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Data-driven dynamical systems

e State x € Q € R%, unknown function F: Q — Q governs dynamics
Xny1 = F(xn)
* Goal: Learn about system from data {x(m),y(m) = F(x(’””))}i\i=1

* Data: experimental measurements or numerical simulations
* E.g., used for forecasting, control, design, understanding

* Applications: chemistry, climatology,
electronics, epidemiology, finance,
fluids, molecular dynamics,
neuroscience, plasmas, robotics,
video processing, etc.
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Operator viewpoint g oneurar

* Koopman operator K acts on functions g: (0 - C

[Kgl(x) = g(F(x))
* K is linear but acts on an infinite-dimensional space.

State x x x xn Non linear
|

Functlons \ \ \ \ Lmear

of state g(x1) g(xz) g(xg) : g(xn)

« Work in L% (), w) for positive measure w, with inner product {-,-).

* Koopman, “Hamiltonian systems and transformation in Hilbert space,” Proc. Natl. Acad. Sci. USA, 1931.
e Koopman, v. Neumann, “Dynamical systems of continuous spectra,” Proc. Natl. Acad. Sci. USA, 1932.
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Koopman mode decomposition

eigenfunction of K generalised

J n eigenfunction of K
9= D e+ | doglo) do

eigenvalues 4; T
T
g0 = (K" = Y e "o (o) + | €MOby o) A6
eigenvalues 4; —TT

Encodes: geometric features, invariant measures, transient behaviour,
long-time behaviour, coherent structures, quasiperiodicity, etc.

GOAL: Data-driven approximation of K and its spectral properties.

* Mezi¢, “Spectral properties of dynamical systems, model reduction and decompositions,” Nonlinear Dynamics, 2005.
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Koopmania*: a revolution in the big data era

New Papers on
“Koopman Operators”
6000

~35,000 papers over last decade! /

5000
Very little on convergence guarantees or verification. 4000 /\/

3000

Why is this lacking? - r/\\/

* Koopman operators have so far been quite distinct 10
from both analysis and computational communities. o

2010
2011
2012
2013
2014
2015

016
2017
2018
2019
2020
2021

o

* Dealing with infinite dim is notoriously hard ... — number of papers

doubles every 5 yrs

*Wikipedia: “its wild surge in popularity is sometimes jokingly called ‘Koopmania™
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Challenges of computing
Spec(K) = {4 € C: X — Al isnotinvertible}

Truncate: K K € CNk*xNk

1) “Too much”: Approximate spurious modes 4 & Spec(K)
2) “Too little”: Miss parts of Spec(K)
3) Continuous spectra

4) Verification: Which part of an approximation can we trust?
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Build the matrix: Dynamic Mode Decomposition (DMD)

Given dictionary {1/)1, . leK} of functions ;: 0 - C,

(Wi, ;) = IM_ w0y () =

{x (m)’ y(m)

:F(X(m))}M 7
m=1

(K ;) = ZM_ w1, (y0) =

[Fe] (™)

_jk

K= K=V, WY)W, WY, € CNkxNk

Recall open problems: too much, too little, continuous spectra, verification

Wy (x D) U N\ [wy Py (xD) Py, xD)]
PrM) gy (D) " w) \ G O) e (O
Yy w Yy
<1/11(X(1)) leK(x(l))>* <W1 ><1/J1 (}’(1)) VJNK()’(D)>
P o () ) o B0y 00))
Yy w Yy

_jk

decomposition,” J. Nonlinear Sci., 2015.

Schmid, “Dynamic mode decomposition of numerical and experimental data,” J. Fluid Mech., 2010.
Kutz, Brunton, Brunton, Proctor, “Dynamic mode decomposition: data-driven modeling of complex systems,” SIAM, 2016.
Williams, Kevrekidis, Rowley “A data-driven approximation of the Koopman operator: Extending dynamic mode



Residual DMD (ResDMD): Approx. K and K*K

(i ) = i Winth; (x ™) 1y (x ™)) = [‘PX WWX]

m=1 jk
M
(Kb ) = ) wnth; (x0) P (v = [?X*W‘PK]
m=1 (K] (x (™) jk
M
(Ktpie, Ky = ) w1 () (v = FJY*WLPZI
m=1 K :
Jjk

