}, \text { as } n_{1} \rightarrow \infty
$$

[^1]\[

\left.$$
\begin{array}{c}
\text { eral bounded: } \\
\left.A=\begin{array}{cc}
a_{11} & a_{12} \\
a_{21} & \ldots \\
\vdots & a_{22} \\
\vdots & \ddots
\end{array}\right)
\end{array}
$$\right] \quad $$
\begin{gathered}
\text { Hansen's three-limit algorithm } \\
\sigma_{\text {inf }}(A)=\inf \{\|A v\|: v \in \mathfrak{D}(A),\|v\|=1\}
\end{gathered}
$$
\]

$$
\gamma_{n_{1}, n_{2}}(A, z)=\min \left\{\sigma_{\inf }\left(\mathcal{P}_{n_{1}}[A-z I] \mathcal{P}_{n_{2}}^{*}\right), \sigma_{\mathrm{inf}}\left(\mathcal{P}_{n_{1}}\left[A^{*}-\bar{z} I\right] \mathcal{P}_{n_{2}}^{*}\right)\right\}
$$

$\gamma_{n_{1}, n_{2}}(A, z) \uparrow \gamma_{n_{2}}(A, z):=\min \left\{\sigma_{\text {inf }}\left([A-z I] \mathcal{P}_{n_{2}}^{*}\right), \sigma_{\text {inf }}\left(\left[A^{*}-\bar{z} I\right] \mathcal{P}_{n_{2}}^{*}\right)\right\}$, as $n_{1} \rightarrow \infty$ $\gamma_{n_{2}}(A, z) \downarrow \gamma(A, z):=\min \left\{\sigma_{\mathrm{inf}}(A-z I), \sigma_{\mathrm{inf}}\left(A^{*}-\bar{z} I\right)\right\}=\left\|(A-z I)^{-1}\right\|^{-1}$, as $n_{2} \rightarrow \infty$

$$
\left(\begin{array}{ccc}
a_{11} & a_{12} & \cdots \\
a_{21} & a_{22} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right)
$$

[^2]General bounded:

$$
A=\left(\begin{array}{ccc}
a_{11} & a_{12} & \cdots \\
a_{21} & a_{22} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right)
$$

Hansen's three-limit aloorithnn

$$
\sigma_{\mathrm{inf}}(A)=\inf \{\|A v\|: v \in \mathfrak{D}(A),\|v\|=1
$$

$$
\gamma_{n_{1}, n_{2}}(A, z)=\min \left\{\sigma_{\mathrm{inf}}\left(\mathcal{P}_{n_{1}}[A-z I] \mathcal{P}_{n_{2}}^{*}\right), \sigma_{\mathrm{inf}}\left(\mathcal{P}_{n_{1}}[A\right.\right.
$$

$\operatorname{Sp}(A)$

$\gamma_{n_{1}, n_{2}}(A, z) \uparrow \gamma_{n_{2}}(A, z):=\min \left\{\sigma_{\text {inf }}\left([A-z I] \mathcal{P}_{n_{2}}^{*}\right), \sigma_{\text {inf }}\left(\left[A^{*}-\bar{z} I\right] \mathcal{P}_{n_{2}}^{*}\right)\right)$, ао $\pi_{1} \rightarrow \infty$ $\gamma_{n_{2}}(A, z) \downarrow \gamma(A, z):=\min \left\{\sigma_{\mathrm{inf}}(A-z I), \sigma_{\mathrm{inf}}\left(A^{*}-\bar{z} I\right)\right\}=\left\|(A-z I)^{-1}\right\|^{-1}$, as $n_{2} \rightarrow \infty$

Approx. pseudospectrum: $\lim _{n_{2} \rightarrow \infty} \lim _{n_{1} \rightarrow \infty} \hat{\Gamma}_{n_{1}, n_{2}}(A, \varepsilon)=\operatorname{Sp}_{\varepsilon}(A)=\{z: \gamma(A, z) \leq \varepsilon\}$

$$
\Gamma_{n_{1}, n_{2}, n_{3}}(A)=\hat{\Gamma}_{n_{1}, n_{2}}\left(A, 1 / n_{3}\right)
$$

[^3]
General bounded:

$$
A=\left(\begin{array}{ccc}
a_{11} & a_{12} & \ldots \\
a_{21} & a_{22} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right)
$$

