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Also deal with PDEs, integral operators etc. 

“Most operators that arise in practice are not presented in a representation in which
they are diagonalized, and it is often very hard to locate even a single point in the
spectrum. Thus, one often has to settle for numerical approximations […] Unfortunately,
there is a dearth of literature on this basic problem and, so far as we have been able to
tell, there are no proven [general] techniques.” W. Arveson, Berkeley (1994)

Finite-dimensional            ⟹ Infinite-dimensional

Eigenvalues of 𝐵 ∈ ℂ𝑛×𝑛 ⟹ Spectrum, Spec(𝐴)

𝜆𝑗 ∈ ℂ: det 𝐵 − 𝜆𝑗𝐼 = 0 ⟹ 𝜆 ∈ ℂ: 𝐴 − 𝜆𝐼 is not invertible

Canonical basis vectors of 𝑙2(ℕ)

The infinite-dimensional spectral problem
1/36



Applications: Quantum mechanics, structural mechanics, optics, acoustics,
statistical physics, number theory, matter physics, PDEs, data analysis, neural
networks and AI, nuclear scattering, optics, computational chemistry, …

Rich history of computational spectral theory:

D. Arnold (Minnesota), W. Arveson (Berkeley), A. Böttcher (Chemnitz), W. Dahmen
(South Carolina), E. B. Davies (KCL), P. Deift (NYU), L. Demanet (MIT), M. Embree
(Virginia Tech), C. Fefferman (Princeton), G. Golub (Stanford), A. Iserles (Cambridge), I.
Ipsen (NCS), S. Jitomirskaya (UCI), A. Laptev (Imperial), L. Lin (Berkeley) M. Luskin
(Minnesota), S. Mayboroda (Minnesota), W. Schlag (Yale), E. Schrödinger (DIAS), J.
Schwinger (Harvard), N. Trefethen (Oxford), V. Varadarajan (UCLA), S. Varadhan (NYU),
J. von Neumann (IAS), M. Zworski (Berkeley), ...

Interesting pure math application: Many computer-assisted proofs involve
spectra. E.g., dynamical systems, hydrodynamics, atomic resonances, etc.

Why spectra?
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In a series of papers in the 1950's and 1960’s, J. Schwinger examined the
foundations of quantum mechanics. A key problem he considered:

Given a self-adjoint Schrödinger operator −∆ + 𝑉 on ℝ,
can we approximate its spectrum?

Partial answer: T. Digernes, V. S. Varadarajan and S. R. S. Varadhan (1994)
gave a convergent algorithm for a class of 𝑉 generating compact resolvent.

For which classes of differential operators on unbounded domains do
there exist algorithms that converge to the spectrum? Can we guarantee
that the output is in the spectrum up to an arbitrarily small tolerance?

A motivating problem

• Digernes, Varadarajan, Varadhan, “Finite approximations to quantum systems,” Rev. Math. Phys., 1994.
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A =
𝑎1

𝑎2
⋱

Assumption: Algorithm can query entries of 𝐴 (e.g., as an oracle in BSS or Turing)

Algorithm: Γ𝑛 𝐴 = 𝑎1, 𝑎2, … , 𝑎𝑛 → Spec 𝐴 = 𝑎1, 𝑎2, … in Haus. Metric.

One-sided error control: Γ𝑛 𝐴 ⊂ Spec(𝐴)

Optimal: Can’t obtain ෠Γ𝑛 𝐴 → Spec 𝐴 with Spec(𝐴) ⊂ ෠Γ𝑛 𝐴 .

Warm-up: bounded diagonal operators
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Algorithm: Γ𝑛 𝐴 = Spec 𝑃𝑛𝐴𝑃𝑛 converges to Spec(𝐴) in Haus. Metric.

Question: Can we verify the output?

i.e., Does there exist ෠Γ𝑛(𝐴) → Spec 𝐴 with ෠Γ𝑛 𝐴 ⊂ Spec 𝐴 + 𝐵2−𝑛?

Example: compact operators (still easy?) 

classic method
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Algorithm: Γ𝑛 𝐴 = Spec 𝑃𝑛𝐴𝑃𝑛 converges to Spec(𝐴) in Haus. Metric.

Question: Can we verify the output?

i.e., Does there exist ෠Γ𝑛(𝐴) → Spec 𝐴 with ෠Γ𝑛 𝐴 ⊂ Spec 𝐴 + 𝐵2−𝑛?