Residuals: g = Z 8V, IKXg —2glI” = g"[K, — AK;" — 2Ky + |A°Glg
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* C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.
(., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., under minor rev.
* Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition


https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
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ResDMD: avoiding “too much”

g* KZ — AK]_* — A_K]_ + |A|ZG 8
res(A,8)? = [ g Gg ] eigenvectors

eigenvalues
Algorithm 1: A//

1. Compute G, K;, K, € CNk*NK and eigendecomposition K,V = GVA.

2. For each eigenpair (A4,v), compute res(A4,v).

3. Output: subset of e-vectors V() & e-vals A with res(A,v) < e (e =input tol).

Theorem (no spectral pollution): Suppose quad. rule converges. Then

lim sup max ||[(K — D)7t <¢
M—oco AEAE)

* C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.
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ResDMD: avoiding “too much”

g* KZ — AK]_* — A_K]_ + |A|ZG 8
res(A,8)? = [ g Gg ] eigenvectors

eigenvalues
Algorithm 1: A//

1. Compute G, K;, K, € CNk*NK and eigendecomposition K,V = GVA.

2. For each eigenpair (A4,v), compute res(A4,v).

3. Output: subset of e-vectors V() & e-vals A with res(A,v) < e (e =input tol).

Theorem (no spectral pollution): Suppose quad. rule converges. Then

lim sup max ||[(K — D)7t <¢
M—oco AEAE)

BUT: Typically, does not capture all of spectrum! (“too little”)

* C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.
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ResDMD: avoiding “too little”

Spec.(K) = U Spec(KX + B), liP(} Spec.(K) = Spec(K)
)
IBll<e

Algorlthm 2: First convergent method for general X
1. Compute G,K;, K, € CNk*Nk,
2. For z; in comp. grid, compute 7, = min res(zy, g), corresponding g, (gen. SVD).

N
9=X ;% 8j¥;

3. Output: {z;: 7, < €} (approx. of Spec.(K)), {gx: Tx < €} (e-pseudo-eigenfunctions).

Theorem (full convergence): Suppose the quadrature rule converges.
* Error control: {z;: 1), < £} € Spec.(K) (as M — o)
* Convergence: Converges locally uniformly to Spec.(KX) (as Ny — o)

* C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.



10/20

Setup for continuous spectra

Suppose system is measure preserving (e.g., Hamiltonian, ergodic, post-transient etc.)

& KK =1 (isometry)

= Spec(K) € {z:|z| < 1}
~~ spectral

(NB: we consider unitary extensions via Wold decomposition.) measure
supp. on

boundary
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Spectral measures — diagonalisation

* Fin.-dim.: B € C™*", B*B = BB*, o.n. basis of e-vectors {vj}?zl

n
j— . .*
J=1 _

U,

Bv =

- i,
k

2 A]U]U] (4

=1 _

Vv e (Ch

* Inf.-dim.: Operator £L: D(L) — H. Typically, no basis of e-vectors!
Spectral theorem: (projection-valued) spectral measure E

g:

‘f 1dE(Q)
Spec(L) |

9,

Lg

= j AdE (1)
Spec(L) |

g, VgeH

* Spectral measures: v, (U) = (E(U)g, g) (llgll = 1) prob. measure.
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Koopman mode decomposition (again!)

Vv, probability measures on [—1, ] e,

Leb. decomp: dv,(y) = Z <P 1,9 g> o(y —6;) + Py (y)dy + dvgsc(yz

eigenvalues 4;=exp(if ;) continuous

N -

discrete
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Koopman mode decomposition (again!)

