<u>Residual Dynamic Mode Decomposition</u> Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems

<u>Matthew Colbrook</u> (m.colbrook@damtp.cam.ac.uk) University of Cambridge

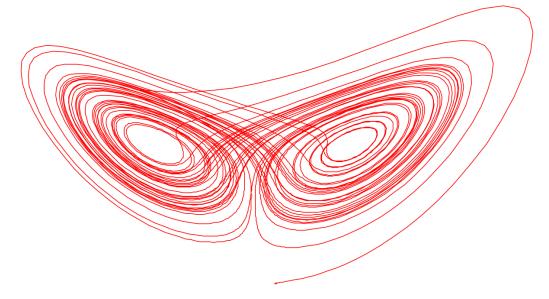
> Alex Townsend (townsend@cornell.edu) Cornell University

Data-driven dynamical systems

• State $x \in \Omega \subseteq \mathbb{R}^d$, **unknown** function $F: \Omega \to \Omega$ governs dynamics

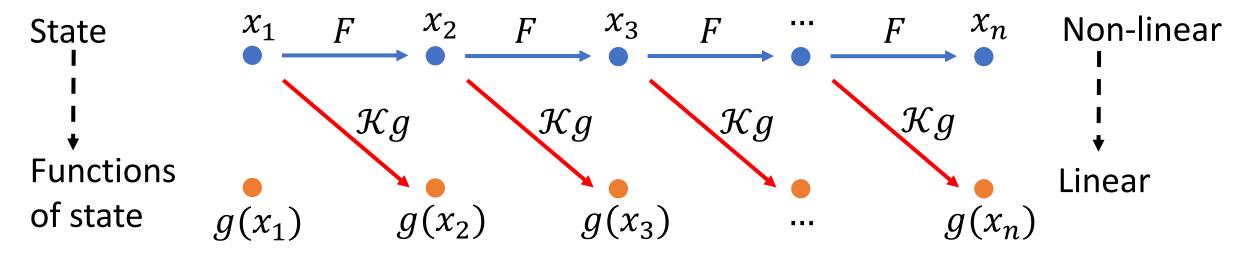
$$x_{n+1} = F(x_n)$$

- Goal: Learn about system from data $\{x^{(m)}, y^{(m)} = F(x^{(m)})\}_{m=1}^{M}$
 - Data: experimental measurements or numerical simulations
 - E.g., used for forecasting, control, design, understanding
- Applications: chemistry, climatology, electronics, epidemiology, finance, fluids, molecular dynamics, neuroscience, plasmas, robotics, video processing, etc.



Operator viewpoint

- Koopman operator \mathcal{K} acts on <u>functions</u> $g: \Omega \to \mathbb{C}$ $[\mathcal{K}g](x) = g(F(x))$
- \mathcal{K} is *linear* but acts on an *infinite-dimensional* space.

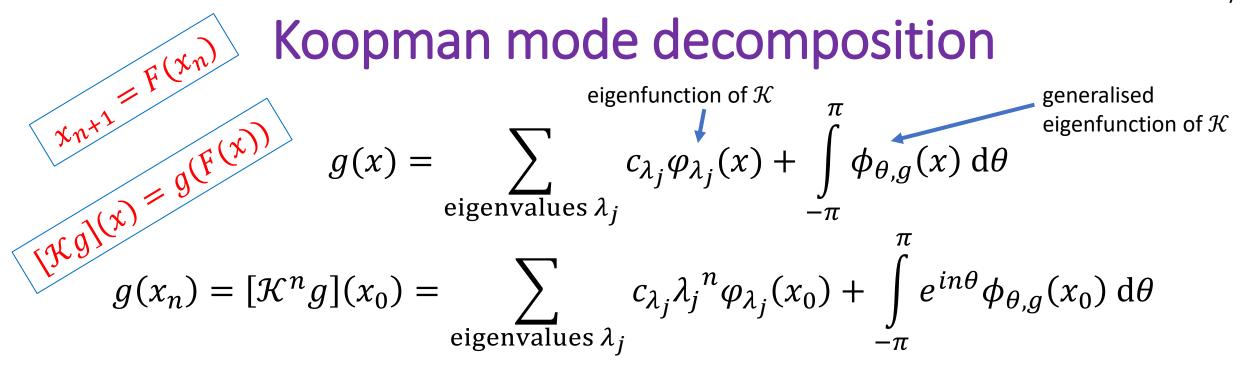


• Work in $L^2(\Omega, \omega)$ for positive measure ω , with inner product $\langle \cdot, \cdot \rangle$.