Answer: No!

No algorithm can do this on whole class, even for self-adjoint compact operators.

Example: compact operators (still easy?) 

classic method

5/36



A =

𝑎1 𝑏1
𝑏1 𝑎2 𝑏2

𝑏2 𝑎3 ⋱

⋱ ⋱

, 𝑏𝑘 > 0, 𝑎𝑘 ∈ ℝ

Non-trivial, e.g., spurious eigenvalues.

What about Jacobi operators?
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A =

𝑎1 𝑏1
𝑏1 𝑎2 𝑏2

𝑏2 𝑎3 ⋱

⋱ ⋱

, 𝑏𝑘 > 0, 𝑎𝑘 ∈ ℝ

Non-trivial, e.g., spurious eigenvalues.

Enlarge class to sparse normal operators - surely now much harder?!

Answer: ∃{Γ𝑛} s.t. lim
𝑛→∞

Γ𝑛 𝐴 = Spec(𝐴) and Γ𝑛 𝐴 ⊂ Spec 𝐴 + 𝐵2−𝑛,

for any sparse normal operator 𝐴

What about Jacobi operators?

• C., Roman, Hansen, “How to compute spectra with error control,” Phys. Rev. Lett., 2019.
• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
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A curious case of limits

General bounded: A =
𝑎11 𝑎12 ⋯
𝑎21 𝑎22 ⋯
⋮ ⋮ ⋱

Algorithm: ∃{Γ𝑛3,𝑛2,𝑛1} s.t. lim
𝑛3→∞

lim
𝑛2→∞

lim
𝑛1→∞

Γ𝑛3,𝑛2,𝑛1 𝐴 = Spec(𝐴)

Question: Can we do better?

• Hansen, “On the solvability complexity index, the 𝑛-pseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.
• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
• C., “On the computation of geometric features of spectra of linear operators on Hilbert spaces,” Found. Comput. Math., 2022.
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Algorithm: ∃{Γ𝑛3,𝑛2,𝑛1} s.t. lim
𝑛3→∞

lim
𝑛2→∞

lim
𝑛1→∞

Γ𝑛3,𝑛2,𝑛1 𝐴 = Spec(𝐴)

Question: Can we do better?

Answer: No! Canonically embed problems such as:

Given 𝐵 ∈ 0,1 ℕ×ℕ, does 𝐵 have a column with infinitely many 1’s?

⟹ lower bound on number of “successive limits” needed (indep. of comp. model).
• Hansen, “On the solvability complexity index, the 𝑛-pseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.
• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
• C., “On the computation of geometric features of spectra of linear operators on Hilbert spaces,” Found. Comput. Math., 2022.
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Class Ω ∋ 𝐴, want to compute Ξ: Ω → (ℳ, 𝑑)

• ∆0: Problems solved in finite time (v. rare for cts problems).

• ∆1: Problems solved in “one limit” with full error control:

𝑑(Γ𝑛 𝐴 , Ξ(𝐴)) ≤ 2−𝑛

• ∆2: Problems solved in “one limit”:

lim
𝑛→∞

Γ𝑛(𝐴) = Ξ(𝐴)

• ∆3: Problems solved in “two successive limits”:

lim
𝑛→∞

lim
𝑚→∞

Γ𝑛,𝑚(𝐴) = Ξ(𝐴)

• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
• Hansen, “On the solvability complexity index, the 𝑛-pseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.
• McMullen, “Families of rational maps and iterative root-finding algorithms,” Ann. of Math., 1987.
• Doyle, McMullen, “Solving the quintic by iteration,” Acta Math., 1989.
• Smale, “The fundamental theorem of algebra and complexity theory,” Bull. Amer. Math. Soc., 1981.