Vv, probability measures on [—1, ] e,

Leb. decomp: dv,(y) = Z <P 1,9 g> 6(y —6;) +pg (y)dy + dvgc(yz
eigenvalues 4;=exp(if ;) continuous
discrete
eigenfunction of K generalised

eigenfunction of K

J T
9= D e+ [ degGods

eigenvalues 4; T
T
90 = (K" = ) b o) + [ €m0 g(xo) d6
eigenvalues 4; —TT

Computing v, diagonalises non-linear dynamical system!
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Smoothing via convolution L e

Kernels

K(Q)—

d:
_ J
2T Z[e “9—(1+ez)1 e—ie_(l_l_gzj)
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Smoothing via convolution L e

m =4 Kernels
1.5} ]\ 1

477'”:3

e Ci d;
Ke(8) = Z [ BT ~i6 ;
2T — e " — (1+¢€z) e~ v — (1 + ezj)

[Ke * vg](HO) = i [cj g(e“9 (1+ €z;) 1) d;Cy ( 1o (1 + ezj))]

f o g(0) )} (K —zD71g,K"g)if|z| > 1
el —z |-z Ng, (X —-2z"1D7"1g),if0< |z|] <1

&

= “smoothing parameter” \
ResDMD computes

\—/ with error control
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Convergence

Theorem: Automatic selection of Ng(¢)

with O(¢™log(1/¢)) convergence:

* Density of continuous spectrum p,,.
(pointwise and LP)

* Integration against test functions.
(weak convergence)

j nh(@) |K: * v, |(6) dO

—T1T
T

= | h(8) dv,(8) + 0(e™log(1/¢))
—T1T
Also recover discrete spectrum.

Pointwise error for spectral density

10°

10 107 107" 10Y
E

* C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.
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Large d () S R?): robust and scalable

Popular to learn dictionary {l/)l, . ¢NK}

E.g., DMD with truncated SVD ﬁlinear dictionary, most popular),
kernel methods (this talk), neural networks, etc.

Q: Is discretisation span{tpl, . ‘I’NK} large/rich enough?

Above algorithms:
* Pseudospectra: {z;: T, < €} € Spec.(K) error control
* Spectral measures: C, (z) and smoothed measures adaptive check

— Rigorously verify learnt dictionary {1/11» o) l/JNK}
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Example: Trustworthy computation for large d

Inlet

Periodic

conditions

Blade Outlet

/"« Reynolds number = 3.9 x 10°
 Ambient dimension (d) = 300,000

(number of measurement points)

*Raw measurements provided by Stephane Moreau (Sherbrooke)

404 mm
Outlet
Rel. Error =7? Rel. Error = ? Rel. Error = ?
| 4 ' 0.71i B
e 0.25 —_ .
A=c¢e
0.2 ’ 0.06
0.6 W\, acoustic source?
015 % 0.04
5 0.4 101 » ';'
| °2 1005 \ ' o
..0 _0 _0
102 j 0.05 1002
0.4 1-0.1
-0.04
55 -0.15
-0.2 -0.06
0.8
-0.25
-1 -0.08

 C., T, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.



16/20

Example: Trustworthy computation for large d

Periodic

conditions

Inlet
Blade Outlet

/"« Reynolds number =~ 3.9 x 10°

 Ambient dimension (d) = 300,000
(number of measurement points)

*Raw measurements provided by Stephane Moreau (Sherbrooke)

404 mm
Outlet
Rel. Error < 0.0054 Rel. Error < 0.0128 Rel. Error 0.0196

A — eOlll . /1 — eOSll 2.25 -

06 turbulent '
" fluctuations Vi 004
0 102 i Lo 10.02
$e$°® . . 4-0.2 ﬁ {-0.05 | 002
i . ({ 015 -0.04
' 0.8 ﬁ 0.2 -0.06

1 -0.08

acoustic vibrations
 C., T, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.
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Example: molecular dynamics (Adenylate Kinase)

Adenylate Kinase
¢ key parts
) q Y

 Ambient dimension (d) = 20,000
(positions and momenta of atoms)
 6th order kernel (spec res 107°)

*Dataset: www.mdanalysis.org/MDAnalysisData/adk_equilibrium.html

0.24 - w ” ¢
0.22 - /

0.2-
0.18
0.16
0.14 ¢ ‘

3 2 1 0 1 2 3
0 0

 C, T, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.
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Example: Trustworthy Koopman mode decomposition

b) t = 10 us c)t=15pus d) =20 us
‘ 100 T
true —residual ordering
o modulus ordering —modulus ordering
o residual ordering | |

--------

Pressure

extremely efficient !

Relative MISE

\ unseen shockws:

-50 3L - .
orediction 10 compression
from 40 modes
-100 ‘ 10 . . .
0 = 4 6 8 0 50 100 150 200
Time(107>s) Number of modes

(., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., under minor rev.
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Wider programme

Inf.-dim. computational analysis = Compute spectral properties rigorously.