- Koopman, "Hamiltonian systems and transformation in Hilbert space," Proc. Natl. Acad. Sci. USA, 1931.
- Koopman, v. Neumann, "Dynamical systems of continuous spectra," Proc. Natl. Acad. Sci. USA, 1932.

Koopman

von Neumann



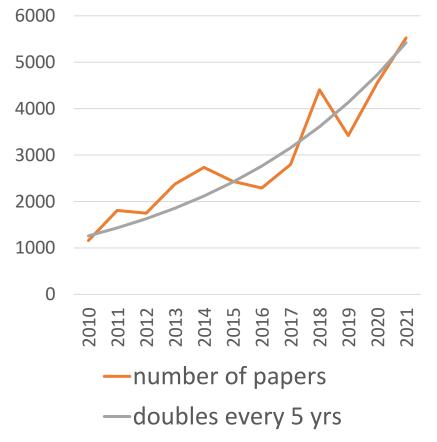
Encodes: geometric features, invariant measures, transient behaviour, long-time behaviour, coherent structures, quasiperiodicity, etc.

GOAL: Data-driven approximation of $\mathcal K$ and its spectral properties.

[•] Mezić, "Spectral properties of dynamical systems, model reduction and decompositions," Nonlinear Dynamics, 2005.

Koopmania*: a revolution in the big data era

New Papers on "Koopman Operators"



 \approx 35,000 papers over last decade!

Very little on convergence guarantees or verification.

Why is this lacking?

- Koopman operators have so far been quite distinct from both analysis and computational communities.
- Dealing with infinite dim is notoriously hard ...

*Wikipedia: "its wild surge in popularity is sometimes jokingly called 'Koopmania'"

Challenges of computing Spec(\mathcal{K}) = { $\lambda \in \mathbb{C}: \mathcal{K} - \lambda I$ is not invertible} 5/35

Truncate:
$$\mathcal{K} \longrightarrow \mathbb{K} \in \mathbb{C}^{N_K \times N_K}$$

- **1)** "Too much": Approximate spurious modes $\lambda \notin \text{Spec}(\mathcal{K})$
- **2) "Too little":** Miss parts of $\text{Spec}(\mathcal{K})$
- 3) Continuous spectra
- 4) Verification: Which part of an approximation can we trust?

Build the matrix: Dynamic Mode Decomposition (DMD) $\{x^{(m)}, y^{(m)} = F(x^{(m)})\}_{m}^{M}$ Given dictionary $\{\psi_1, \dots, \psi_{N_{\kappa}}\}$ of functions $\psi_i \colon \Omega \to \mathbb{C}$, $\langle \psi_{k}, \psi_{j} \rangle \approx \sum_{m=1}^{M} w_{m} \overline{\psi_{j}(x^{(m)})} \psi_{k}(x^{(m)}) = \begin{bmatrix} \left(\begin{array}{ccc} \psi_{1}(x^{(1)}) & \cdots & \psi_{N_{K}}(x^{(1)}) \\ \vdots & \ddots & \vdots \\ \psi_{1}(x^{(M)}) & \cdots & \psi_{N_{K}}(x^{(M)}) \end{array} \right)^{*} \begin{pmatrix} w_{1} & & \\ & \ddots & \\ & & & \\ \end{array} \\ \begin{pmatrix} \psi_{1}(x^{(1)}) & \cdots & \psi_{N_{K}}(x^{(1)}) \\ \vdots & \ddots & \vdots \\ \psi_{1}(x^{(M)}) & \cdots & \psi_{N_{K}}(x^{(M)}) \end{pmatrix} \\ \hline \psi_{1}(x^{(M)}) & \cdots & \psi_{N_{K}}(x^{(M)}) \end{pmatrix} \\ \downarrow \\ \psi_{1}(x^{(M)}) & \cdots & \psi_{N_{K}}(x^{(M)}) \end{pmatrix} \\ \downarrow \\ \downarrow \\ \psi_{1}(x^{(M)}) & \cdots & \psi_{N_{K}}(x^{(M)}) \end{pmatrix}$ $\langle \mathcal{K}\psi_{k},\psi_{j}\rangle \approx \sum_{m=1}^{M} w_{m}\overline{\psi_{j}(x^{(m)})} \underbrace{\psi_{k}(y^{(m)})}_{[\mathcal{K}\psi_{k}](x^{(m)})} = \begin{bmatrix} \begin{pmatrix} \psi_{1}(x^{(1)}) & \cdots & \psi_{N_{K}}(x^{(1)}) \\ \vdots & \ddots & \vdots \\ \psi_{1}(x^{(M)}) & \cdots & \psi_{N_{K}}(x^{(M)}) \end{pmatrix}^{*} \underbrace{\begin{pmatrix} w_{1} & \cdots & \psi_{N_{K}}(y^{(1)}) \\ \vdots & \ddots & \vdots \\ \psi_{1}(y^{(M)}) & \cdots & \psi_{N_{K}}(y^{(M)}) \end{pmatrix}}_{W} \underbrace{\begin{pmatrix} \psi_{1}(y^{(1)}) & \cdots & \psi_{N_{K}}(y^{(1)}) \\ \vdots & \ddots & \vdots \\ \psi_{1}(y^{(M)}) & \cdots & \psi_{N_{K}}(y^{(M)}) \end{pmatrix}}_{\Psi_{V}} \end{bmatrix}_{ik}$ $\mathcal{K} \longrightarrow \mathbb{K} = (\Psi_{X}^{*}W\Psi_{X})^{-1}\Psi_{X}^{*}W\Psi_{Y} \in \mathbb{C}^{N_{K} \times N_{K}}$

