To infinity... and beyond!

The solvability complexity index and the foundations of infinite-dimensional spectral computations

Matthew Colbrook
(m.colbrook@damtp.cam.ac.uk)

University of Cambridge

The infinite-dimensional spectral problem

$$
A^{\prime \prime}="\left(\begin{array}{ccc}
a_{11} & a_{12} & \cdots \\
a_{21} & a_{22} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right), \quad A\left(\sum_{k=1}^{\infty} x_{k} e_{k}\right)=\sum_{j=1}^{\infty}\left(\sum_{k=1}^{\infty} a_{j k}^{\infty} x_{k}\right) e_{j}
$$

Also deal with PDEs, integral operators etc.

Finite-dimensional $\quad \Rightarrow$ Infinite-dimensional

Eigenvalues of $B \in \mathbb{C}^{n \times n} \quad \Rightarrow \operatorname{Spectrum}, \operatorname{Spec}(A)$
$\left\{\lambda_{j} \in \mathbb{C}: \operatorname{det}\left(B-\lambda_{j} I\right)=0\right\} \quad \Rightarrow\{\lambda \in \mathbb{C}: A-\lambda I$ is not invertible $\}$
"Most operators that arise in practice are not presented in a representation in which they are diagonalized, and it is often very hard to locate even a single point in the spectrum. Thus, one often has to settle for numerical approximations [...] Unfortunately, there is a dearth of literature on this basic problem and, so far as we have been able to tell, there are no proven [general] techniques."
W. Arveson, Berkeley (1994)

Why spectra?

Applications: Quantum mechanics, structural mechanics, optics, acoustics, statistical physics, number theory, matter physics, PDEs, data analysis, neural networks and AI, nuclear scattering, optics, computational chemistry, ...

Rich history of computational spectral theory:

D. Arnold (Minnesota), W. Arveson (Berkeley), A. Böttcher (Chemnitz), W. Dahmen (South Carolina), E. B. Davies (KCL), P. Deift (NYU), L. Demanet (MIT), M. Embree (Virginia Tech), C. Fefferman (Princeton), G. Golub (Stanford), A. Iserles (Cambridge), I. Ipsen (NCS), S. Jitomirskaya (UCI), A. Laptev (Imperial), M. Luskin (Minnesota), S. Mayboroda (Minnesota), W. Schlag (Yale), E. Schrödinger (DIAS), J. Schwinger (Harvard), N. Trefethen (Oxford), V. Varadarajan (UCLA), S. Varadhan (NYU), J. von Neumann (IAS), M. Zworski (Berkeley),...

A motivating problem

In a series of papers in the 1950's and 1960's, J. Schwinger examined the foundations of quantum mechanics. A key problem he considered:

Given a self-adjoint Schrödinger operator $-\Delta+V$ on \mathbb{R}, can we approximate its spectrum?

Partial answer: T. Digernes, V. S. Varadarajan and S. R. S. Varadhan (1994) gave a convergent algorithm for a class of V generating compact resolvent.

For which classes of differential operators on unbounded domains do there exist algorithms that converge to the spectrum? Can we guarantee that the output is in the spectrum up to an arbitrarily small tolerance?

Warm-up: bounded diagonal operators

$$
A=\left(\begin{array}{lll}
a_{1} & & \\
& a_{2} & \\
& & \ddots
\end{array}\right)
$$

Assumption: Algorithm can query entries of A.
Algorithm: $\Gamma_{n}(A)=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \rightarrow \operatorname{Spec}(A)=\overline{\left\{a_{1}, a_{2}, \ldots\right\}}$ in Haus. Metric. One-sided error control: $\Gamma_{n}(A) \subset \operatorname{Spec}(A)$

Optimal: Can't obtain $\hat{\Gamma}_{n}(A) \rightarrow \operatorname{Spec}(A)$ with $\operatorname{Spec}(A) \subset \hat{\Gamma}_{n}(A)$.

Example: compact operators (still easy?)

$$
A=\left(\begin{array}{ccc}
a_{11} & a_{12} & \cdots \\
a_{21} & a_{22} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right)
$$

Algorithm: $\Gamma_{n}(A)=\operatorname{Spec}\left(P_{n} A P_{n}\right)$ converges to $\operatorname{Spec}(A)$ in Haus. Metric. Question: Can we verify the output?
i.e., Does there exist $\hat{\Gamma}_{n}(A) \rightarrow \operatorname{Spec}(A)$ with $\hat{\Gamma}_{n}(A) \subset \operatorname{Spec}(A)+B_{2^{-n}}$?

Example: compact operators (still easy?)

$$
A=\left(\begin{array}{ccc}
a_{11} & a_{12} & \cdots \\
a_{21} & a_{22} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right)
$$

Algorithm: $\Gamma_{n}(A)=\operatorname{Spec}\left(P_{n} A P_{n}\right)$ converges to $\operatorname{Spec}(A)$ in Haus. Metric. Question: Can we verify the output?
i.e., Does there exist $\hat{\Gamma}_{n}(A) \rightarrow \operatorname{Spec}(A)$ with $\hat{\Gamma}_{n}(A) \subset \operatorname{Spec}(A)+B_{2^{-n}}$?

Answer: No!

No alg. can do this on whole class, even for self-adjoint compact operators.

What about Jacobi operators?

$$
A=\left(\begin{array}{cccc}
a_{1} & b_{1} & & \\
b_{1} & a_{2} & b_{2} & \\
& b_{2} & a_{3} & \ddots \\
& & \ddots & \ddots
\end{array}\right), \quad b_{k}>0, \quad a_{k} \in \mathbb{R}
$$

Non-trivial, e.g., spurious eigenvalues.

What about Jacobi operators?

$$
A=\left(\begin{array}{cccc}
a_{1} & b_{1} & & \\
b_{1} & a_{2} & b_{2} & \\
& b_{2} & a_{3} & \ddots \\
& & \ddots & \ddots
\end{array}\right), \quad b_{k}>0, \quad a_{k} \in \mathbb{R}
$$

Non-trivial, e.g., spurious eigenvalues.
Enlarge class to sparse normal operators - surely now much harder?!

What about Jacobi operators?

$$
A=\left(\begin{array}{cccc}
a_{1} & b_{1} & & \\
b_{1} & a_{2} & b_{2} & \\
& b_{2} & a_{3} & \ddots \\
& & \ddots & \ddots
\end{array}\right), \quad b_{k}>0, \quad a_{k} \in \mathbb{R}
$$

Non-trivial, e.g., spurious eigenvalues.
Enlarge class to sparse normal operators - surely now much harder?!
Answer: $\exists\left\{\Gamma_{n}\right\}$ s.t. $\lim _{n \rightarrow \infty} \Gamma_{n}(A)=\operatorname{Spec}(A)$ and $\Gamma_{n}(A) \subset \operatorname{Spec}(A)+B_{2^{-n}}$, for any sparse normal operator A

- C., Roman, Hansen, "How to compute spectra with error control," Phys. Rev. Lett., 2019.
- Ben-Artzi, C., Hansen, Nevanlinna, Seidel, "On the solvability complexity index hierarchy and towers of algorithms," preprint.