Solvability Complexity Index Hierarchy
metric space

⋮
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Can work in any computational
model. BUT in infinite
dimensions, spectral problems
are just as hard from a
foundations point of view if we
use a BSS machine, Turing
machine, interval arithmetic etc.
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Error control for spectral problems

• Σ1: ∃ alg. Γ𝑛 s.t. lim
𝑛→∞

Γ𝑛 𝐴 = Ξ 𝐴 , max𝑧∈Γ𝑛 𝐴 dist 𝑧, Ξ 𝐴 ≤ 2−𝑛

Ξ 𝐴 = Spec(𝐴)
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Error control for spectral problems

• Σ1: ∃ alg. Γ𝑛 s.t. lim
𝑛→∞

Γ𝑛 𝐴 = Ξ 𝐴 , max𝑧∈Γ𝑛 𝐴 dist 𝑧, Ξ 𝐴 ≤ 2−𝑛

• Π1: ∃ alg. Γ𝑛 s.t. lim
𝑛→∞

Γ𝑛 𝐴 = Ξ 𝐴 , max𝑧∈Ξ(𝐴)dist(𝑧, Γ𝑛 𝐴 ) ≤ 2−𝑛

Such problems can be used in a proof!

Ξ 𝐴 = Spec(𝐴)
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⊊ Δ1 ⊊

Π1
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Increasing difficulty

Σ1

Sample: some results for bounded op. on 𝑙2(ℕ)

Error control
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⊊ Δ1 ⊊

Π1

Σ1 ∪ Π1 ⊊ Δ2

Increasing difficulty

Σ1

Sample: some results for bounded op. on 𝑙2(ℕ)

One limit, no error control.

One limit: SCI≤1

Error control
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• C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.

Zoo of problems: spectral type (pure point, absolutely continuous, singularly continuous), Lebesgue measure and 
fractal dimensions of spectra, discrete spectra, essential spectra, eigenspaces + multiplicity, spectral radii, essential 
numerical ranges, geometric features of spectrum (e.g., capacity), spectral gap problem, resonances ...

Error control
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Why study these foundations?

• SCI > 1 classifications ⟹ tells us assumptions needed to lower SCI.

• Σ1 and Π1 classifications ⟹ look-up table for computer-assisted proofs.

• Negative results prevent us from trying to prove too much.

• Much of computational literature does not prove sharp results.

Remarks:

• Can use with any model of computation.

• Existing hierarchies (e.g., arithmetic, Baire etc.) included as particular cases.
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Example 1: 𝛴1 algorithm for spectra
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The three-limit algorithm

𝜎inf 𝑇 = inf 𝑇𝑣 : 𝑣 ∈ 𝔇 𝑇 , 𝑣 = 1

• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
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The three-limit algorithm

𝜎inf 𝑇 = inf 𝑇𝑣 : 𝑣 ∈ 𝔇 𝑇 , 𝑣 = 1

𝛾𝑛1,𝑛2 𝐴, 𝑧 = min 𝜎inf 𝑃𝑛1[𝐴 − 𝑧]𝑃𝑛2 , 𝜎inf 𝑃𝑛1[𝐴
∗ − ҧ𝑧]𝑃𝑛2

𝑎11 𝑎12 ⋯
𝑎21 𝑎22 ⋯
⋮ ⋮ ⋱

𝑛2

𝑛1

• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
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𝑛2

• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
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∗ − ҧ𝑧]𝑃𝑛2 , as 𝑛1 → ∞

𝛾𝑛2 𝐴, 𝑧 ↓ 𝛾 𝐴, 𝑧 ≔ min 𝜎inf 𝐴 − 𝑧 , 𝜎inf 𝐴
∗ − ҧ𝑧 = 𝐴 − 𝑧 −1 −1, as 𝑛2 → ∞

𝑎11 𝑎12 ⋯
𝑎21 𝑎22 ⋯
⋮ ⋮ ⋱

• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
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The three-limit algorithm

𝜎inf 𝑇 = inf 𝑇𝑣 : 𝑣 ∈ 𝔇 𝑇 , 𝑣 = 1
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𝛾𝑛2 𝐴, 𝑧 ↓ 𝛾 𝐴, 𝑧 ≔ min 𝜎inf 𝐴 − 𝑧 , 𝜎inf 𝐴
∗ − ҧ𝑧 = 𝐴 − 𝑧 −1 −1, as 𝑛2 → ∞

Approx. pseudospectrum: lim
𝑛2→∞

lim
𝑛1→∞

෠Γ𝑛1,𝑛2(𝐴, 𝜀) = Spec𝜀 𝐴 = 𝑧: 𝛾 𝐴, 𝑧 ≤ 𝜀

Γ𝑛1,𝑛2,𝑛3 𝐴 = ෠Γ𝑛1,𝑛2(𝐴, 1/𝑛3)

Spec(𝐴)