Hansen's three-limit-'?rithm

 $\sigma_{\text {inf }}(A)=$ infra $^{\text {fr es }}$ is sharp:$\gamma_{n_{1}, n_{2}}\left(A, z_{i} \quad \gamma_{n}\right.$ (1, problems stich as:
Embed canonical does B, model). $\left.\inf \left(\left[A^{*}-\bar{z} I\right] \mathcal{P}_{n_{2}}^{*}\right)\right\}$, as $n_{1} \rightarrow \infty$
Given $B \in\{0,1\}^{1}$ of comp. mit $\left.\left(A^{*}-\bar{z} I\right)\right\}=\|(A-z I)^{-1}$, as $n_{2} \rightarrow \infty$ $\gamma_{n_{2}}(A, z)$ Embed canon c $\{0,1\}^{N N}$, of comp. mit $\left.\left(A^{*}-\bar{z} I\right)\right\}=\left\|(A-z I)^{-1}\right\|^{-1}$, as $n_{2} \rightarrow \infty$

Approx.

$$
201
$$

$$
\Gamma_{n_{1}, n_{2}, n_{3}}(A)=\hat{\Gamma}_{n_{1}, n_{2}}\left(A, 1 / n_{3}\right)
$$

- Hansen, "On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators," J. Am. Math. Soc., 2011.
- Ben-Artzi, C., Hansen, Nevanlinna, Seidel, "On the solvability complexity index hierarchy and towers of algorithms," preprint.
- C., "On the computation of geometric features of spectra of linear operators on Hilbert spaces," Found. Comput. Math., 2022.

$$
A=\left(\begin{array}{ccc}
a_{11} & a_{12} & \cdots \\
a_{21} & a_{22} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right)
$$

Hansen's three-limit-'ग? ${ }^{\text {? }}$ rithm

$\sigma_{\text {inf }}(A)=$ inf limits is sharp! $\underset{\sim}{(A),\|v\|-n!}$

$\gamma_{n_{1}}\left(A, z, \gamma_{n_{2}}(A, z)\right.$. Ans Arveson's $\left.\operatorname{linf}\left(\mathcal{P}_{n_{1}}\left[A^{*}-\bar{z} I\right] \mathcal{P}_{n_{2}}^{*}\right)\right\}$ $\gamma_{n_{2}}(A, z) \downarrow \gamma(A, z):=\operatorname{miL} \underset{-\operatorname{minf}}{\left.\left.\operatorname{ExP}(A-z I), \sigma_{\mathrm{inf}}\left(A^{*}-\bar{z} I\right)\right\}=\left\|(A-z I)^{-1}\right\|^{-1} \text {, as } n_{2} \rightarrow \infty\right) .}$

Approx. pseudospectrum: $\lim _{n_{2} \rightarrow \infty} \lim _{n_{1} \rightarrow \infty} \hat{\Gamma}_{n_{1}, n_{2}}(A, \varepsilon)=\operatorname{Sp}_{\varepsilon}(A)=\{z: \gamma(A, z) \leq \varepsilon\}$

$$
\Gamma_{n_{1}, n_{2}, n_{3}}(A)=\hat{\Gamma}_{n_{1}, n_{2}}\left(A, 1 / n_{3}\right)
$$

- Hansen, "On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators," J. Am. Math. Soc., 2011.
- Ben-Artzi, C., Hansen, Nevanlinna, Seidel, "On the solvability complexity index hierarchy and towers of algorithms," preprint.
- C., "On the computation of geometric features of spectra of linear operators on Hilbert spaces," Found. Comput. Math., 2022.

General bounded:

$$
A=\left(\begin{array}{ccc}
a_{11} & a_{12} & \ldots \\
a_{21} & a_{22} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right)
$$

Hansen's three-limit-'? ?rithm

 $\gamma_{n_{2}}(A, z) \downarrow \gamma(A, z):=\operatorname{mix}^{\operatorname{EXP}}\left(A-z I^{\prime}, \mathbb{E} \mathbb{N}(E D\},\right\}=\left\|(A-z I)^{-1}\right\|^{-1}$, as $n_{2} \rightarrow \infty$Approx. pseudos
ASSUMe $\lim _{2 \rightarrow \infty} \hat{\Gamma}_{n_{1} \rightarrow \infty} n_{n_{1}}(A, \varepsilon)=\operatorname{Sp}_{\varepsilon}(A)=\{z: \gamma(A, z) \leq \varepsilon\}$

$$
\Gamma_{n_{1}, n_{2}, n_{3}}(A)=\hat{\Gamma}_{n_{1}, n_{2}}\left(A, 1 / n_{3}\right)
$$