A curious case of limits

General bounded:

$$
A=\left(\begin{array}{ccc}
a_{11} & a_{12} & \cdots \\
a_{21} & a_{22} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right)
$$

Algorithm: $\exists\left\{\Gamma_{n_{3}, n_{2}, n_{1}}\right\}$ s.t. $\lim _{n_{3} \rightarrow \infty} \lim _{n_{2} \rightarrow \infty} \lim _{n_{1} \rightarrow \infty} \Gamma_{n_{3}, n_{2}, n_{1}}(A)=\operatorname{Spec}(A)$

Question: Can we do better?

A curious case of limits

General bounded:

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
a_{11} & a_{12} & \cdots \\
a_{21} & a_{22} & \cdots \\
\vdots & \vdots \\
\hline
\end{array}\right) \\
& \text { plains lament! } \\
& \text { Arveson's } \begin{array}{l}
\omega n_{1} \rightarrow \infty \\
\mathrm{C}_{n_{3}, n_{2}, n_{1}}(A)=\operatorname{spec}(A)
\end{array}
\end{aligned}
$$

Answer: No! Canonically embed problems such as:
Given $B \in\{0,1\}^{\mathbb{N} \times \mathbb{N}}$, does B have a column with infinitely many 1 's?
\Rightarrow lower bound on number of "successive limits" needed (ind. of comp. model).

Solvability Complexity Index Hierarchy

Class $\Omega \ni A$, want to compute $\Xi: \Omega \rightarrow(\mathcal{M}, d) \longleftarrow$ metric space

- Δ_{0} : Problems solved in finite time (v . rare for cts problems).
- Δ_{1} : Problems solved in "one limit" with full error control:

$$
d\left(\Gamma_{n}(A), \Xi(A)\right) \leq 2^{-n}
$$

- Δ_{2} : Problems solved in "one limit":

$$
\lim _{n \rightarrow \infty} \Gamma_{n}(A)=\Xi(A)
$$

- Δ_{3} : Problems solved in "two successive limits":

$$
\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} \Gamma_{n, m}(A)=\Xi(A)
$$

- Ben-Artzi, C., Hansen, Nevanlinna, Seidel, "On the solvability complexity index hierarchy and towers of algorithms," preprint.
- Hansen, "On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators," J. Amer. Math. Soc., 2011.

McMullen, "Families of rational maps and iterative root-finding algorithms," Ann. of Math., 1987.

- Doyle, McMullen, "Solving the quintic by iteration," Acta Math., 1989.

Smale, "The fundamental theorem of algebra and complexity theory," Bull. Amer. Math. Soc., 1981.

Solvability Complexity Index Hierarchy

Class $\Omega \ni A$, want to compute $\Xi: \Omega \rightarrow(\mathcal{M}, d)$

- Δ_{0} : Problems solved in finite time (v. rare for cts n^{n} - , limits is race
- Δ_{1} : Problems solved in "one limit" with ${ }^{\text {f. }}$
- Δ_{2} : Problems solved in" once you that ceric! and connatural and ${\underset{H}{(A)}}^{\text {nat }}$ multiple

$$
\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} \Gamma_{n, m}(A)=\Xi(A)
$$

- Ben-Artzi, C., Hansen, Nevanlinna, Seidel, "On the solvability complexity index hierarchy and towers of algorithms," preprint.
- Hansen, "On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators," J. Amer. Math. Soc., 2011.

McMullen, "Families of rational maps and iterative root-finding algorithms," Ann. of Math., 1987.

- Doyle, McMullen, "Solving the quintic by iteration," Acta Math., 1989.

Smale, "The fundamental theorem of algebra and complexity theory," Bull. Amer. Math. Soc., 1981.

Error control for spectral problems

Σ_{1} convergence

$$
\Xi(A)=\operatorname{Spec}(A)
$$

- $\Sigma_{1}: \exists$ alg. $\left\{\Gamma_{n}\right\}$ s.t. $\lim _{n \rightarrow \infty} \Gamma_{n}(A)=\Xi(A), \max _{z \in \Gamma_{n}(A)} \operatorname{dist}(z, \Xi(A)) \leq 2^{-n}$

Error control for spectral problems

Σ_{1} convergence
Π_{1} convergence

$$
\Xi(A)=\operatorname{Spec}(A)
$$

- $\Sigma_{1}: \exists$ alg. $\left\{\Gamma_{n}\right\}$ s.t. $\lim _{n \rightarrow \infty} \Gamma_{n}(A)=\Xi(A), \max _{z \in \Gamma_{n}(A)} \operatorname{dist}(z, \Xi(A)) \leq 2^{-n}$
$\cdot \Pi_{1}: \exists$ alg. $\left\{\Gamma_{n}\right\}$ s.t. $\lim _{n \rightarrow \infty} \Gamma_{n}(A)=\Xi(A), \max _{z \in \Xi(A)} \operatorname{dist}\left(z, \Gamma_{n}(A)\right) \leq 2^{-n}$ Such problems can be used in a proof!

Sample: some results for bounded op. on $l^{2}(\mathbb{N})$
Increasing difficulty
Error control

Sample: some results for bounded op. on $l^{2}(\mathbb{N})$

Sample: some results for bounded op. on $l^{2}(\mathbb{N})$
Increasing difficulty

Two limits: $\mathrm{SCl} \leq 2$

Sample: some results for bounded op. on $l^{2}(\mathbb{N})$
Increasing difficulty

Three limits: $\mathrm{SCI} \leq 3$

Sample: some results for bounded op. on $l^{2}(\mathbb{N})$ Increasing difficulty

General operators
Normal operators

Sample: some results for bounded op. on $l^{2}(\mathbb{N})$ Increasing difficulty

Sample: some results for bounded op. on $l^{2}(\mathbb{N})$
quasiperiodic operators

Error control

Sample: some results for bounded op. on $l^{2}(\mathbb{N})$

Zoo of problems: spectral type (pure point, absolutely continuous, singularly continuous), Lebesgue measure and fractal dimensions of spectra, discrete spectra, essential spectra, eigenspaces + multiplicity, spectral radii, essential numerical ranges, geometric features of spectrum (e.g., capacity), spectral gap problem, resonances ...

Why study these foundations?

- $\mathrm{SCI}>1$ classifications \Rightarrow tells us assumptions needed to lower SCl.
- Σ_{1} and Π_{1} classifications \Rightarrow look-up table for computer-assisted proofs.
- Negative results prevent us from trying to prove too much.
- Much of computational literature does not prove sharp results.

Remarks:

- Can use with any model of computation.
- Existing hierarchies included as particular cases.

Example 1: Σ_{1} algorithm for spectra

The three-limit algorithm

$$
\sigma_{\inf }(T)=\inf \{\|T v\|: v \in \mathfrak{D}(T),\|v\|=1\}
$$

[^0]
The three-limit algorithm
 $$
\sigma_{\mathrm{inf}}(T)=\inf \{\|T v\|: v \in \mathfrak{D}(T),\|v\|=1\}
$$

$$
\gamma_{n_{1}, n_{2}}(A, z)=\min \left\{\sigma_{\mathrm{inf}}\left(P_{n_{1}}[A-z] P_{n_{2}}\right), \sigma_{\mathrm{inf}}\left(P_{n_{1}}\left[A^{*}-\bar{z}\right] P_{n_{2}}\right)\right\}
$$

