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The finite-dimensional case

Solve for u : [0,∞)︸ ︷︷ ︸
‘time’

→ Cn s.t.

du

dt
= Au, A ∈ Cn×n, u(0) = u0 ∈ Cn.

u(t) = exp(tA)u0 =
∞∑
j=0

t j

j!
Aju0.

If A = PDP−1, D = diag(d1, ..., dn) diagonal, then

u(t) = P


ed1t

ed2t

. . .

ednt

P−1u0.

(Usually much better ways to compute this, but that’s another story...)



The infinite-dimensional case

Linear operator A on an infinite-dimensional Hilbert space H,

du

dt
= Au, u(0) = u0 ∈ H.

GOAL: Compute the solution at time t.



Philosophy of the approach

Typically, A is discretised to A ∈ Cn×n and we use some sort of
finite-dimensional solver: “truncate-then-solve”

Domain truncation and absorbing boundary conditions (e.g. when A
represents a differential operator on an unbounded domain), Galerkin
methods, Krylov methods, rational approximations, Runge–Kutta
methods, series expansions, splitting methods, exponential integrators, ...

Typical difficulties:

Often very difficult to bound the error when we go from A to A.

Sometimes A is more complicated to study (e.g. where are it’s
eigenvalues?).

Sometimes A does not respect key properties of the system.

For PDEs on unbounded domains, there are two truncations: the
physical domain and then the operator restricted to this domain.

PHILOSPHY OF THIS TALK: Solve-then-discretise.



Open Foundations Questions

Q.1: Can we compute semigroups with error control? I.e., does there exist
an algorithm that given a generator A of a strongly continuous semigroup
on H, time t > 0, arbitrary u0 ∈ H and error tolerance ε > 0, computes an
approximation of exp(tA)u0 to accuracy ε in H?

Q.2: For H = L2(Rd), is there a large class of PDO generators A on the
unbounded domain Rd where the answer to Q.1 is yes?

We’ll provide resolutions to these two problems!

NB: Q2 has recently been solved in the positive for Schrödinger operators
using weighted Sobolev bounds on the initial condition for rigorous domain
truncation [Becker & Hansen, 2020]. We’ll aim to go much broader.



Example

Aperiodic (no repeating pattern) infinite Ammann–Beenker (AB) tiling.
Such structures have very interesting transport properties but notoriously
difficult to compute. Graph Laplacian:

[∆ABψ]i =
∑
i∼j

(ψj − ψi ) , {ψj}j∈N ∈ l2(N).

Schrödinger equation and wave equation:

iut = −∆ABu and utt = ∆ABu.



Example

Solutions computed with guaranteed accuracy ε = 10−10.

Top row: log10(|u(t)|) computed for the Schrödinger equation at times t = 1
(left), t = 10 (middle) and t = 50 (right). Bottom row: u(t) computed for the
wave equation at times t = 1 (left), t = 30 (middle) and t = 50 (right).



Example

uFS: solution by direct diagonalisation of 10001× 10001 truncation.
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Small difference for small t, then grows quickly due to boundary effects.
As t increases, need more vertices (basis vectors) to capture the solution -
method of this talk allows this to be done rigorously and adaptively.



Strongly continuous semigroup

du

dt
= Au, u(0) = u0 ∈ H. (1)

Definition

Strongly cts semigroup is a map S : [0,∞)→ L(H)︸ ︷︷ ︸
bounded operators on H

s.t.

(1) S(0) = I

(2) S(s + t) = S(s)S(t), ∀s, t ≥ 0

(3) limt↓0 S(t)v = v for all v ∈ H.

The infinitesimal generator A of S is defined via Ax = limt↓0
1
t (S(t)− I )x,

where D(A) is all x ∈ X such that the limit exists, write S(t) = exp(tA).