[^4]
Solvability Complexity Index Hierarchy

Class $\Omega \ni A$, want to compute $\Xi: \Omega \rightarrow(\mathcal{M}, d)$

- Δ_{0} : Problems solved in finite time (v . rare for cts problems).
- Δ_{1} : Problems solved in "one limit" with full error control:

$$
d\left(\Gamma_{n}(A), \Xi(A)\right) \leq 2^{-n}
$$

- Δ_{2} : Problems solved in "one limit":

$$
\lim _{n \rightarrow \infty} \Gamma_{n}(A)=\Xi(A)
$$

- Δ_{3} : Problems solved in "two successive limits":

$$
\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} \Gamma_{n, m}(A)=\Xi(A)
$$

Solvability Complexity Index Hierarchy

Class $\Omega \ni A$, want to compute $\Xi: \Omega \rightarrow(\mathcal{M}, d)$

- Δ_{0} : Problems solved in finite time (v . rare for cts problems).
- Δ_{1} : Problems solved in "one limit" with full error control:

$$
d\left(\Gamma_{n}(A), \Xi(A)\right) \leq 2^{-n}
$$

- Δ_{2} : Problems solved in "one limit":

$$
\lim _{n \rightarrow \infty} \Gamma_{n}(A)=\Xi(A)
$$

- Δ_{3} : Problems solved in "two successive limits":

$$
\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} \Gamma_{n, m}(A)=\Xi(A)
$$

Can work in any computational model. BUT in infinite dimensions, spectral problems are just as hard from a foundations point of view if we use a BSS machine, Turing machine, interval arithmetic etc.

Error control for spectral problems

Σ_{1} convergence

$$
\Xi(A)=\operatorname{Sp}(A)
$$

- $\Sigma_{1}: \exists$ alg. $\left\{\Gamma_{n}\right\}$ s.t. $\lim _{n \rightarrow \infty} \Gamma_{n}(A)=\Xi(A), \max _{z \in \Gamma_{n}(A)} \operatorname{dist}(z, \Xi(A)) \leq 2^{-n}$

Error control for spectral problems

Σ_{1} convergence

$$
\Gamma_{n}(A)
$$

Π_{1} convergence

$$
\Xi(A)=\operatorname{Sp}(A)
$$

- $\Sigma_{1}: \exists$ alg. $\left\{\Gamma_{n}\right\}$ s.t. $\lim _{n \rightarrow \infty} \Gamma_{n}(A)=\Xi(A), \max _{z \in \Gamma_{n}(A)} \operatorname{dist}(z, \Xi(A)) \leq 2^{-n}$
$-\Pi_{1}: \exists$ alg. $\left\{\Gamma_{n}\right\}$ s.t. $\lim _{n \rightarrow \infty} \Gamma_{n}(A)=\Xi(A), \max _{z \in \Xi(A)} \operatorname{dist}\left(z, \Gamma_{n}(A)\right) \leq 2^{-n}$ Such problems can be used in a proof!

Sample: some results for bounded op. on $l^{2}(\mathbb{N})$ increasing difficulty

Sample: some results for bounded op. on $l^{2}(\mathbb{N})$ increasing difficulty

Sample: some results for bou

Sample: some results for bounded op. on $l^{2}(\mathbb{N})$ increasing difficulty

Sample: some results for bounded op. on $l^{2}(\mathbb{N})$

Sample: some results for bounded op. on $l^{2}(\mathbb{N})$ increasing difficulty

Sample: some results for bounded op. on $l^{2}(\mathbb{N})$

Certain self-adjoint 1D
quasiperiodic operators

Certain self-adjoint 1D quasiperiodic operators
increasing difficulty
Error control
1 limit 2 limits

Compact operators

Π_{2} "Sparse" operators $\quad \prod_{3}$

Zoo of problems: spectral type (pure point, absolutely continuous, singularly continuous), Lebesgue measure and fractal dimensions of spectra, discrete spectra, essential spectra, eigenspaces + multiplicity, spectral radii, essential numerical ranges, geometric features of spectrum (e.g., capacity), spectral gap problem, resonances ...