[^1]
The three-limit algorithm
 $$
\sigma_{\inf }(T)=\inf \{\|T v\|: v \in \mathfrak{D}(T),\|v\|=1\}
$$

$$
\gamma_{n_{1}, n_{2}}(A, z)=\min \left\{\sigma_{\inf }\left(P_{n_{1}}[A-z] P_{n_{2}}\right), \sigma_{\inf }\left(P_{n_{1}}\left[A^{*}-\bar{z}\right] P_{n_{2}}\right)\right\}
$$

$$
\gamma_{n_{1}, n_{2}}(A, z) \uparrow \gamma_{n_{2}}(A, z):=\min \left\{\sigma_{\inf }\left([A-z] P_{n_{2}}\right), \sigma_{\inf }\left(\left[A^{*}-\bar{z}\right] P_{n_{2}}\right)\right\}, \text { as } n_{1} \rightarrow \infty
$$

The three-limit algorithm
 $$
\sigma_{\inf }(T)=\inf \{\|T v\|: v \in \mathfrak{D}(T),\|v\|=1\}
$$

$$
\gamma_{n_{1}, n_{2}}(A, z)=\min \left\{\sigma_{\inf }\left(P_{n_{1}}[A-z] P_{n_{2}}\right), \sigma_{\inf }\left(P_{n_{1}}\left[A^{*}-\bar{z}\right] P_{n_{2}}\right)\right\}
$$

$$
\begin{gathered}
\gamma_{n_{1}, n_{2}}(A, z) \uparrow \gamma_{n_{2}}(A, z):=\min \left\{\sigma_{\inf }\left([A-z] P_{n_{2}}\right), \sigma_{\text {inf }}\left(\left[A^{*}-\bar{z}\right] P_{n_{2}}\right)\right\}, \text { as } n_{1} \rightarrow \infty \\
\gamma_{n_{2}}(A, z) \downarrow \gamma(A, z):=\min \left\{\sigma_{\inf }(A-z), \sigma_{\text {inf }}\left(A^{*}-\bar{z}\right)\right\}=\left\|(A-z)^{-1}\right\|^{-1}, \text { as } n_{2} \rightarrow \infty
\end{gathered}
$$

$$
\left(\begin{array}{ccc}
a_{11} & a_{12} & \cdots \\
a_{21} & a_{22} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right)
$$

[^2]\[

$$
\begin{gathered}
\text { The three-limit algorithm } \\
\sigma_{\text {inf }}(T)=\operatorname{inff}\|T v\|: v \in \mathfrak{D}(T),\|v\|=1
\end{gathered}
$$
\]

$$
\gamma_{n_{1}, n_{2}}(A, z)=\min \left\{\sigma_{\inf }\left(P_{n_{1}}[A-z] P_{n_{2}}\right), \sigma_{\mathrm{inf}}\left(P_{n_{1}}[A\right.\right.
$$

$\operatorname{Spec}(A)$

$\gamma_{n_{1}, n_{2}}(A, z) \uparrow \gamma_{n_{2}}(A, z):=\min \left\{\sigma_{\mathrm{inf}}\left([A-z] P_{n_{2}}\right), \sigma_{\text {inf }}\left(\left[A^{*}-\bar{z}\right] P_{n_{2}}\right)\right\}$, as $\iota_{1} \rightarrow \infty$
$\gamma_{n_{2}}(A, z) \downarrow \gamma(A, z):=\min \left\{\sigma_{\text {inf }}(A-z), \sigma_{\text {inf }}\left(A^{*}-\bar{z}\right)\right\}=\left\|(A-z)^{-1}\right\|^{-1}$, as $n_{2} \rightarrow \infty$
Approx. pseudospectrum: $\lim _{n_{2} \rightarrow \infty} \lim _{n_{1} \rightarrow \infty} \hat{\Gamma}_{n_{1}, n_{2}}(A, \varepsilon)=\operatorname{Spec}_{\varepsilon}(A)=\{z: \gamma(A, z) \leq \varepsilon\}$

$$
\Gamma_{n_{1}, n_{2}, n_{3}}(A)=\hat{\Gamma}_{n_{1}, n_{2}}\left(A, 1 / n_{3}\right)
$$

[^3]LLOYD N. TREFETHEN

The three-limit algorithm

$$
\sigma_{\mathrm{inf}}(T)=\inf \{\|T v\|: v \in \mathfrak{D}(T),\|v\|=1
$$

S PECTRA
AN:D

PSEUDOSPECTRA

The Behavior of Nonnormal Matrices and Operators

Approx. pseudospectrum: $\lim _{n_{2} \rightarrow \infty} \lim _{n_{1} \rightarrow \infty} \hat{\Gamma}_{n_{1}, n_{2}}(A, \varepsilon)=\operatorname{Spec}_{\varepsilon}(A)=\{z: \gamma(A, z) \leq \varepsilon\}$

$$
\Gamma_{n_{1}, n_{2}, n_{3}}(A)=\hat{\Gamma}_{n_{1}, n_{2}}\left(A, 1 / n_{3}\right)
$$

[^4]
The three-limit algorithm
 $$
\sigma_{\inf }(T)=\inf \{\|T v\|: v \in \mathfrak{D}(T),\|v\|=1\}
$$

$$
\gamma_{n_{1}, n_{2}}(A, z)=\min \left\{\sigma_{\inf }\left(P_{n_{1}}[A-z] P_{n_{2}}\right), \sigma_{\mathrm{inf}}\left(P_{n_{1}}\left[A^{*}-\bar{z}\right] P_{n_{2}}\right)\right\}
$$

$$
\begin{gathered}
\gamma_{n_{1}, n_{2}}(A, z) \uparrow \gamma_{n_{2}}(A, z):=\min \left\{\sigma_{\inf }\left([A-z] P_{n_{2}}\right), \sigma_{\inf }\left(\left[A^{*}-\bar{z}\right] P_{n_{2}}\right)\right\}, \text { as } n_{1} \rightarrow \infty \\
\gamma_{n_{2}}(A, z) \downarrow \gamma(A, z):=\min \left\{\sigma_{\inf }(A-z), \sigma_{\text {inf }}\left(A^{*}-\bar{z}\right)\right\}=\left\|(A-z)^{-1}\right\|^{-1}, \text { as } n_{2} \rightarrow \infty
\end{gathered}
$$

Approx. pseudospectrum: $\lim _{n_{2} \rightarrow \infty} \lim _{n_{1} \rightarrow \infty} \hat{\Gamma}_{n_{1}, n_{2}}(A, \varepsilon)=\operatorname{Spec}_{\varepsilon}(A)=\{z: \gamma(A, z) \leq \varepsilon\}$

$$
\Gamma_{n_{1}, n_{2}, n_{3}}(A)=\hat{\Gamma}_{n_{1}, n_{2}}\left(A, 1 / n_{3}\right)
$$

What assumptions are needed to reduce the number of limits?

[^5]Example: quasicrystals

Aperiodicity \Rightarrow interesting physics but very hard to compute spectra!

Example: quasicrystals

Model: Perpendicular magnetic field (of strength B).

Matrix equation

$$
\left[A\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots
\end{array}\right)\right]_{j}=-\sum_{k \text { connected to } j} e^{i \theta_{j k}(B)} x_{k},
$$

Matrix sparsity

Example: quasicrystals

Example: quasicrystals

Typical approach: $n \times n$ truncation (possibly with BCs) Problems: spectral pollution, which eigenvalues are reliable etc.

Example: quasicrystals

New approach: $f(n) \times n$ truncation.
Naturally captures interactions!