Spec𝜀 𝐴

• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
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Approx. pseudospectrum: lim
𝑛2→∞

lim
𝑛1→∞

෠Γ𝑛1,𝑛2(𝐴, 𝜀) = Spec𝜀 𝐴 = 𝑧: 𝛾 𝐴, 𝑧 ≤ 𝜀

Γ𝑛1,𝑛2,𝑛3 𝐴 = ෠Γ𝑛1,𝑛2(𝐴, 1/𝑛3)

What assumptions are needed to reduce the number of limits?
• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
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Example: quasicrystals

Aperiodicity ⟹ interesting physics but very hard to compute spectra!
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Example: quasicrystals

Model: Perpendicular magnetic field (of strength 𝐵).
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Example: quasicrystals
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Typical approach: 𝑛 × 𝑛 truncation (possibly with BCs)

Problems: spectral pollution, which eigenvalues are reliable etc.

Example: quasicrystals
14/36



New approach: 𝑓(𝑛) × 𝑛 truncation.

Naturally captures interactions!

Example: quasicrystals
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Sketch of algorithm

𝜎inf 𝑇 = inf 𝑇𝑣 : 𝑣 ∈ 𝔇 𝑇 , 𝑣 = 1

(𝐴 − 𝑧)−1 −1 = min 𝜎inf 𝐴 − 𝑧 , 𝜎inf 𝐴
∗ − ҧ𝑧

𝜎inf 𝑃𝑓(𝑛)[𝐴 − 𝑧]𝑃𝑛 = 𝜎inf [𝐴 − 𝑧]𝑃𝑛 ↓ 𝜎inf 𝐴 − 𝑧

Suppose we can relate (𝐴 − 𝑧)−1 −1 to dist(𝑧, Spec(𝐴)), e.g., normal operators:

𝜎inf 𝑃𝑓(𝑛)[𝐴 − 𝑧]𝑃𝑛 ↓ 𝐴 − 𝑧 −1 −1 = dist(𝑧, Spec(𝐴))

Final ingredient: local and adaptive search for local minimisers. Error control!
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Example: quasicrystals
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Theorem: Let Ω be class of self-adjoint diff. operators on 𝐿2(ℝ𝑑) of the form

𝑇 = σ
𝑘∈ℤ≥0

𝑑 , 𝑘 ≤𝑁
𝑐𝑘 𝑥 𝜕𝑘 s.t.

• Smooth compactly supported functions form a core of 𝑇.
• 𝑐𝑘 are polynomially bounded and of locally bounded total variation.
Assume algorithm can:
• Point sample 𝑐𝑘(𝑞) for 𝑞 ∈ ℚ𝑑 to arbitrary prec.
• Evaluate a polynomial that bounds 𝑐𝑘 on ℝ𝑑.
Then…

(a) Know bound TV −𝑛,𝑛 𝑑 𝑐𝑘 ≤ 𝑏𝑛 ⟹ Sp,Ω ∈ Σ1.

(b) Only know asymp. bound TV −𝑛,𝑛 𝑑 𝑐𝑘 = 𝑂(𝑏𝑛)⟹ Sp, Ω ∈ Δ2\(Σ1 ∪ Π1). 

Example (local uniform convergence)

• C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022
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Verifiable

Not verifiable
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Π0

Σ0

Δ0

=
=

⊊ Δ1 ⊊

Π1

Σ1 ∪ Π1 ⊊ Δ2 ⊊

Π2

Σ2

Σ2 ∪ Π2 ⊊ Δ3 ⊊

Π3

Σ3

Σ3 ∪ Π3⋯

Increasing difficulty

Σ1

Back to Schwinger: −∆ + 𝑉 on 𝐿2(ℝ𝑑)

Bounded 𝑉 with
locally bounded TV

Self-adjoint, bounded 𝑉 with
locally bounded TV

Unbounded,
sectorial 𝑉

• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.

Error control
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Error control
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Bounded 𝑉

NB: Most existing convergence results for spectra, even on bounded 
domains, prove Δ2 results and miss the optimal Σ1 convergence!

CHALLENGE: Can you get Σ1 for your problem/method?