6/20

Recall open problems: too much, too little, continuous spectra, verification

- Schmid, "Dynamic mode decomposition of numerical and experimental data," J. Fluid Mech., 2010.
- Kutz, Brunton, Brunton, Proctor, "Dynamic mode decomposition: data-driven modeling of complex systems," SIAM, 2016.
- Williams, Kevrekidis, Rowley "A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition," J. Nonlinear Sci., 2015.

Residual DMD (ResDMD): Approx. \mathcal{K} and $\mathcal{K}^*\mathcal{K}$

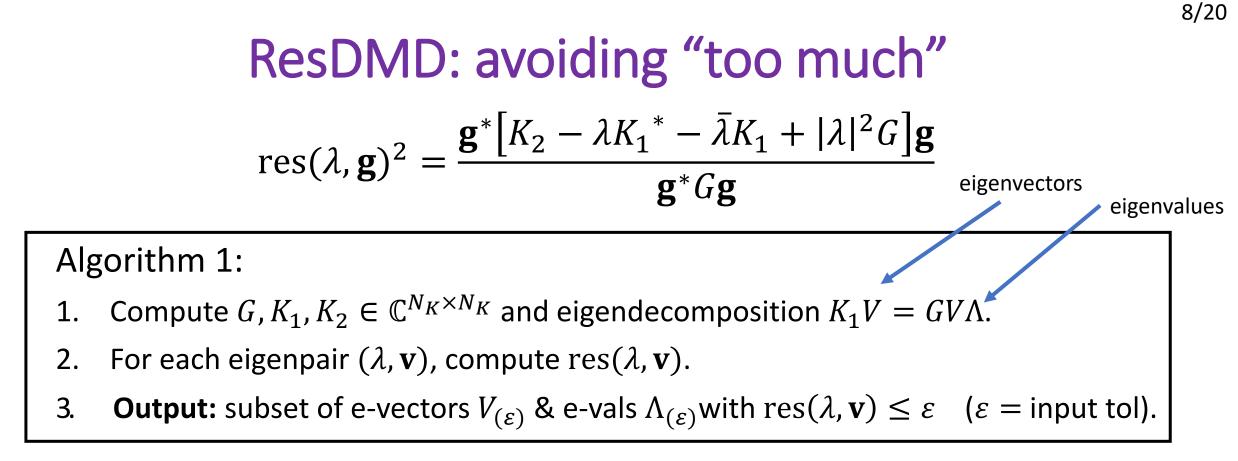
$$\langle \psi_k, \psi_j \rangle \approx \sum_{m=1}^M w_m \overline{\psi_j(x^{(m)})} \, \psi_k(x^{(m)}) = \left[\underbrace{\Psi_X^* W \Psi_X}_G \right]_{jk}$$

$$\langle \mathcal{K}\psi_k, \psi_j \rangle \approx \sum_{m=1}^M w_m \overline{\psi_j(x^{(m)})} \underbrace{\psi_k(y^{(m)})}_{[\mathcal{K}\psi_k](x^{(m)})} = \left[\underbrace{\Psi_X^* W \Psi_Y}_{K_1} \right]_{jk}$$