Sketch of algorithm

$$
\begin{gathered}
\sigma_{\mathrm{inf}}(T)=\inf \{\|T v\|: v \in \mathfrak{D}(T),\|v\|=1\} \\
\left\|(A-z)^{-1}\right\|^{-1}=\min \left\{\sigma_{\mathrm{inf}}(A-z), \sigma_{\mathrm{inf}}\left(A^{*}-\bar{z}\right)\right\} \\
\sigma_{\mathrm{inf}}\left(P_{f(n)}[A-z] P_{n}\right)=\sigma_{\mathrm{inf}}\left([A-z] P_{n}\right) \downarrow \sigma_{\mathrm{inf}}(A-z)
\end{gathered}
$$

Suppose we can relate $\left\|(A-z)^{-1}\right\|^{-1}$ to $\operatorname{dist}(z, \operatorname{Spec}(A))$, e.g., normal operators:

$$
\sigma_{\mathrm{inf}}\left(P_{f(n)}[A-z] P_{n}\right) \downarrow\left\|(A-z)^{-1}\right\|^{-1}=\operatorname{dist}(z, \operatorname{Spec}(A))
$$

Final ingredient: local and adaptive search for local minimisers.

Example: quasicrystals

Square truncations

Spectral pollution.

New method
Convergent computation.

Does not converge
No error control

Converges
Error control

Is it right? The importance of verification

E.g., ground state of quasicrystal

The importance of verification

E.g., ground state of quasicrystal

Certainty in computed spectral properties

- PHYSICAL REVIEW B
covering condensed matter and materials physics

Highlights

Editors' Suggestion

Bulk localized transport states in infinite and finite quasicrystals via magnetic aperiodicity
Phys. Rev. B

Example (local uniform convergence)

Theorem: Let Ω be class of self-adjoint diff. operators on $L^{2}\left(\mathbb{R}^{d}\right)$ of the form

$$
T=\sum_{k \in \mathbb{Z}_{\geq 0}^{d},|k| \leq N} c_{k}(x) \partial^{k} \quad \text { s.t. }
$$

- Smooth compactly supported functions form a core of T.
- $\left\{c_{k}\right\}$ are polynomially bounded and of locally bounded total variation. Assume algorithm can:
- Point sample $\left\{c_{k}(q)\right\}$ for $q \in \mathbb{Q}^{d}$ to arbitrary prec.
- Evaluate a polynomial that bounds $\left\{c_{k}\right\}$ on \mathbb{R}^{d}. Then...

[^6]
Example (local uniform convergence)

Theorem: Let Ω be class of self-adjoint diff. operators on $L^{2}\left(\mathbb{R}^{d}\right)$ of the form

$$
T=\sum_{k \in \mathbb{Z}_{\geq 0}^{d},|k| \leq N} c_{k}(x) \partial^{k} \quad \text { s.t. }
$$

- Smooth compactly supported functions form a core of T.
- $\left\{c_{k}\right\}$ are polynomially bounded and of locally bounded total variation. Assume algorithm can:
- Point sample $\left\{c_{k}(q)\right\}$ for $q \in \mathbb{Q}^{d}$ to arbitrary prec.
- Evaluate a polynomial that bounds $\left\{c_{k}\right\}$ on \mathbb{R}^{d}. Then

Verifiable

Not verifiable
(a) Know bound $\mathrm{TV}_{[-n, n]^{d}}\left(c_{k}\right) \leq b_{n} \Rightarrow\{\mathrm{Sp}, \Omega\} \in \Sigma_{1}$.
(b) Only know asymp. bound $\mathrm{TV}_{[-n, n]^{d}}\left(c_{k}\right)=O\left(b_{n}\right) \Rightarrow\{\mathrm{Sp}, \Omega\} \in \Delta_{2} \backslash\left(\Sigma_{1} \cup \Pi_{1}\right)$.

[^7]Back to Schwinger: $-\Delta+V$ on $L^{2}\left(\mathbb{R}^{d}\right)$

Back to Schwinger: $-\Delta+V$ on $L^{2}\left(\mathbb{R}^{d}\right)$

Self-adjoint, bounded V with locally bounded TV

NB: Most existing convergence results for spectra, even on bounded domains, prove Δ_{2} results and miss the optimal Σ_{1} convergence!

CHALLENGE: Can you get Σ_{1} for your problem/method?

Example 2: Δ_{2} alg. for spectral meas.

Spectral measures \rightarrow diagonalisation

- Fin.-dim.: $B \in \mathbb{C}^{n \times n}, B^{*} B=B B^{*}$, o.n. basis of e-vectors $\left\{v_{j}\right\}_{j=1}^{n}$

$$
v=\left[\sum_{j=1}^{n} v_{j} v_{j}^{*}\right] v, \quad B v=\left[\sum_{j=1}^{n} \lambda_{j} v_{j} v_{j}^{*}\right] v, \quad \forall v \in \mathbb{C}^{n}
$$

- Inf.-dim.: Operator $A: \mathcal{D}(A) \rightarrow \mathcal{H}$. Typically, no basis of e-vectors! Spectral theorem: (projection-valued) spectral measure E

$$
f=\left[\int_{\operatorname{Spec}(A)} 1 \mathrm{~d} E(\lambda)\right] f, \quad A f=\left[\int_{\operatorname{Spec}(A)} \lambda \mathrm{d} E(\lambda)\right] f, \quad \forall f \in \mathcal{H}
$$

- Spectral measures: $\mu_{f}(U)=\langle E(U) f, f\rangle(\|f\|=1)$ prob. Measure on \mathbb{R}.

A two-limit algorithm (Stone's formula)

Smoothed spectral measure:

$$
\mu_{f}^{\varepsilon}(x)=\frac{1}{\pi} \int_{\mathbb{R}} \frac{\varepsilon \mathrm{d} \mu_{f}(\lambda)}{(x-\lambda)^{2}+\varepsilon^{2}}=\frac{\left\langle\left[(A-[x+i \varepsilon])^{-1}-(A-[x-i \varepsilon])^{-1}\right] f, f\right\rangle}{2 \pi i}
$$

$$
\varepsilon=\text { "smoothing parameter" }
$$

A two-limit algorithm (Stone's formula)

Smoothed spectral measure:

$$
\mu_{f}^{\varepsilon}(x)=\frac{1}{\pi} \int_{\mathbb{R}} \frac{\varepsilon \mathrm{d} \mu_{f}(\lambda)}{(x-\lambda)^{2}+\varepsilon^{2}}=\frac{\left\langle\left[(A-[x+i \varepsilon])^{-1}-(A-[x-i \varepsilon])^{-1}\right] f, f\right\rangle}{2 \pi i}
$$

Discretize RHS with size n_{1}, to get $\mu_{f, n_{1}}^{\varepsilon}$. Set

$$
\Gamma_{n_{1}, n_{2}}(A)=\mu_{f, n_{1}}^{1 / n_{2}}
$$

Converges in weak sense.

Without extra assumptions, this is sharp!!

A two-limit algorithm (Stone's formula)

Smoothed spectral measure:

$$
\mu_{f}^{\varepsilon}(x)=\frac{1}{\pi} \int_{\mathbb{R}} \frac{\varepsilon \mathrm{d} \mu_{f}(\lambda)}{(x-\lambda)^{2}+\varepsilon^{2}}=\frac{\left\langle\left[(A-[x+i \varepsilon])^{-1}-(A-[x-i \varepsilon])^{-1}\right] f, f\right\rangle}{2 \pi i}
$$

Discretize RHS with size n_{1}, to get $\mu_{f, n_{1}}^{\varepsilon}$. Set

$$
\Gamma_{n_{1}, n_{2}}(A)=\mu_{f, n_{1}}^{1 / n_{2}}
$$

Converges in weak sense.