Certain self-adjoint 1D quasiperiodic operators increasing difficulty

- C., "The foundations of infinite-dimensional spectral computations," PhD diss., University of Cambridge, 2020.
- Ben-Artzi, C., Hansen, Nevanlinna, Seidel, "On the solvability complexity index hierarchy and towers of algorithms," preprint.
- C., Horning, Townsend, "Computing spectral measures of self-adjoint operators," SIAM Rev., 2021.
- Ben-Artzi, Marletta, Rösler, "Computing the sound of the sea in a seashell," Found. Comput. Math., 2022.
- Ben-Artzi, Marletta, Rösler, "Computing scattering resonances," J. Eur. Math. Soc., 2022.
- C., "On the computation of geometric features of spectra of linear operators on Hilbert spaces," Found. Comput. Math., 2022.
- Webb, Olver, "Spectra of Jacobi operators via connection coefficient matrices," Commun. Math. Phys., 2021.
- Rösler, Stepanenko, "Computing eigenvalues of the Laplacian on rough domains," preprint.
- Rösler, Tretter, "Computing Klein-Gordon Spectra," prepint.

Back to Schwinger: $-\Delta+V$ on $L^{2}\left(\mathbb{R}^{d}\right)$

Theorem: Let Ω be class of self-adjoint diff. operators on $L^{2}\left(\mathbb{R}^{d}\right)$ of the form

$$
T=\sum_{k \in \mathbb{Z}_{\geq 0}^{d},|k| \leq N} c_{k}(x) \partial^{k} \quad \text { s.t. }
$$

- Smooth compactly supported functions form a core of T.
- $\left\{c_{k}\right\}$ are polynomially bounded and of locally bounded total variation. Assume algorithm can:
- Point sample $\left\{c_{k}(q)\right\}$ for $q \in \mathbb{Q}^{d}$ to arbitrary prec.
- Evaluate a polynomial that bounds $\left\{c_{k}\right\}$ on \mathbb{R}^{d}.

Then...

[^5]
Back to Schwinger: $-\Delta+V$ on $L^{2}\left(\mathbb{R}^{d}\right)$

Theorem: Let Ω be class of self-adjoint diff. operators on $L^{2}\left(\mathbb{R}^{d}\right)$ of the form

$$
T=\sum_{k \in \mathbb{Z}_{\geq 0}^{d},|k| \leq N} c_{k}(x) \partial^{k} \quad \text { s.t. }
$$

- Smooth compactly supported functions form a core of T.
- $\left\{c_{k}\right\}$ are polynomially bounded and of locally bounded total variation. Assume algorithm can:
- Point sample $\left\{c_{k}(q)\right\}$ for $q \in \mathbb{Q}^{d}$ to arbitrary prec.
- Evaluate a polynomial that bounds $\left\{c_{k}\right\}$ on \mathbb{R}^{d}. Then

Verifiable

Not verifiable
(a) Know bound $\mathrm{TV}_{[-n, n]^{d}}\left(c_{k}\right) \leq b_{n} \Rightarrow\{\mathrm{Sp}, \Omega\} \in \Sigma_{1}$.
(b) Only know asymp. bound $\mathrm{TV}_{[-n, n]^{d}}\left(c_{k}\right)=O\left(b_{n}\right) \Rightarrow\{\mathrm{Sp}, \Omega\} \in \Delta_{2} \backslash\left(\Sigma_{1} \cup \Pi_{1}\right)$.

[^6]Back to Schwinger: $-\Delta+V$ on $L^{2}\left(\mathbb{R}^{d}\right)$

Self-adjoint, bounded V with locally bounded TV

NB: Most existing convergence results for spectra, even on bounded domains, prove Δ_{2} results and miss the optimal Σ_{1} convergence!

CHALLENGE: Can you get Σ_{1} for your problem/method?

Why study this hierarchy?