𝑉 cos(𝑥) tanh(𝑥) exp(−𝑥2) 𝟏/(1 + 𝑥2)

𝐸0 1.7561051579 0.8703478514 1.6882809272 1.7468178026

𝐸1 3.3447026910 2.9666370800 3.3395578680 3.4757613534

𝐸2 5.0606547136 4.9825969775 5.2703748823 5.4115076464

𝐸3 6.8649969390 6.9898951678 7.2225903394 7.3503220313

𝐸4 8.7353069954 8.9931317537 9.1953373991 9.3168983920

−∇2 + 𝑥2+ 𝑉(𝑥) on ℝ

Example with discrete spectra
(verified with interval arithmetic)
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Example with continuous spectra
(verified with interval arithmetic, error ≤ 10−2)

Finite Section New Method

𝑑4

𝑑𝑥1
4 + −𝑖

𝑑

𝑑𝑥2
+
𝑥1
2

4

+
2𝜆𝑥2 + 𝜆2

1 + 𝑥2
2 on ℝ2
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Example 2: Δ2 alg. for spectral meas.
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• Fin.-dim.: 𝐵 ∈ ℂ𝑛×𝑛, 𝐵∗𝐵 = 𝐵𝐵∗, o.n. basis of e-vectors 𝑣𝑗 𝑗=1

𝑛

𝑣 = ෍

𝑗=1

𝑛

𝑣𝑗𝑣𝑗
∗ 𝑣, 𝐵𝑣 = ෍

𝑗=1

𝑛

𝜆𝑗𝑣𝑗𝑣𝑗
∗ 𝑣, ∀𝑣 ∈ ℂ𝑛

• Inf.-dim.: Operator 𝐴:𝒟(𝐴) → ℋ. Typically, no basis of e-vectors! 
Spectral theorem: (projection-valued) spectral measure 𝐸

𝑓 = න
Spec 𝐴

1d𝐸(𝜆) 𝑓, 𝐴𝑓 = න
Spec 𝐴

𝜆 d𝐸(𝜆) 𝑓, ∀𝑓 ∈ ℋ

• Spectral measures: 𝜇𝑓 𝑈 = 𝐸 𝑈 𝑓, 𝑓 ( 𝑓 = 1) prob. Measure on ℝ.

Spectral measures → diagonalisation
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Smoothed spectral measure:

𝜇𝑓
𝜀 𝑥 =

1

𝜋
න

ℝ

𝜀 d𝜇𝑓(𝜆)

(𝑥 − 𝜆)2+𝜀2
=

(𝐴 − [𝑥 + 𝑖𝜀])−1−(𝐴 − [𝑥 − 𝑖𝜀])−1 𝑓, 𝑓

2𝜋𝑖

A two-limit algorithm (Stone’s formula)

𝑥
• 𝑂(𝜀)

𝜀 = “smoothing parameter”
•

𝑂(𝜀)
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𝜋
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𝜀 d𝜇𝑓(𝜆)

(𝑥 − 𝜆)2+𝜀2
=

(𝐴 − [𝑥 + 𝑖𝜀])−1−(𝐴 − [𝑥 − 𝑖𝜀])−1 𝑓, 𝑓

2𝜋𝑖

Discretize RHS with size 𝑛1, to get 𝜇𝑓,𝑛1
𝜀 . Set

Γ𝑛1,𝑛2 𝐴 = 𝜇𝑓,𝑛1
1/𝑛2

Converges in weak sense.

Without extra assumptions, this is sharp!!

A two-limit algorithm (Stone’s formula)

𝑥
• 𝑂(𝜀)

𝜀 = “smoothing parameter”
•

𝑂(𝜀)
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Smoothed spectral measure:

𝜇𝑓
𝜀 𝑥 =

1

𝜋
න

ℝ

𝜀 d𝜇𝑓(𝜆)

(𝑥 − 𝜆)2+𝜀2
=

(𝐴 − [𝑥 + 𝑖𝜀])−1−(𝐴 − [𝑥 − 𝑖𝜀])−1 𝑓, 𝑓

2𝜋𝑖

Discretize RHS with size 𝑛1, to get 𝜇𝑓,𝑛1
𝜀 . Set

Γ𝑛1,𝑛2 𝐴 = 𝜇𝑓,𝑛1
1/𝑛2

Converges in weak sense.

Without extra assumptions, this is sharp!!

If we can compute RHS with error control (e.g., residuals), choose 𝑛1(𝜀).