Without extra assumptions, this is sharp!!
If we can compute RHS with error control (e.g., residuals), choose $n_{1}(\varepsilon)$.

Example: integral operator

$$
[A u](x)=x u(x)+\int_{-1}^{1} e^{-\left(x^{2}+y^{2}\right)} u(y) \mathrm{d} y
$$

Discretize using adaptive Chebyshev collocation method.
Look at μ_{f} for $f(x)=\sqrt{3 / 2} x$

Example: integral operator

Slow convergence (more than five digits infeasible). Can we do better?

High-order versions of Stone's formula

$K(x)=\frac{1}{2 \pi i} \sum_{j=1}^{m} \frac{\alpha_{j}}{x-a_{j}}-\frac{\overline{x_{j}}}{x-\overline{a_{j}}}, K_{\varepsilon}(x)=K(x / \varepsilon) / \varepsilon$

$$
\begin{aligned}
& {\left[K_{\varepsilon} * \mu_{f}\right](x)} \\
& =\frac{-1}{2 \pi i} \sum_{j=1}^{m}\left\langle\left[\alpha_{j}\left(A-\left[x-\varepsilon a_{j}\right]\right)^{-1}-\bar{\alpha}_{j}\left(A-\left[x-\varepsilon \bar{a}_{j}\right]\right)^{-1}\right] f, f\right\rangle
\end{aligned}
$$

\Rightarrow larger ε for a given accuracy \Rightarrow smaller $n_{1}(\varepsilon)$ for a given accuracy

Demo: radial Schrödinger

$$
[\mathcal{L} u](r)=-\frac{d^{2} u}{d r^{2}}(r)+\left(\frac{\ell(\ell+1)}{r^{2}}+\frac{1}{r}\left(e^{-r}-1\right)\right) u(r), \quad r>0
$$

```
normf = sqrt(pi/8)*(2-igamma(1/2,8)/gamma(1/2)); % Normalization
f = @(r) exp(-(r-2).^2)/sqrt(normf);
% Measure wrt f(r)
V={@(r) 0, @(r) exp(-r)-1, 1};
% Potential, l=1
[xi, wi] = chebpts(20, [1/2 2]);
mu = rseMeas(V, f, xi, 0.1, 'Order', 4)
% Quadrature rule
ion_prob = wi * mu;
% epsilon=0.1, m=4
% Ionization prob
```

Demo: radial Schrödinger

Wavefunction $\propto e^{-\left(r-r_{0}\right)^{2}}$

$$
\left\|\rho_{f}-\left[K_{\varepsilon} * \mu_{f}\right]\right\|_{l^{2}} /\left\|\rho_{f}\right\|_{l^{1}}
$$

Eigenvalues of Dirac operator

$$
\mathcal{D}_{V}=\left(\begin{array}{cc}
1+V(r) & -\frac{d}{d r}+\frac{\kappa}{r} \\
\frac{d}{d r}+\frac{\kappa}{r} & -1+V(r)
\end{array}\right)
$$

Spectral measures of self-adjoint operators

Software package

SpecSolve available at https://github.com/SpecSolve Capabilities: ODEs, PDEs, integral operators, discrete operators.

Executive summary of theorems

- Generic assumptions: Computing $(A, f, U) \hookrightarrow \mu_{f}(U)$ has $\operatorname{SCI}=1$ but error control or rate impossible (even for discrete Schrödinger).
- If spectral measure μ_{f} is a.c. on interval I, with $\mathcal{C}^{n, \alpha}$ density ρ_{f}, then

$$
\left\|\rho_{f}-\left[K_{\varepsilon} * \mu_{f}\right]\right\|_{L^{\infty}(I)}=\mathcal{O}\left(\varepsilon^{n+\alpha}+\varepsilon^{m} \log (1 / \varepsilon)\right)
$$

- Weak convergence always $\mathcal{O}\left(\varepsilon^{m} \log (1 / \varepsilon)\right)$ for \mathcal{C}^{m} test functions.
- Splitting into spectral type: SCI $=2$ or 3 .

NB: Constants can be made explicit.

Further areas

Other areas with SCl results

- PDEs e.g.:
- Can you solve Schrödinger eq. on $L^{2}\left(\mathbb{R}^{d}\right)$ with error control?
- Can you predict blow-up of non-linear PDEs?
- Optimization
- Inverse problems (e.g., imaging)
- Polynomial root-finding: Smale (settled by McMullen), "Is there a purely iterative convergent algorithm for polynomial zero finding?"
- Topology
- As well as ... (computer-assisted proofs, AI, dynamical systems etc.)

Computer-assisted proof: Dirac-Schwinger conjecture

$E(Z)=$ ground state energy of $N: \#$ of electrons, Z : charge of nucleus

$$
H=\sum_{k=1}^{N}\left(-\Delta_{x_{k}}-Z\left|x_{k}\right|^{-1}\right)+\sum_{j<k}\left|x_{j}-x_{k}\right|^{-1} .
$$

Theorem: $E(Z)=-c_{0} Z^{7 / 3}+\frac{1}{8} Z^{2}-c_{1} Z^{5 / 3}+O\left(Z^{5 / 3-1 / 2835}\right)$, as $Z \rightarrow \infty$
Proof involves spectral analysis, analytic number theory, ..., computer-assisted bound involving solutions of an ODE.
Fefferman and Seco implicitly prove Σ_{1} classifications!

- Fefferman, Phong, "On the lowest eigenvalue of a pseudo-differential operator," Proc. Natl. Acad. Sci. USA, 1979.
- Fefferman, "The N-body problem in quantum mechanics," Comm. Pure Appl. Math., 1986.
- Fefferman, Seco, "Interval arithmetic in quantum mechanics," Applications of interval computations, 1996.

Computer-assisted proof: Kepler conjecture (Hilbert's 18th problem)

Proof shows potential counterexamples would satisfy infeasible inequalities relaxed to $\approx 10,000$ s linear programs These can't always be decided!

Example: Barriers of deep learning

$a \equiv$
research article appled mathematics fullaccess formin in \triangleq
The difficulty of computing stable and
accurate neural networks: On the barriers of
deep learning and Smale's 18th problem
W UNIVERSITY OF
期 UNIVERSITY OF
Study at Cambridge
About the University
Research at Cambridge

A / Research / News / Mathematical paradox demonstrates the limits of AI

Research

Research home News Our people Spotlights About research \checkmark Business and enterprise Research
Matthew).Colbrook \oplus, Vegard Antun \boxminus, and Anders C. Hansen ${ }^{\ominus}$ Authors info \& Affilations

March 16, $2022 \mid 119$ (12) e2107151119 \mid https.//doi.org/10.1073/pnas.21071511

Significance
Instability is the Achilles' heel of modern artificial intelligence training algorithms finding unstable neural networks (NNs) de ones. This foundational issue relates to Smale's 18 th mathem century on the limits of AI. By expanding methodologies initia demonstrate limitations on the existence of (even randomize, NNs. Despite numerous existence results of NNs with great a| only in specific cases do there also exist algorithms that can c classification theory on which NNs can be trained and introdu suitable conditions-are robust to perturbations and exponeı number of hidden layers.

Mathematical paradox demonstrates the limits of AI

Some AI Systems May Be Impossible to Compute
New research suggests there are limitations to what deep neural networks can do

- C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale's 18th problem," Proc. NatI. Acad. Sci. USA.