Why we care: A generates C0-semigroup ⇔ (1) well-posed



Hille–Yosida Theorem

Sp(A) = {z : A− zI not invertible}, ρ(A) := C\Sp(A)

R(z ,A) = (A− zI )−1 for z ∈ ρ(A)

Theorem

A closed operator A generates a C0-semigroup if and only if A is densely
defined and there exists ω ∈ R, M > 0 with

(1) {λ ∈ R : λ > ω} ⊂ ρ(A).

(2) For all λ > ω and n ∈ N, (λ− ω)n‖R(λ,A)n‖ ≤ M.

Under these conditions, ‖ exp(tA)‖ ≤ M exp(ωt) and if Re(λ)>ω then
λ∈ρ(A) with

‖R(λ,A)n‖ ≤ M

(Re(λ)− ω)n
, ∀n ∈ N.

exp(tA)u0 =

−1

2πi

∫ σ+i∞

σ−i∞
ezt(A− zI )−1︸ ︷︷ ︸

no decay?!

dz

 u0, for σ > ω,



Case 1: H = l2(N)

span{en : n ∈ N} forms a core of A and A∗ ⇒ matrix Aj ,k = 〈Aek , ej〉.
ΩC0 : (A, u0, t) s.t. A generates C0-semigroup, u0 ∈ l2(N) and t > 0.

Allow access to:

Matrix evaluations {f (1)j ,k,m, f
(2)
j ,k,m : j , k ,m ∈ N} such that

|f (1)j ,k,m(A)− 〈Aek , ej〉| ≤ 2−m, |f (2)j ,k,m(A)− 〈Aek ,Aej〉| ≤ 2−m.

Coefficient/norm evaluations {fj ,m : j ∈ N ∪ {0},m ∈ N} such that

|f0,m(u0)− 〈u0, u0〉| ≤ 2−m, |fj ,m(u0)− 〈u0, ej〉| ≤ 2−m.

Constants M, ω satisfying conditions in Hille–Yosida Theorem.

Theorem 1 (C0-semigroups on l2(N) computed with error control)

There exists a universal algorithm Γ using the above, s.t.

‖Γ(A, u0, t, ε)− exp(tA)u0‖ ≤ ε, ∀ε > 0, (A, u0, t) ∈ ΩC0 .



Idea of proof

Regularisation:

exp(tA)u0 = (A− (ω + 2)I )2

−1

2πi

∫ ω+1+i∞

ω+1−i∞

eztR(z ,A)

(z − (ω + 2))2︸ ︷︷ ︸
now decays

dz

 u0.

Use well-posedness to reduce to u0 = ek for some k ∈ N and

exp(tA)ek = (A−(ω+2)I )

[
−1

2πi

∫ ω+1+i∞

ω+1−i∞

eztR(z ,A)

(z − (ω + 2))2
dz

]
(A−(ω+2)I )ek .

Final reduction to[
1

2πi

∫ ω+1+i∞

ω+1−i∞

exp(zt)R(z ,A)

(z − (ω + 2))2
dz

]
el .

Truncation + quadrature for decaying integrand.

At each step, use adaptive computation of R(z ,A) with error control.



Case 2: H = L2(Rd)

[Au](x) =
∑

k∈Zd
≥0,|k|≤N

ak(x)∂ku(x).

Ar = {f ∈ Meas([−r , r ]d) : ‖f ‖∞ + TV[−r ,r ]d (f ) <∞}.

ΩPDE all (A, u0, t) with u0 ∈ L2(Rd) and t > 0 s.t. A generates a strongly
continuous semigroup on L2(Rd) and:

(1) Smooth, compactly supported functions form a core of A and A∗.

(2) At most polynomial growth: There exists Ck > 0 and Bk ∈ N s.t.

almost everywhere on Rd , |ak(x)| ≤ Ck(1 + |x |2Bk ).

(3) Locally bounded total variation: ∀r > 0, u0|[−r ,r ]d , ak |[−r ,r ]d ∈ Ar .

NB: Very mild assumptions.
e.g. discontinuous coefficients with arbitrary wild oscillations at infinity



Case 2: H = L2(Rd)

Allow access to:

(a) Pointwise coefficient evaluations: {Sk,q,m} s.t.

|Sk,q,m(A)− ak(q)| ≤ 2−m, ∀q ∈ Qd .