FOUNDATIONS \longleftrightarrow NUMERICS

- SCI >1 classifications \Rightarrow tells us assumptions needed to lower SCI.
- Sharp classifications \Rightarrow new algorithms.
- Σ_{1} and Π_{1} classifications \Rightarrow look-up table for computer-assisted proofs.
- Negative results prevent us from trying to prove too much.
- Much of computational literature does not prove sharp results!

Remarks:

- Can use with any model of computation.
- Existing hierarchies (e.g., arithmetic, Baire etc.) included as particular cases.

Nonlinear spectral problems (NEPs)

$$
\begin{gathered}
T(\lambda): \mathcal{D}(T) \mapsto \mathcal{H}, \quad \lambda \in \Omega \subset \mathbb{C} \\
\lambda \rightarrow T(\lambda) u \quad \text { holomorphic for all } \quad u \in \mathcal{D}(T) \\
\operatorname{Sp}(T)=\{\lambda \in \Omega: T(\lambda) \text { is not invertible }\} \\
\operatorname{Sp}_{\mathrm{d}}(T)=\{\lambda \in \operatorname{Sp}(T): T(\lambda) \text { Fredholm }\} \\
\operatorname{Sp}_{\operatorname{ess}(T)}=\operatorname{Sp}(T) \backslash \operatorname{Sp}_{\mathrm{d}}(T) \\
\operatorname{Sp}_{\varepsilon}(T)=\operatorname{Closure}\left(\left\{\lambda \in \Omega:\left\|T(\lambda)^{-1}\right\|>1 / \varepsilon\right\}\right)
\end{gathered}
$$

Current known classifications:

- $\mathrm{Sp}_{\varepsilon}(A)$ is Σ_{1} (sharp) for "generic" diff. operators, discrete operators etc.
- Hence spectrum is at worst Π_{2}.
- $\mathrm{Sp}_{\mathrm{d}}(T)$ is Δ_{2} (one limit, no error control) in regions with no ess. spec.

Keldysh's Theorem

Theorem: Suppose $\operatorname{Sp}_{\text {ess }}(T) \cap \Omega=\emptyset$ and $\operatorname{Sp}(T) \neq \Omega$. Then for $z \in \Omega \backslash \operatorname{Sp}(T)$

$$
T(z)^{-1}=V(z-J)^{-1} W^{*}+R(z)
$$

- $\quad V \& W$ are quasimatrices with m cols of right \& left generalised eigenvectors.
- J consists of Jordan blocks.
- m is sum of all algebraic multiplicities of eigenvalues inside Ω.
- $\quad R(z)$ is a bounded holomorphic remainder.
\Longrightarrow use contour integration to convert to a linear pencil...

InfBeyn Algorithm

Let $\Gamma \subset \Omega$ be a contour enclosing m eigenvalues (and not touching $\operatorname{Sp}(T)$).

$$
A_{0}=\frac{1}{2 \pi i} \int_{\Gamma} T(z)^{-1} \mathcal{v} \mathrm{~d} z, \quad A_{1}=\frac{1}{2 \pi i} \int_{\Gamma} z T(z)^{-1} \hat{v} \mathrm{~d} z \quad \begin{aligned}
& \text { Random vectors } \\
& \text { drawn form a } \\
& \text { Gaussian process }
\end{aligned}
$$

Approximate these through quadrature to obtain \tilde{A}_{0} and \tilde{A}_{1}.
Truncated SVD: $\tilde{A}_{0} \approx \tilde{U} \Sigma_{0} \tilde{V}_{0}^{*}$.

Eigenpairs $\left(\lambda_{j}, x_{j}\right)$
The eigenvectors of original problem are $\approx \mathcal{U} \Sigma_{0} x_{j}$

Form the linear pencil: $\tilde{F}(z)=\tilde{U}^{*} \tilde{A}_{1} \tilde{V}_{0}-z \tilde{U}^{*} \tilde{A}_{0} \tilde{V}_{0} \in \mathbb{C}^{m \times m}$.
NB: $m=\operatorname{Trace}\left(\frac{1}{2 \pi i} \int_{\Gamma} T^{\prime}(z) T(z)^{-1} \mathrm{~d} z\right)$ can compute this (another story).