Example: Rigorous Koopmania!

- State $x \in \Omega \subseteq \mathbb{R}^{d}$, unknown function $F: \Omega \rightarrow \Omega$ governs dynamics

$$
x_{n+1}=F\left(x_{n}\right)
$$

- Goal: Learn about system from data $\left\{x^{(m)}, y^{(m)}=F\left(x^{(m)}\right)\right\}_{m=1}^{M}$
- Koopman operator \mathcal{K} acts on functions $g: \Omega \rightarrow \mathbb{C}$

$$
[\mathcal{K} g](x)=g(F(x))
$$

- \mathcal{K} is linear but acts on an infinite-dimensional space.
- Often spectral info encodes the features of the system we want.
- 35,000 papers over last decade, hardly anything on NA of this problem!
- C., Townsend, "Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems," preprint. - C., Ayton, Szőke, "Residual Dynamic Mode Decomposition," J. Fluid Mech., under minor rev.
- Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

Summary

SCI hierarchy: a tool that allows us to

- Classify difficulty of continuous and discrete computational problems.
- Prove that algorithms are optimal (in any given computational model).
- Framework \Rightarrow find assumptions and methods for computational goals.
http://www.damtp.cam.ac.uk/user/mjc249/home.html: slides, papers, and code

Additional slides

Problem: hallucinations and instability

Hallucinations in image reconstruction Original image

"AI generated hallucination", from Facebook and NYU's FastMRI challenge 2020

Instabilities in medical diagnosis Original Mole Perturbed Mole

From Finlayson et al., "Adversarial attacks on medical machine learning," Science, 2019.

When can we make Al robust and trustworthy?

Example of the limits of deep learning

Paradox: "Nice" linear inverse problems where a stable and accurate neural network for image reconstruction exists, but it can never be trained!
E.g., suppose we want to solve (holds for much more general problems)

$$
\begin{aligned}
& \left(P_{1}\right) \quad \operatorname{argmin}_{x \in \mathbb{C}^{N}} F_{1}^{A}(x):=\|x\|_{l_{w}^{1}}, \text { such that }\|A x-y\|_{l^{2}} \leq \epsilon, \\
& \left(P_{2}\right) \quad \operatorname{argmin}_{x \in \mathbb{C}^{N}} F_{2}^{A}(x, y, \lambda):=\lambda\|x\|_{l_{w}^{1}}+\|A x-y\|_{l^{2}}^{2}, \\
& \left(P_{3}\right) \quad \operatorname{argmin}_{x \in \mathbb{C}^{N}} F_{3}^{A}(x, y, \lambda):=\lambda\|x\|_{l_{w}^{1}}+\|A x-y\|_{l^{2}} . \\
& A \in \mathbb{C}^{m \times N}(\text { modality }, m<N), \quad S=\left\{y_{j}\right\}_{j=1}^{R} \text { (samples) }
\end{aligned}
$$

Arises when given $y \approx A x+e$.

Arbitrary precision of training data

In practice, A not known exactly or cannot be stored to infinite precision.
Assume access to: $\left\{y_{k, n}\right\}_{k=1}^{R}$ and A_{n} (rational approximations, e.g., floats) such that

$$
\left\|y_{k, n}-y_{k}\right\| \leq 2^{-n}, \quad\left\|A_{n}-A\right\| \leq 2^{-n}, \quad \forall n \in \mathbb{N}
$$

Training set for $(A, \mathcal{S}) \in \Omega$:

$$
\iota_{A, \mathcal{S}}:=\left\{\left(y_{k, n}, A_{n}\right) \mid k=1, \ldots, R \text { and } n \in \mathbb{N}\right\}
$$

In a nutshell: allow access to arbitrary precision training data.

Question: Given a collection Ω of (A, \mathcal{S}), does there exist a neural network

Condition numbers

Given $\Omega \subseteq \mathbb{C}^{n}$, define

$$
\operatorname{Act}(\Omega)=\left\{j: \exists x, y \in \Omega, x_{j} \neq y_{j}\right\}, \quad \Omega^{\operatorname{Act}}=\left\{x: \exists y \in \Omega, x_{\operatorname{Act}(\Omega)^{c}}=y_{\operatorname{Act}(\Omega)^{c}}\right\}
$$

- Condition of a mapping $\Xi: \widehat{\Omega} \rightrightarrows \mathbb{C}^{m}$ with $\Omega \subseteq \widehat{\Omega}$:

$$
\operatorname{Cond}(\Xi, \Omega)=\sup _{x \in \Omega} \lim _{\varepsilon \rightarrow 0_{+}} \sup _{\substack{x+z \in \Omega^{\mathrm{Act}} \cap \widehat{\Omega} \\ 0<\|z\|_{\infty}<\varepsilon}} \frac{\operatorname{dist}(\Xi(x+z), \Xi(x))}{\|z\|_{\infty}}
$$

- For problems with constraints (e.g., basis pursuit P_{1} or LPs)

$$
\begin{gathered}
v(A, y)=\inf \left\{\varepsilon \geq 0:\|\hat{y}-y\|_{2},\|\hat{A}-A\| \leq \varepsilon,(\hat{A}, \hat{y}) \in \Omega^{\text {Act }} \text { and infeasible }\right\} \\
C_{\mathrm{FP}}(A, y)=\frac{\max \left\{\|y\|_{2},\|A\|\right\}}{v(A, y)}
\end{gathered}
$$

- Renegar condition number

$$
\begin{gathered}
\mu(A, y)=\inf \left\{\varepsilon \geq 0:\|\hat{y}-y\|_{2},\|\hat{A}-A\| \leq \varepsilon,(\hat{A}, \hat{y}) \in \Omega^{\text {Act }}, \Xi \text { multivalued }\right\} \\
C_{\mathrm{RCC}}(A, y)=\frac{\max \left\{\|y\|_{2},\|A\|\right\}}{\mu(A, y)}
\end{gathered}
$$

Theorem: For any of prev. problems, integer $K \geq 3$ and $L \in \mathbb{N}, \exists$ a well-conditioned class $\Omega(K)$ of inputs s.t. simultaneously

1. No deterministic alg. can, given a training set $\iota_{A, S} \in \Omega_{\mathcal{T}}$, produce a neural network (NN) ϕ with

$$
\begin{equation*}
\min _{y \in S} \inf _{x^{*} \in \Xi(A, y)}\left\|\phi(y)-x^{*}\right\|_{2} \leq 10^{-K} \quad \forall(A, S) \in \Omega(K) \tag{1}
\end{equation*}
$$

For any $p>1 / 2$, no random alg. (any model of comp.) can produce a NN ϕ s.t. (1) holds with prob. $\geq p$.
2. (a) \exists deterministic alg. that, given a training set $\iota_{A, S} \in \Omega_{T}$, produces a neural network (NN) ϕ with
(2) $\max _{y \in S} \inf _{x^{*} \in \Xi(A, y)}\left\|\phi(y)-x^{*}\right\|_{2} \leq 10^{-(K-1)} \quad \forall(A, S) \in \Omega(K)$.
(b) However, for any probabilistic Turing Machine that produces such a NN, any $M \in \mathbb{N}$ and $p \in\left[0, \frac{N-m}{N+1-m}\right)$, there exists a training set $\iota_{A, S} \in \Omega_{\mathcal{T}}$ s.t. $\forall y \in S$
$\mathbb{P}\left(\inf _{x^{*} \in \Xi(A, y)}\left\|\phi(y)-x^{*}\right\|_{2}>10^{-(K-1)}\right.$ or size of training data to construct ϕ exceeds $\left.M\right)>p$.
3. \exists deterministic alg. that, given a training set $\iota_{A, S} \in \Omega_{\mathcal{T}}$, produces a $\mathrm{NN} \phi$ accessing at most L training samples of $t_{A, S}$ s.t.

$$
\begin{equation*}
\max _{y \in S} \inf _{x^{*} \in \Xi(A, y)}\left\|\phi(y)-x^{*}\right\|_{2} \leq 10^{-(K-2)} \quad \forall(A, S) \in \Omega(K) \tag{3}
\end{equation*}
$$

- C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale's 18th problem," Proc. NatI. Acad. Sci. USA.