(b) Pointwise initial condition evaluations: {Sq,m} s.t.

|Sq,m(u0)− u0(q)| ≤ 2−m, ∀q ∈ Qd .

(c) Bounds on growth and total variation: {Ck ,Bk} s.t. |ak(x)| ≤ Ck(1 + |x |2Bk ) and
positive sequences {bn}n∈N and {cn}n∈N s.t.

max
|k|≤N

‖ak‖An
≤ bn, ‖u0‖An

≤ cn.

(d) Decay of initial condition: A positive sequence {dn}n∈N,

‖u0|[−n,n]d − u0‖L2(Rd ) ≤ dn, lim
n→∞

dn = 0,

(e) Constants M, ω satisfying conditions in Hille–Yosida Theorem.

Theorem 2 (PDO C0-semigroups on L2(Rd) computed with error control)

There exists a universal algorithm Γ using the above, s.t.

‖Γ(A, u0, t, ε)− exp(tA)u0‖ ≤ ε, ∀ε > 0, (A, u0, t) ∈ ΩPDE



Idea of proof

Reduce to Case 1 using (tensor product) basis

ψm(x) = (2mm!
√
π)−1/2e−x

2/2Hm(x), Hm(x) = (−1)mex
2 dm

dxm
e−x

2
.

Compute inner products (with error control)

〈Âek , Âej〉 =

∫
Rd

(Aψm(k))(Aψm(j))dx

〈Âek , ej〉 =

∫
Rd

(Aψm(k))ψm(j)dx , 〈û0, ej〉 =

∫
Rd

u0ψm(i)dx ,

using quasi-Monte Carlo numerical integration.

Similar techniques deal with u0.

NB: Choice of Hermite functions simply convenient in the proof (allows a
very large class of coefficients to be treated). Other bases and domains
clearly work if relevant integrals can be computed with error control.



Case 3: Analytic semigroups

γ

Im(z)

Re(z)
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Sδ,σ := {z ∈ C : arg(z − σ) < π − δ}.

γ(s) = σ + µ(1 + sin(is − α)), µ > 0, 0 < α <
π

2
− δ.

exp(tA)u0 ≈
−h
2πi

N∑
j=−N

ezj tR(zj ,A)γ′(jh)

︸ ︷︷ ︸
truncated Trapezoidal rule

, zj = γ(jh).
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Case 3: Analytic semigroups

Compute exp(tA) for t ∈ [t0, t1] where 0 < t0 ≤ t1, Λ = t1/t0.
Using [Weideman & Trefethen 2007], three error terms:

O
(
eσt1−2π(π2−α−δ)/h

)
+O

(
eσt1+µt1−2π

α
h

)
︸ ︷︷ ︸

discretisation error of the integral

+O
(
eσt1+µt0(1−sin(α) cosh(hN))

)
︸ ︷︷ ︸

truncation error of sum

.

Problem: numerical instability as N →∞

Idea: enforce γ(0)t1 − σt1 = µt1(1− sin(α)) ≤ β for stability as N →∞.

h =
1

N
W
(
ΛN

π(π − 2δ)

β sin
(
π−2δ
4

)(1− sin
(π − 2δ

4

)))
.

µ = (1− sin((π − 2δ)/4))−1β/t1.

α = (hµt1 + π2 − 2πδ)/(4π).
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Case 3: Analytic semigroups

Theorem 3 (Stable & rapidly convergent algorithm for analytic semigroups)

Suppose we use the above quadrature rule and compute each R(zj ,A)u0
to an accuracy η. Let uN(t) denote the output for N ∈ N. Then there
exists a constant C s.t. for any t0 ≤ t ≤ t1,

e−σt ‖exp(tA)u0 − uN(t)‖︸ ︷︷ ︸
error with intrinsic stability factor

≤
(

2µe
β

1−sin(α)π−1
∫ ∞
0
ex−µt sin(α) cosh(x)dx

)
η

+ Ce
β

1−sin(α) · exp

− Nπ(π − 2δ)/2

log(Λ sin(π/4−δ/2)−1−1
β Nπ(π − 2δ))


= O(η) +O(exp(−cN/ log(N))).