Continuous linear algebra — Avoid the woes of discretisation

Solvability Complexity Index hierarchy = Classify diff. of comp. problems, prove algs are optimal.

Extends to: Foundations of Al, optimization, computer-assisted proofs, and PDEs etc.

C., “On the computation of geometric features of spectra of linear operators on Hilbert spaces,” Found. Comput. Math., to appear.
C., “Computing spectral measures and spectral types,” Comm. Math. Phys., 2021.

C., Horning, Townsend “Computing spectral measures of self-adjoint operators,” SIAM Rev., 2021.

C., Roman, Hansen, “How to compute spectra with error control,” Phys. Rev. Lett., 2019.

C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022.
C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th
problem," Proc. Natl. Acad. Sci. USA, 2022.

C., “Computing semigroups with error control,” SIAM J. Numer. Anal., 2022.

Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.

Smale, “The fundamental theorem of algebra and complexity theory,” Bull. Amer. Math. Soc., 1981, 36 pp.

McMullen, “Families of rational maps and iterative root-finding algorithms,” Ann. of Math., 1987, 27 pp.
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Summary: rigorous data-driven Koopmanism!

* “Too much” or “Too little”
Idea: New matrix for residual = ResDMD for computing spectra.
* Continuous spectra and spectral measures:
Idea: Convolution with rational kernels via resolvent and ResDMD.

* Verification
Idea: Use ResDMD to verify computations. E.g., learned dictionaries.

Code:
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition




Additional slides...



ify the dictionary

Ver

Example

res(4;, g;), linear dictionary

res(4;, g;), nonlinear dictionary

05¢
-0.5¢

Un
e

6.4 x 10*

~o
~

Reynolds number

 Ambient dimension (d) = 100,000

o b

(velocity at measurement points)
*Raw measurements provided by Maté Sz6ke (Virginia Te:

A

Re(A)

0.8948 + O.1065i, error < 0.1105

Re(A)

A=

A=

Y B ¢ TR

N Y trEAey -
»\\\\ o 7
%

b SN
?n; J

B \_\.h—\\
- ‘B
..._, RN
/I} \\\‘///I/_ b b/

A
t
/
2 w = 1 O
N e o=’
S\m\\m
2 8z s g S
s &8 = & 5§ 5 5

0.9439 + 0.2458i, error < 0.0765

T /.«l\l 7 C«
7 e
~kK(:\“\1HMHM\\;
i g
\/a \\ \—\|
K W
N T
3 ~\\'|'l‘\\\\\\\\
\\“\ 2
/\\/l,— ~
&% 1/
,,\\\Fh/cl\\.\“_-qﬁ
- SO NN |
///Kvn\q/f \\H//.\Q - A
V) ///l‘ / ////\.ﬂ
-/ \/»v//,. /A //4//1_.|
N - NN R/
ALy \\\\‘“!hk. : \/HW///N,, /\\
NN ! \lﬂ‘U/// ./
AN //ﬁ».\_\//(fz ‘\_IIN/:/I_.\,//M
[\ i o)
g/

106 107 108 109 110

105

106 107 108 109 110

105

ﬁ/hjet

xA/hjet

77

C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., under minor rev.



measure-preserving EDMD...
* Polar decomposition of K. Easy to combine with any DMD-type method!

* Converges for spectral measures, spectra, Koopman mode decomposition.

* Measure-preserving discretization for arbitrary measure-preserving systems.

. TKEIy ~ 5mm . TKE, YR 35mm » Time—averaged TKE |

———mpEDMD f - |~———mpEDMD

s MPEDMD
——piDMD /o | ——piDMD 180 - e DiDMD
1041 —EDMD AN 104 L —EDMD Mean TKE of flow
Mean TKE of flow 4 ] b Mean TKE of flow 160 +

140 +
103 .
t 120 -

102 v T T TP VW W - ' 100 r

80

10 0 1 2 3 4 5 10! 0 5 6OO 10 2I0 3IO 4I0
Time (s) Height y (mm)
Snapshots collected over 1s EDMD unstable!