Theorem: For any of prev. problems, integer $K \geq 3$ and $L \in \mathbb{N}, \exists$ a well-conditioned class $\Omega(K)$ of inputs s.t. simultaneously

1. No deterministic alg. can, given a training set $\iota_{A, S} \in \Omega_{\mathcal{T}}$, produce a neural network (NN) ϕ with

$$
\begin{equation*}
\min _{y \in S} \inf _{x^{*} \in \Xi(A, y)}\left\|\phi(y)-x^{*}\right\|_{2} \leq 10^{-K} \quad \forall(A, S) \in \Omega(K) \tag{1}
\end{equation*}
$$

For any $p>1 / 2$, no random alg. (any model of comp.) can produce a NN ϕ s.t. (1) holds with prob. $\geq p$.
2. (a) \exists deterministic alg. that, given a training set $\iota_{A, S} \in \Omega_{T}$, produces a neural network (NN) ϕ with
(2) $\quad \max \inf _{* *=\sim}\left\|\phi(y)-x^{*}\right\|_{2} \leq 10^{-(K-1)} \quad \forall(A, S) \in \Omega(K)$.

Holds for any architecture, any precision of training data. \Rightarrow Classification theory telling us what can and cannot be done

$\mathbb{P}\left(\inf _{x^{*} \in \Xi(A, y)}\left\|\phi(y)-x^{*}\right\|_{2}>10^{-(K-1)}\right.$ or size of training data to construct ϕ exceeds $\left.M\right)>p$.
3. \exists deterministic alg. that, given a training set $\iota_{A, S} \in \Omega_{T}$, produces a $\mathrm{NN} \phi$ accessing at most L training samples of $t_{A, S}$ s.t.

$$
\begin{equation*}
\max _{y \in S} \inf _{x^{*} \in \Xi(A, y)}\left\|\phi(y)-x^{*}\right\|_{2} \leq 10^{-(K-2)} \tag{3}
\end{equation*}
$$

$$
\forall(A, S) \in \Omega(K)
$$

C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale's 18th problem," Proc. Natl. Acad. Sci. USA.

The world of neural networks

Given a problem and conditions, where does it sit in this diagram?

The world of neural networks

Given a problem and conditions, where does it sit in this diagram?

Example counterpart theorem

Certain conditions: stable neural networks trained with exponential accuracy. E.g., approximate Łojasiewicz-type inequality:

$$
\begin{gathered}
\text { (1) } \min _{x \in \mathbb{C}^{N}} f(x) \quad \text { s.t. } \quad\|A x-y\| \leq \varepsilon \\
\operatorname{dist}(x, \text { solution }) \leq \alpha\left(\left[f(x)-f^{*}\right]+[\|A x-y\|-\varepsilon]+\delta\right)
\end{gathered}
$$

Fast Iterative REstarted NETworks (FIRENETs) (unrolled primal-dual with novel restart scheme)

Theorem: Training algorithm that, under above assumption, produces stable neural networks φ_{n} of width $O(N)$, depth $O(n)$, guaranteed worst bound

$$
\operatorname{dist}\left(\varphi_{n}(y), \text { solution }\right) \lesssim e^{-n}+\delta
$$

[^8]C., "WARPd: A linearly convergent first-order method for inverse problems with approximate sharpness conditions," SIAM J. Imaging Sci., 2022.

Numerical example of GHA

Fourier Sampling

Figure: Images corrupted with 2% Gaussian noise and reconstructed using 15% sampling.

- C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale's 18th problem," Proc. NatI. Acad. Sci. USA.

Numerical example of GHA

- C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale's 18th problem," Proc. NatI. Acad. Sci. USA.

Example of severe instability

Original x

$\Psi(A(x))$

Perturbations computed in real space, mapped to measurement space.

$\Psi\left(A\left(x+r_{1}\right)\right)$

$\Psi\left(A\left(x+r_{2}\right)\right)$

$\Psi\left(A\left(x+r_{3}\right)\right)$

- Zhu et al., "Image reconstruction by domain-transform manifold learning," Nature, 2018.
- Antun et al., "On instabilities of deep learning in image reconstruction and the potential costs of AI," PNAS, 2020.

FIRENET: provably stable (even to adversarial examples) and accurate

[^9]
Key pillars: stability and accuracy

Original x (full size)

Original
(cropped, red frame)

Original + detail $\left(x+h_{1}\right)$ (cropped, blue frame)

U-Net with no noise: accurate but unstable

U-Net: standard neural network architecture for imaging. Approx 4 million parameters.

Original

[^10]
U-Net with noise: stable but inaccurate

FIRENET: balances stability and accuracy?

FIRENET: balances stability and accuracy?

Stabilising unstable neural networks

$\Psi(\tilde{y}), \tilde{y}=A x+e_{3}$

$\Phi(\tilde{y}, \Psi(\tilde{y}))$

FIRENET rec. from $y=A x+\tilde{e}_{3}$

AUTOMAP+FIRENET rec. from

Data-driven dynamical systems

- State $x \in \Omega \subseteq \mathbb{R}^{d}$, unknown function $F: \Omega \rightarrow \Omega$ governs dynamics

$$
x_{n+1}=F\left(x_{n}\right)
$$

- Goal: Learn about system from data $\left\{x^{(m)}, y^{(m)}=F\left(x^{(m)}\right)\right\}_{m=1}^{M}$
- E.g., data from trajectories, experimental measurements, simulations, ...
- E.g., used for forecasting, control, design, understanding, ...
- Applications: chemistry, climatology, electronics, epidemiology, finance, fluids, molecular dynamics, neuroscience, plasmas, robotics, video processing, ...

Can we develop verified methods?

Operator viewpoint

- Koopman operator \mathcal{K} acts on functions $g: \Omega \rightarrow \mathbb{C}$

$$
[\mathcal{K} g](x)=g(F(x))
$$

- \mathcal{K} is linear but acts on an infinite-dimensional space.

- Work in $L^{2}(\Omega, \omega)$ for positive measure ω, with inner product $\langle\cdot \cdot\rangle$.
- Koopman, "Hamiltonian systems and transformation in Hilbert space," Proceedings of the National Academy of Sciences, 1931.
- Koopman, v. Neumann, "Dynamical systems of continuous spectra," Proceedings of the National Academy of Sciences, 1932.