A two-limit algorithm (Stone’s formula)

𝑥
• 𝑂(𝜀)

𝜀 = “smoothing parameter”
•

𝑂(𝜀)
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Example: integral operator

𝐴𝑢 𝑥 = 𝑥𝑢 𝑥 + න
−1

1

𝑒− 𝑥2+𝑦2 𝑢 𝑦 d𝑦

Discretize using adaptive Chebyshev collocation method.

Look at 𝜇𝑓 for 𝑓 𝑥 = 3/2𝑥

24/36
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Example: integral operator

Slow convergence (more than five digits infeasible). Can we do better?
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𝑚th order rational “smoothing” kernels:

𝐾 𝑥 =
1

2𝜋𝑖
σ𝑗=1
𝑚 𝛼𝑗

𝑥−𝑎𝑗
−

𝛼𝑗

𝑥−𝑎𝑗
, 𝐾𝜀 𝑥 = 𝐾(𝑥/𝜀)/𝜀

𝐾𝜀 ∗ 𝜇𝑓 𝑥

=
−1

2𝜋𝑖
σ𝑗=1
𝑚 𝛼𝑗(𝐴 − [𝑥 − 𝜀𝑎𝑗])

−1 − ഥ𝛼𝑗(𝐴 − [𝑥 − 𝜀 ഥ𝑎𝑗])
−1 𝑓, 𝑓

⟹ larger 𝜺 for a given accuracy ⟹ smaller 𝑛1 𝜀 for a given accuracy

High-order versions of Stone’s formula
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Demo: radial Schrödinger
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Demo: radial Schrödinger

𝜌𝑓 − 𝐾𝜀 ∗ 𝜇𝑓 𝐿1
/ 𝜌𝑓 𝐿1

Wavefunction ∝ 𝑒−(𝑟−𝑟0)
2
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Eigenvalues of Dirac operator
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Software package

SpecSolve available at https://github.com/SpecSolve
Capabilities: ODEs, PDEs, integral operators, discrete operators.

Spectral measures of self-adjoint operators

• C., Horning, Townsend “Computing spectral measures of self-adjoint operators,” SIAM Rev., 2021.

28/36
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• Generic assumptions: Computing (𝐴, 𝑓, 𝑈) ↪ 𝜇𝑓(𝑈) has SCI = 1 but 
error control or rate impossible (even for discrete Schrödinger).

• If spectral measure 𝜇𝑓 is a.c. on interval 𝐼, with 𝒞𝑛,𝛼 density 𝜌𝑓, then
𝜌𝑓 − 𝐾𝜀 ∗ 𝜇𝑓 𝐿∞(𝐼)

= 𝒪(𝜀𝑛+𝛼 + 𝜀𝑚log(1/𝜀))

• Weak convergence always 𝒪(𝜀𝑚log(1/𝜀)) for 𝒞𝑚 test functions.

• Splitting into spectral type: SCI = 2 or 3.

NB: Constants can be made explicit ⟹ complexity bounds for spec. meas.

Executive summary of theorems

Input an open (or closed) set

• C., “Computing spectral measures and spectral types,” Comm. Math. Phys., 2021
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Further areas
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• PDEs e.g.:

• Can you solve Schrödinger eq. on 𝐿2 ℝ𝑑 with error control?

• Can you predict blow-up of non-linear PDEs?

• Optimization

• Inverse problems (e.g., imaging)

• Polynomial root-finding: Smale (settled by McMullen), “Is there a purely 
iterative convergent algorithm for polynomial zero finding?”

• Topology

• As well as … (computer-assisted proofs, AI, dynamical systems etc.)

Other areas with SCI results
31/36



𝐸 𝑍 = ground state energy of

𝐻 = ෍

𝑘=1

𝑁

−∆𝑥𝑘 − 𝑍 𝑥𝑘
−1 +෍

𝑗<𝑘

𝑥𝑗 − 𝑥𝑘
−1
.

Proof involves spectral analysis, analytic number theory, …, 
computer-assisted bound involving solutions of an ODE.

Fefferman and Seco implicitly prove 𝜮𝟏 classifications!

Computer-assisted proof: Dirac-Schwinger conjecture

• Fefferman, Phong, “On the lowest eigenvalue of a pseudo-differential operator,” Proc. Natl. Acad. Sci. USA, 1979.
• Fefferman, “The N-body problem in quantum mechanics,” Comm. Pure Appl. Math., 1986.
• Fefferman, Seco, “Interval arithmetic in quantum mechanics,” Applications of interval computations, 1996.