 C., “The mpEDMD Algorithm for Data-Driven Computations of Measure-Preserving Dynamical Systems,” arXiv 2022.



Convergence of quadrature

8. (Kb ) = Jim S wth GT0) (™)

[Kk] (X(m))

Three examples:

» High-order quadrature: {x(™), Wm} . M-point quadrature rule.

Rapid convergence. Requires free ch0|ce of {x(m)} and small d.

* Random sampling: {x(m)} 1 selected at random. <« Most common
Large d. Slow Monte Carlo O(M 1/2Y rate of convergence. /

* Ergodic sampling: x ("1 = F(x(™),
Single trajectory, large d. Requires ergodicity, convergence can be slow.



Solvability Complexity Index Hierarchy

Class Q) 3 A, want to compute Z: Q = (M, d) €= metric space
* Ay: Problems solved in finite time (v. rare for cts problems).

* A;: Problems solved in “one limit” with full error control:
d([,(4),2(4)) < 27"
* A,: Problems solved in “one limit”:
IimI;,(4) = Z(4)

n—->0o

* A5: Problems solved in “two successive limits”:
lim lim I3, ,,(4) = 2(4)

. Nn—00 Mm— 0o

Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.

Hansen, “On the solvability complexity index, the 7zpseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.
McMullen, “Families of rational maps and iterative root-finding algorithms,” Ann. of Math., 1987.

Doyle, McMullen, “Solving the quintic by iteration,” Acta Math., 1989.

Smale, “The fundamental theorem of algebra and complexity theory,” Bull. Amer. Math. Soc., 1981.



Error control for spectral problems

Y11 convergence

Z(A) = Spec(4)

e ¥,:3alg. {l,} s.t. lim [, (A) = Z(4), maxzepn(A)dist(Z, E(4)) <27
n—>00



Error control for spectral problems

>i1 convergence II; convergence

—

Z(A) = Spec(4)

e ¥,:3alg. {l,} s.t. lim [, (A) = Z(4), maxzepn(A)dist(Z, E(4)) <27
n—>00

e I[I;: Falg. {l,} s.t. im [, (A) = E(A), max g4 dist(z,[;,(4)) <277
Nn—00

Such problems can be used in a proof!



Small sample of classification theorems

Increasing difficulty

Error control

I, I,
& < & < &
A]_ ;Zlunlg Az ;ZZUI_IZ; AB ;23
< & L & <
21 22



Small sample of classification theorems

Increasing difficulty

Error control

[14 [ [13
& N & < &
A]_ §21UH1; Az ;ZZUI_IZ; Ag ;Z3UH3
A & < & N

Spectra of K Continuous spectra of K (different regularity assumptions)



Small sample of classification theorems

Increasing difficulty

Error control Spectra of
l compact operators
|
| G N & IS

A & < &
0 \ Zz 23

Spectra of K Continuous spectra of K (different regularity assumptions)



Small sample of classification theorems

Increasing difficulty

Error control Spectra of Spectra of Schrodinger*
| compact operators (different potential classes)

Spectra of K Continuous spectra of K (different regularity assumptions)

*Open problem of Schwinger: “The special canonical group,” “Unitary operator bases,” PNAS, 1960.



Small sample of classification theorems

Increasing difficulty

Error control Spectra of Spectra of Schrodinger*
| compact operators (different potential classes)
|

[1 [14 j [l3

0
” & IS & &
Ap & A SL,VUIL & VUL G Ay S23UIl; .
5 S & < G <

0 Zz 23

‘ Spectral gap problem

Spectra of K Continuous spectra of K (different regularity assumptions)

*Open problem of Schwinger: “The special canonical group,” “Unitary operator bases,” PNAS, 1960.



Small sample of classification theorems

Increasing difficulty

Error control Spectra of Spectra of Schrodinger*  Spectral stability
| compact operators (different potential classes)
|
[1 [14 j [l3
0
” & Q & &
Ap & A SL,VUIL & VUL G Ay S23UIl; .
g S & < & <
0 Zz 23
‘ Spectral gap problem

Spectra of K Continuous spectra of K (different regularity assumptions)

*Open problem of Schwinger: “The special canonical group,” “Unitary operator bases,” PNAS, 1960.