Numerical example showing stability

e−λt =
1

2πi

∫
γ

ezt

z − λ
dz , λ ≥ 0.

MN = max error for t ∈ [t0, t1].
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Numerical example on L2(R) demonstrating convergence

ut = [(1.1−1/(1 + x2))ux ]x , u0(x) = e−
(x−1)2

5 cos(2x)+2[1 + (x + 1)4]−1.

Basis: φn(x) = π−1/2(1 + ix)n(1− ix)−(n+1), n ∈ Z.
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Application: Bulk Localised States

Quasicrystals: aperiodic structures with long-range order.

Left: D. Shechtman, Nobel Prize in Chem. 2011 for discovering quasicrystals.
Right: Penrose tile, canonical model used in physics.

Vertex model: site at each vertex and bonds along edges of tiles.



Application: Bulk Localised States

Periodic systems have extended states (not localised), but add disorder...

Left: P. Anderson, Nobel Prize in Phys. 1977 for discovering Anderson
localisation. Right: Examples in 1D and 2D photonic lattices.

What happens in aperiodic systems? Do we need disorder?



Application: Bulk Localised States

Bulk Localised States (BLSs): New states for magnetic quasicrystals

localised
“in-gap” (confirmed via comp. of inf-dim (topological) Chern numbers)
support transport

Cause (also confirmed with toy models): Interplay of magnetic field
with incommensurate areas of building blocks of quasicrystal.

Not due to an internal edge, impurity or defect in the system.

 NEW EXCITING PHYSICS!



Transport: Error control allows us to be certain of this phenomenon.



Extension: high-order Cauchy problems

u(N) + AN−1u
(N−1) + · · ·+ A0u = 0 for t ≥ 0,

u(j)(0) = uj for j = 0, ...,N − 1.

A =


0 I

0 I
. . .

. . .

−A0 −A1 · · · −AN

 , U =


u

u(1)

...

u(N−1)

 .

⇓
dU
dt

= AU for t ≥ 0.



Extension: time-fractional PDEs via Laplace transform

M∑
j=1

IjDνjt Ajq = f (t) for t ≥ 0,

[IDνt g] (t) =


1

Γ(n − ν)

dn

dtn

∫ t

0
(t − τ)n−ν−1g(τ)dτ, if I = RL,

1

Γ(n − ν)

∫ t

0
(t − τ)n−ν−1g (n)(τ)dτ, if I = C. M∑

j=1

zνjAj


︸ ︷︷ ︸

T (z)

q̂(z) = f̂ (z) +
∑

Ij=C or νj=nj

Aj

nj∑
k=1

zνj−kq(k−1)(0)

︸ ︷︷ ︸
K(z)

.

q(t) =
1

2πi

∫ ω+i∞

ω−i∞
ezt
[
T (z)−1K (z)

]︸ ︷︷ ︸
q̂(z)∈H

dz ,



Extension: time-fractional PDEs via Laplace transform

Challenges:

Analysis of (generalised) spectrum of T (z). MUCH easier to figure
out for infinite-dimensional operator as opposed to truncation.

No natural generalisation of Hille–Yosida.

For high accuracy, need generalised spectrum to lie in LHP.
(Think of this as problem not being too stiff.)

Advantages of contour approach:

Avoid the large memory consumption/computation time of time
stepping methods applied to time-fractional PDEs.

High accuracy over large time intervals.

Resolvents for quadrature rule computed in parallel and reused for
different times.

For suitable generalised spectra, quadrature converges rapidly (and
stably) as before.



Example: complex perturbed fractional diffusion equation

Sp(A) ⊂ N (A) ∪N (A∗), N (A) := {〈Ax , x〉 : x ∈ D(A), ‖x‖ = 1}.