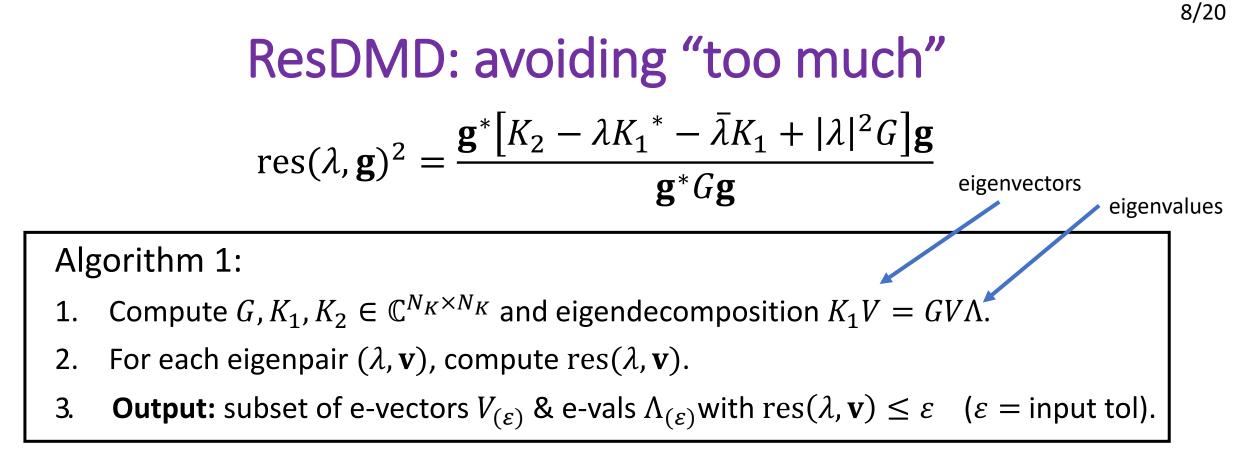
$$\langle \mathcal{K}\psi_k, \mathcal{K}\psi_j \rangle \approx \sum_{m=1}^M w_m \overline{\psi_j(y^{(m)})} \, \psi_k(y^{(m)}) = \left[\underbrace{\Psi_Y^* W \Psi_Y}_{K_2} \right]_{jk}$$

Residuals:
$$g = \sum_{j=1}^{N_K} \mathbf{g}_j \psi_j$$
, $\|\mathcal{K}g - \lambda g\|^2 \approx \mathbf{g}^* [K_2 - \lambda K_1^* - \overline{\lambda} K_1 + |\lambda|^2 G] \mathbf{g}$

- C., Townsend, "Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems," preprint.
 - C., Ayton, Szőke, "Residual Dynamic Mode Decomposition," J. Fluid Mech., under minor rev.
- Code: <u>https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition</u>



Theorem (no spectral pollution): Suppose quad. rule converges. Then $\limsup_{M \to \infty} \max_{\lambda \in \Lambda^{(\varepsilon)}} \|(\mathcal{K} - \lambda)^{-1}\|^{-1} \leq \varepsilon$



Theorem (no spectral pollution): Suppose quad. rule converges. Then $\limsup_{M \to \infty} \max_{\lambda \in \Lambda^{(\varepsilon)}} \|(\mathcal{K} - \lambda)^{-1}\|^{-1} \leq \varepsilon$

BUT: Typically, does not capture all of spectrum! ("too little")

ResDMD: avoiding "too little"

$$\operatorname{Spec}_{\varepsilon}(\mathcal{K}) = \bigcup_{\|\mathcal{B}\| \leq \varepsilon} \operatorname{Spec}(\mathcal{K} + \mathcal{B}), \qquad \lim_{\varepsilon \downarrow 0} \operatorname{Spec}_{\varepsilon}(\mathcal{K}) = \operatorname{Spec}(\mathcal{K})$$

Algorithm 2:

1. Compute
$$G, K_1, K_2 \in \mathbb{C}^{N_K \times N_K}$$
.

First convergent method for general ${\mathcal K}$

2. For z_k in comp. grid, compute $\tau_k = \min_{\substack{g = \sum_{j=1}^{N_K} \mathbf{g}_j \psi_j}} \operatorname{res}(z_k, g)$, corresponding g_k (gen. SVD).