Stability and convergence result

Keldysh: $T(z)^{-1}=V(z-J)^{-1} W^{*}+R(z)$, let $M=\sup _{z \in \Omega}\|R(z)\|$.
Suppose that $\left\|\tilde{A}_{j}-A_{j}\right\| \leq \varepsilon_{j}$ and let $\kappa=\frac{\left\|V W^{*}\right\|}{\sigma_{m}\left(V W^{*}\right)}$ (condition number).
Theorem: For sufficiently oversampled \mathcal{V}, with overwhelming probability, $\left|\sigma_{\mathrm{inf}}(F(z))-\sigma_{\mathrm{inf}}(\tilde{F}(z))\right| \leq 2\left(\varepsilon_{1}+\left\|V J W^{*}\right\| \varepsilon_{0} / \sigma_{m}\left(V W^{*}\right)+|z| \varepsilon_{0}\right)$ (quad. err.)

Moreover, if $2 M \kappa \varepsilon<1$, then

$$
\begin{equation*}
\operatorname{Sp}_{\frac{\varepsilon}{\kappa}}(T) \subset \operatorname{Sp}_{\frac{2\left\|V W^{*}\right\|^{2}}{\kappa-M \varepsilon} \varepsilon}(F) \subset \operatorname{Sp}_{\frac{4 \kappa \varepsilon}{1-2 M \kappa \varepsilon}}(T) . \tag{T}
\end{equation*}
$$

NOT a statement on computing $\mathrm{Sp}_{\varepsilon}(T)$ (another algorithm does that!!!)
\Rightarrow converges without spectral pollution or invisibility + method is stable.

Proof sketch

Keldysh: $T(z)^{-1}=V(z-J)^{-1} W^{*}+R(z)$, let $M=\sup _{z \in \Omega}\|R(z)\|$. Introduce: $L_{1}=\left(V W^{*}\right)^{+}, L_{2}=\left(V W^{*} \mathcal{V} V_{0}\right)^{+}$.

$$
\begin{gathered}
T(z)^{-1} L_{1} F(z)=-V W^{*} \mathcal{V} V_{0}+R(z) L_{1} F(z) \\
\sigma_{\mathrm{inf}}(F(z))<\varepsilon \Rightarrow\left\|T(z)^{-1}\right\|>\frac{\sigma_{m}\left(V W^{*}\right) \sigma_{m}\left(V W^{*} \mathcal{V}\right)}{\varepsilon}-M
\end{gathered}
$$

$$
F(z) L_{2}\left[T(z)^{-1}-R(z)\right]=-V W^{*}
$$

$$
\left\|T(z)^{-1}\right\|>\varepsilon \Rightarrow \sigma_{\mathrm{inf}}(F(z))<\frac{\left\|V W^{*}\right\|\left\|V W^{*} \mathcal{V}\right\|}{1-M \varepsilon} \varepsilon
$$

Use results from inf dim randomized NLA to bound terms with a \mathcal{V}.

Example: two-dimensional acoustic wave

 acoustic_wave_2d from NLEVP collection.$$
\frac{\partial^{2} p}{\partial x^{2}}+\frac{\partial^{2} p}{\partial y^{2}}+4 \pi^{2} \lambda^{2} p=0
$$

p corresponds to acoustic pressure.
λ correspond to resonant frequencies.
Discretised using FEM.

Example: two-dimensional acoustic wave

 acoustic_wave_2d from NLEVP collection.$$
\frac{\partial^{2} p}{\partial x^{2}}+\frac{\partial^{2} p}{\partial y^{2}}+4 \pi^{2} \lambda^{2} p=0
$$

p corresponds to acoustic pressure.
λ correspond to resonant frequencies.
Discretised using FEM.

25 out of 52 come from an infinitedimensional problem!

Example: two-dimensional acoustic wave

[^7]butterfly from NLEVP collection
$T(\lambda)=F(\lambda, S)$
S bilateral shift on $l^{2}(\mathbb{Z})$
F a rational function
Discretised $\mathcal{P}_{n} T(\lambda) \mathcal{P}_{n}^{*}(n=500)$

Method based on $\sigma_{\mathrm{inf}}\left(T(\lambda) \mathcal{P}_{n}^{*}\right)$

[^8]
Example: planar waveguide

planar_waveguide from NLEVP collection.

$$
\begin{gathered}
\frac{d^{2} \phi}{d x^{2}}+k^{2}\left(\eta^{2}-\mu(\lambda)\right) \phi=0 \\
\mu(\lambda)=\frac{\delta_{+}}{k^{2}}+\frac{\delta_{-}}{8 k^{2} \lambda^{2}}+\frac{\lambda^{2}}{k^{2}} \\
\frac{d \phi}{d x}(0)+\left(\frac{\delta_{-}}{2 \lambda}-\lambda\right) \phi(0)=0 \\
\frac{d \phi}{d x}(2)+\left(\frac{\delta_{-}}{2 \lambda}+\lambda\right) \phi(2)=0
\end{gathered}
$$

η corresponds to refractive index.
λ correspond to guided and leaky modes.