Build the matrix

Given dictionary $\left\{\psi_{1}, \ldots, \psi_{N_{K}}\right\}$ of functions $\psi_{j}: \Omega \rightarrow \mathbb{C}$

$$
\left\{x^{(m)}, y^{(m)}=F\left(x^{(m)}\right)\right\}_{m=1}^{M}
$$

$$
\mathcal{K} \Longrightarrow \mathbb{K}=\left(\Psi_{X}{ }^{*} W \Psi_{X}\right)^{-1} \Psi_{X}{ }^{*} W \Psi_{Y} \in \mathbb{C}^{N_{K} \times N_{K}}
$$

$$
\begin{aligned}
& \left\langle\psi_{k}, \psi_{j}\right\rangle \approx \sum_{m=1}^{M} w_{m} \overline{\psi_{j}\left(x^{(m)}\right)} \psi_{k}\left(x^{(m)}\right)=[\underbrace{\left(\begin{array}{cccc}
\psi_{1}\left(x^{(1)}\right) & \cdots & \psi_{N_{K}}\left(x^{(1)}\right) \\
\vdots & \ddots & \vdots \\
\psi_{1}\left(x^{(M)}\right) & \cdots & \psi_{N_{K}}\left(x^{(M)}\right)
\end{array}\right)}_{\Psi_{X}} \underbrace{*}_{W} \begin{array}{lll}
w_{1} & & \\
& \ddots & \\
& w_{M}
\end{array}) \underbrace{\left(\begin{array}{ccc}
\psi_{1}\left(x^{(1)}\right) & \cdots & \psi_{N_{K}}\left(x^{(1)}\right) \\
\vdots & & \ddots \\
\psi_{1}\left(x^{(M)}\right) & \cdots & \vdots \\
\psi_{N_{K}}\left(x^{(M)}\right)
\end{array}\right)}_{j k}]_{\Psi_{X}}^{\left(\begin{array}{cc}
w^{(M)}
\end{array}\right.}
\end{aligned}
$$

Residual DMD: Approx. \mathcal{K} and $\mathcal{K}^{*} \mathcal{K}$

$$
\begin{aligned}
&\left\langle\psi_{k}, \psi_{j}\right\rangle \approx \sum_{m=1}^{M} w_{m} \overline{\psi_{j}\left(x^{(m)}\right)} \psi_{k}\left(x^{(m)}\right)=[\underbrace{\Psi_{X}^{*} W \Psi_{X}}_{G}]_{j k} \\
&\left\langle\mathcal{K} \psi_{k}, \psi_{j}\right\rangle \approx \sum_{m=1}^{M} w_{m} \overline{\psi_{j}\left(x^{(m)}\right)} \underbrace{\psi_{k}\left(y^{(m)}\right)}_{\left[\mathcal{K} \psi_{k}\right]\left(x^{(m)}\right)}=[\underbrace{\Psi_{X}^{*} W \Psi_{Y}}_{K_{1}}]_{j k} \\
&\left\langle\mathcal{K} \psi_{k}, \mathcal{K} \psi_{j}\right\rangle \approx \sum_{m=1}^{M} w_{m} \overline{\psi_{j}\left(y^{(m)}\right)} \psi_{k}\left(y^{(m)}\right)=[\underbrace{\Psi_{Y}^{*} W \Psi_{Y}}_{K_{2}}]_{j k}
\end{aligned}
$$

Residuals: $g=\sum_{j=1}^{N_{K}} \mathbf{g}_{j} \psi_{j},\|\mathcal{K} g-\lambda g\|^{2} \approx \mathbf{g}^{*}\left[K_{2}-\lambda K_{1}{ }^{*}-\bar{\lambda} K_{1}+|\lambda|^{2} G\right] \mathbf{g}$

- C., Townsend, "Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems," Communications on Pure and Applied Mathematics, under review.
- Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

Example: Trustworthy computation for large d

404 mm

Outlet

- Reynolds number $\approx 3.9 \times 10^{5}$
- Ambient dimension $(d) \approx 300,000$ (number of measurement points)
*Raw measurements provided by Stephane Moreau (Sherbrooke)

Rel. Error = ?

$$
\lambda=e^{0.11 i}
$$

Rel. Error = ?

$$
\lambda=e^{0.51 i}
$$

Rel. Error = ?

[^11]
Example: Trustworthy computation for large d

Outlet

- Reynolds number $\approx 3.9 \times 10^{5}$
- Ambient dimension $(d) \approx 300,000$ (number of measurement points)
*Raw measurements provided by Stephane Moreau (Sherbrooke)

Rel. Error ≤ 0.0054
$\lambda=e^{0.11 i}$

Rel. Error ≤ 0.0128

Rel. Error ≤ 0.0196

[^12]- C., Townsend, "Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems," preprint.

Example: Verify the dictionary

[^13]
Example: molecular dynamics (Adenylate Kinase)

Adenylate Kinase

- Ambient dimension $(d) \approx 20,000$ (positions and momenta of atoms)
- 6th order kernel (spec res 10^{-6})
*Dataset: www.mdanalysis.org/MDAnalysisData/adk_equilibrium.html

- C., Townsend, "Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems," preprint.

Example: Trustworthy Koopman mode decomposition

c) $t=15 \mu \mathrm{~s}$

d) $t=20 \mu \mathrm{~s}$

[^14]
Bulk localised transport

- Johnstone, C., Nielsen, Öhberg, Duncan, "Bulk Localised Transport States in Infinite and Finite Quasicrystals via Magnetic Aperiodicity," Phys. Rev. B, 2022.

Significance

Instability is the Ach training algorithms ones. This foundatic century on the limits demonstrate limitat NNs. Despite numer only in specific case: classification theory suitable conditionsnumber of hidden la

IEEE Spectrum
\qquad

For engineers

Proving Existence Is Not Enough:
Mathematical Paradoxes Unravel the Limits of Neural Networks in Artificial Intelligence

[^0]: - Ben-Artzi, C., Hansen, Nevanlinna, Seidel, "On the solvability complexity index hierarchy and towers of algorithms," preprint.

[^1]: - Ben-Artzi, C., Hansen, Nevanlinna, Seidel, "On the solvability complexity index hierarchy and towers of algorithms," preprint.

[^2]: - Ben-Artzi, C., Hansen, Nevanlinna, Seidel, "On the solvability complexity index hierarchy and towers of algorithms," preprint.

[^3]: - Ben-Artzi, C., Hansen, Nevanlinna, Seidel, "On the solvability complexity index hierarchy and towers of algorithms," preprint.

[^4]: - Ben-Artzi, C., Hansen, Nevanlinna, Seidel, "On the solvability complexity index hierarchy and towers of algorithms," preprint.

[^5]: - Ben-Artzi, C., Hansen, Nevanlinna, Seidel, "On the solvability complexity index hierarchy and towers of algorithms," preprint.

[^6]: C., Hansen, "The foundations of spectral computations via the solvability complexity index hierarchy," J. Eur. Math. Soc., 2022

[^7]: C., Hansen, "The foundations of spectral computations via the solvability complexity index hierarchy," J. Eur. Math. Soc., 2022

[^8]: C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale's 18th problem," PNAS, 2022.

[^9]: C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale's 18th problem," PNAS, 2022.

[^10]: C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale's 18th problem," PNAS, 2022.

[^11]: - C., Townsend, "Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems," preprint.

[^12]: acoustic vibrations

[^13]: - C., Ayton, Szőke, "Residual Dynamic Mode Decomposition," J. Fluid Mech., under minor rev.

[^14]: - C., Ayton, Szőke, "Residual Dynamic Mode Decomposition," J. Fluid Mech., under minor rev.