Theorem: 𝐸 𝑍 = −𝑐0𝑍
7/3 +

1

8
𝑍2 − 𝑐1𝑍

5/3 + 𝑂(𝑍5/3−1/2835), as 𝑍 → ∞

𝑁: # of electrons, 𝑍: charge of nucleus
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Computer-assisted proof: Kepler conjecture
(Hilbert’s 18th problem)

• Hales, “A proof of the Kepler conjecture,” Ann. of Math., 2005.
• Hales et al., “A formal proof of the Kepler conjecture,” Forum Math. Pi, 2017.
• Bastounis, Hansen, Vlačić, “The extended Smale's 9th problem,” preprint.

Proof shows potential counterexamples
would satisfy infeasible inequalities

relaxed to ≈ 10,000s linear programs

These can’t always be decided!

Account of Flyspeck project (formal proof)
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Paradox: “Nice” linear inverse problems where a stable and accurate neural 
network for image reconstruction exists, but it can never be trained!

• Pick positive integers 𝑛 ≥ 3 and 𝑀. Class of problems such that:
• (Not trainable) No algorithm, even randomised, can produce a neural network with 𝑛 digits 

of accuracy for any member of the dataset with probability greater than 1/2.

• (Not practical) 𝑛 − 1 digits of accuracy is possible over the whole dataset, but any 
algorithm that trains such a neural network requires arbitrarily large training data.

• (Trainable and practical) 𝑛 − 2 digits of accuracy is possible over the whole dataset via an 
algorithm using only 𝑀 training data, regardless of all parameters (e.g., dimension).

Holds for any architecture, any precision of training data.

⟹ Classification theory telling us what can and cannot be done

• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.
• Antun, C., Hansen,“Proving Existence Is Not Enough: : Mathematical Paradoxes Unravel the Limits of Neural Networks in Artificial Intelligence,”SIAM News, May 2022.
• Choi, “Some AI Systems May Be Impossible to Compute,” IEEE Spectrum, March 2022.

Theorem: Pick positive integers 𝑛 ≥ 3 and 𝑀. Class of problems such that:
• (Not trainable) No algorithm (even random) can train a neural network with 𝒏

digits of accuracy over the dataset with probability greater than 1/2.
• (Not practical) 𝒏 − 𝟏 digits of accuracy possible over the dataset, but any training 

algorithm requires arbitrarily large training data.
• (Trainable and practical) 𝒏 − 𝟐 digits of accuracy possible over the dataset via 

training algorithm using 𝑴 training data.

Example: Barriers of deep learning
Smale's 18th problem: “What are the limits of AI?”
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Example: Rigorous Koopmania!

• State 𝑥 ∈ Ω ⊆ ℝ𝑑, unknown function 𝐹: Ω → Ω governs dynamics

𝑥𝑛+1 = 𝐹(𝑥𝑛)

• Goal: Learn about system from data 𝑥(𝑚), 𝑦(𝑚) = 𝐹(𝑥(𝑚))
𝑚=1

𝑀

• Koopman operator 𝒦 acts on functions 𝑔: Ω → ℂ

𝒦𝑔 𝑥 = 𝑔(𝐹(𝑥))

• 𝒦 is linear but acts on an infinite-dimensional space.

• Often spectral info encodes the features of the system we want.

• 35,000 papers over last decade, hardly anything on rigorous computation!

• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.
• C., Ayton, Szőke, “Residual Dynamic Mode Decomposition,” preprint.
• Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
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Summary

SCI hierarchy: a tool that allows us to

• Classify difficulty of continuous and discrete computational problems.

• Prove that algorithms are optimal (in any given computational model).

• Framework ⇒ find assumptions and methods for computational goals.

http://www.damtp.cam.ac.uk/user/mjc249/home.html: slides, papers, and code
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Summary

SCI hierarchy: a tool that allows us to

• Classify difficulty of continuous and discrete computational problems.

• Prove that algorithms are optimal (in any given computational model).

• Framework ⇒ find assumptions and methods for computational goals.

http://www.damtp.cam.ac.uk/user/mjc249/home.html: slides, papers, and code

Shameless advert: you can read more in CUP book out this summer, 

“Spectral approximations in infinite dimensions”
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