Example: planar waveguide

C., Townsend, "Avoiding discretization issues for nonlinear eigenvalue problem", preprint.

Example: planar waveguide

[^9]
Example: planar waveguide

[^10]
Key Foundations Developments

- Classify difficulty of computational problems.
- Prove that algorithms are optimal (in any given computational model).
- Find assumptions and methods for computational goals.
+ Structure of SCI hierarchy allows us to mix and match.
- Leads to universal algorithms for classes of operators.

This framework is now entering computational PDEs, computer-assisted proofs, foundations of Al , and optimization.

Key Algorithmic Developments

- A new suite of "infinite-dimensional" algorithms. Solve-then-discretise.
- Methods built on $\sigma_{\text {inf }}(\boldsymbol{A})$, e.g., compute $\sigma_{\mathrm{inf}}\left(A \mathcal{P}_{n}^{*}\right)$ or $\sqrt{\sigma_{\mathrm{inf}}\left(\mathcal{P}_{n} A^{*} A \mathcal{P}_{n}^{*}\right)}$
- Spectra with error control (including essential spectrum).
- Pseudospectra, stability bounds etc.
- More exotic features such as fractal dimensions.
- Methods built on adaptively computing $(A-z I)^{-1}$ or $T(z)^{-1}$
- Contour methods: discrete spectra for linear and nonlinear pencils.
- Convolution methods: spectral measures of self-adjoint and unitary operators.
- Functions of operators with error control.

Open Problems Related to Workshop!

- Structure-preserving infinite-dimensional methods for NEPs.
- Essential spectra of NEPs.
- Expect SCI > 1 for essential spectra, even if pencil is Hermitian.
- Foundations of data-driven spectral problems.
- Characterising spectral pollution for eigenvalue-dependent boundary conditions (e.g., problems like acoustic_wave_2d, polynomial pencils)
- Stability and convergence results for InfBeyn with higher moments.
- Π_{1} algorithm (cover) for 2D aperiodic discrete Schrödinger operators.

Example: quasicrystals (discrete aperiodic Hamiltonian)

Infinite matrix: discrete Schrödinger operator

Naïve Method

Careful Method

Verified error bounds

[^11]
[^0]: - Hansen, "On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators," J. Am. Math. Soc., 2011.

[^1]: - Hansen, "On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators," J. Am. Math. Soc., 2011.

[^2]: - Hansen, "On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators," J. Am. Math. Soc., 2011.

[^3]: - Hansen, "On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators," J. Am. Math. Soc., 2011.

[^4]: - Han: _-1, 'On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators," J. Am. Math. Soc., 2011.
 - Ben-Artzi, C., Hansen, Nevanlinna, Seidel, "On the solvability complexity index hierarchy and towers of algorithms," preprint.
 - C., "On the computation of geometric features of spectra of linear operators on Hilbert spaces," Found. Comput. Math., 2022.

[^5]: C., Hansen, "The foundations of spectral computations via the solvability complexity index hierarchy," J. Eur. Math. Soc., 2022

[^6]: C., Hansen, "The foundations of spectral computations via the solvability complexity index hierarchy," J. Eur. Math. Soc., 2022

[^7]: C., Townsend, "Avoiding discretization issues for nonlinear eigenvalue problem", preprint.

[^8]: C., Townsend, "Avoiding discretization issues for nonlinear eigenvalue problem", preprint.

[^9]: C., Townsend, "Avoiding discretization issues for nonlinear eigenvalue problem", preprint.

[^10]: C., Townsend, "Avoiding discretization issues for nonlinear eigenvalue problem", preprint.

[^11]: C., Roman, Hansen, "How to compute spectra with error control," Phys. Rev. Lett.,,2019.