‖R(z ,A)‖ ≤ [dist(z ,N (A))]−1 ∀z /∈ N (A) ∪N (A∗).

Dι
tu = uxx + iu/(1 + x2), 0 < ι ≤ 1.
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Solutions (ε = 10−12) for various ι at t = 1 (blue), t = 5 (red) and t = 50
(yellow). The real parts are shown as solid lines, and the imaginary parts as
dashed lines (u0 shown in black).



Fractional beam equations

x

y

z

F (x , t)

Viscoelastic constituent equation (stress-strain relation):

σ(x , z , t)︸ ︷︷ ︸
stress

= E0(x) ε(x , z , t)︸ ︷︷ ︸
axial strain

+E1(x)IDνt ε(x , z , t).

Leads to (y = transverse displacement)

∂2y

∂t2
+

1

ρ̃(x)

∂2

∂x2

[
a(x)

∂2y

∂x2
+ b(x)IDνt

∂2y

∂x2

]
=

F (x , t)

ρ̃(x)
, x ∈ [−1, 1].



Quasi-linearisation of T (z)

H2
BC1 and H2

BC2 suitable Sobolev spaces capturing BCs.
Consider the product space H2

BC1 × L2ρ̃(−1, 1) equipped with

〈(u0, u1), (v0, v1)〉 =

∫ 1

−1
a(x)u′′0 (x)v ′′0 (x)dx +

∫ 1

−1
ρ̃(x)u1(x)v1(x)dx .

For z ∈ C\R≤0, consider the following operator

[A(z)]
(
u0, u1

)
= z

(
u0, u1

)
+
(
−u1, 1ρ̃(au′′0 + zν−1bu′′1 )′′

)
,

D(A(z)) =
{

(u0, u1) ∈ H2
BC1 ×H2

BC1 : au′′0 + zν−1bu′′1 ∈ H2
BC2

}
.

[A(z)]−1
(
0, v
)

=
(
[T (z)]−1v , z [T (z)]−1v

)
, ∀v ∈ L2ρ̃(−1, 1).

Key point: Generalised spectrum of A(z) much easier to study.

⇒ can compute solutions with error control as before
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Example

a = cosh(x), b = sin(πx)+2, ρ̃ = tanh(x)+2, F (x , t) = cos(20t) sin(πx),

y(x , 0) = sin(2πx)(1− x2)(1− x),
∂y

∂t
(x , 0) = 0.
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Recall Foundations Questions

Q.1: Can we compute semigroups with error control? I.e., does there exist
an algorithm that given a generator A of a strongly continuous semigroup
on H, time t > 0, arbitrary u0 ∈ H and error tolerance ε > 0, computes an
approximation of exp(tA)u0 to accuracy ε in H?

Q.2: For H = L2(Rd), is there a large class of PDO generators A on the
unbounded domain Rd where the answer to Q.1 is yes?

Moreover, results and techniques carry over to a wide class of
time-fractional PDEs.
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Wider Framework

How: Deal with operators directly, instead of previous ‘truncate-then-solve’

⇒ Compute many properties for the first time.

Framework: Classify problems in a computational hierarchy measuring
their intrinsic difficulty and the optimality of algorithms.

⇒ Algorithms that realise the boundaries of what computers can achieve.

Other recent examples:

Computing spectra.

Computing spectral measures.

Optimisation and neural networks.



Conclusion
Key points:

Semigroups can be computed with error control via a universal
algorithm.

Extends to PDEs (e.g. unbounded domains).

New stable quadrature rule for analytic semigroups.

Results carry over to time-fractional PDEs via Laplace transform
(but need to bound generalised spectrum).

Methods are part of a wider framework that deals with operators
directly in an infinite-dimensional manner.

Future work:

Nonlinear cases (e.g. splitting).

Non-autonomous cases.

Efficient methods with error control for Schrödinger semigroups.

Whole host of time-fractional PDEs can now be tackled.

For further papers and numerical code:
http://www.damtp.cam.ac.uk/user/mjc249/home.html
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