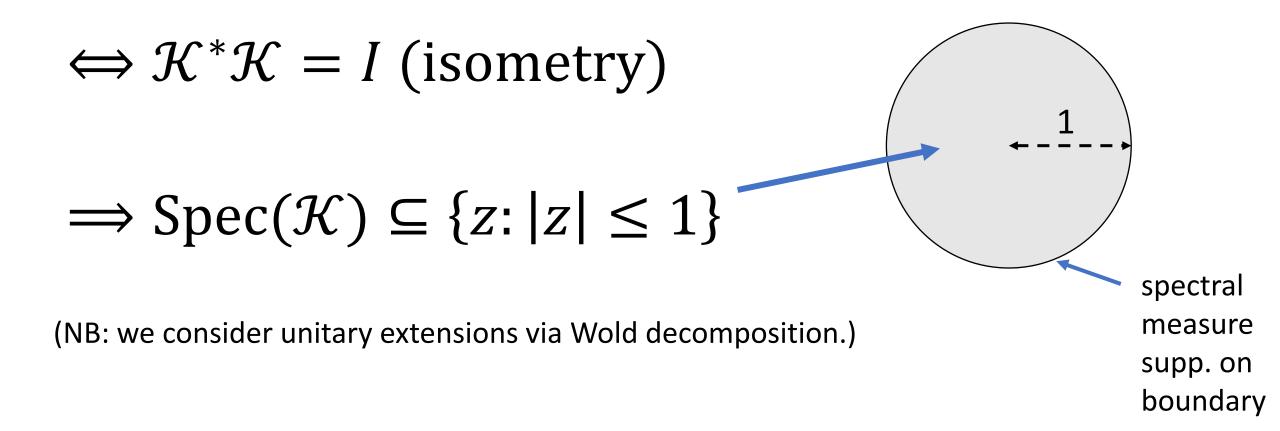
3. Output: $\{z_k: \tau_k < \varepsilon\}$ (approx. of Spec_{ε}(\mathcal{K})), $\{g_k: \tau_k < \varepsilon\}$ (ε -pseudo-eigenfunctions).

Theorem (full convergence): Suppose the quadrature rule converges.

- **Error control:** $\{z_k: \tau_k < \varepsilon\} \subseteq \operatorname{Spec}_{\varepsilon}(\mathcal{K})$ (as $M \to \infty$)
- **Convergence:** Converges locally uniformly to $\operatorname{Spec}_{\varepsilon}(\mathcal{K})$ (as $N_K \to \infty$)

Setup for continuous spectra

Suppose system is measure preserving (e.g., Hamiltonian, ergodic, post-transient etc.)



Spectral measures \rightarrow diagonalisation

• Fin.-dim.: $B \in \mathbb{C}^{n \times n}$, $B^*B = BB^*$, o.n. basis of e-vectors $\{v_j\}_{j=1}^n$

$$v = \left[\sum_{j=1}^{n} v_j v_j^*\right] v, \qquad Bv = \left[\sum_{j=1}^{n} \lambda_j v_j v_j^*\right] v, \qquad \forall v \in \mathbb{C}^n$$

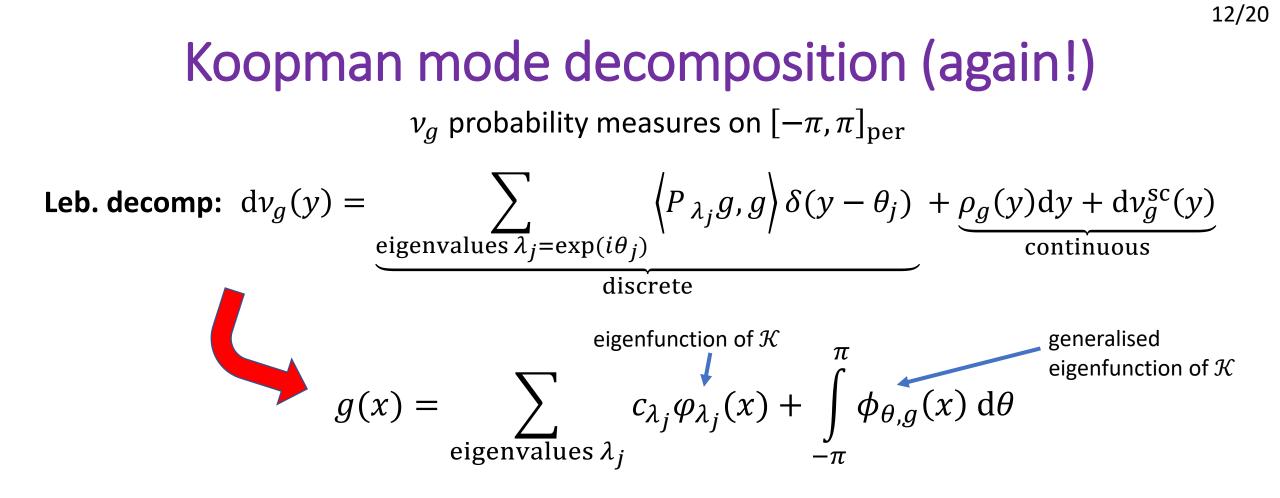
• Inf.-dim.: Operator $\mathcal{L}: \mathcal{D}(\mathcal{L}) \to \mathcal{H}$. Typically, no basis of e-vectors! Spectral theorem: (projection-valued) spectral measure E

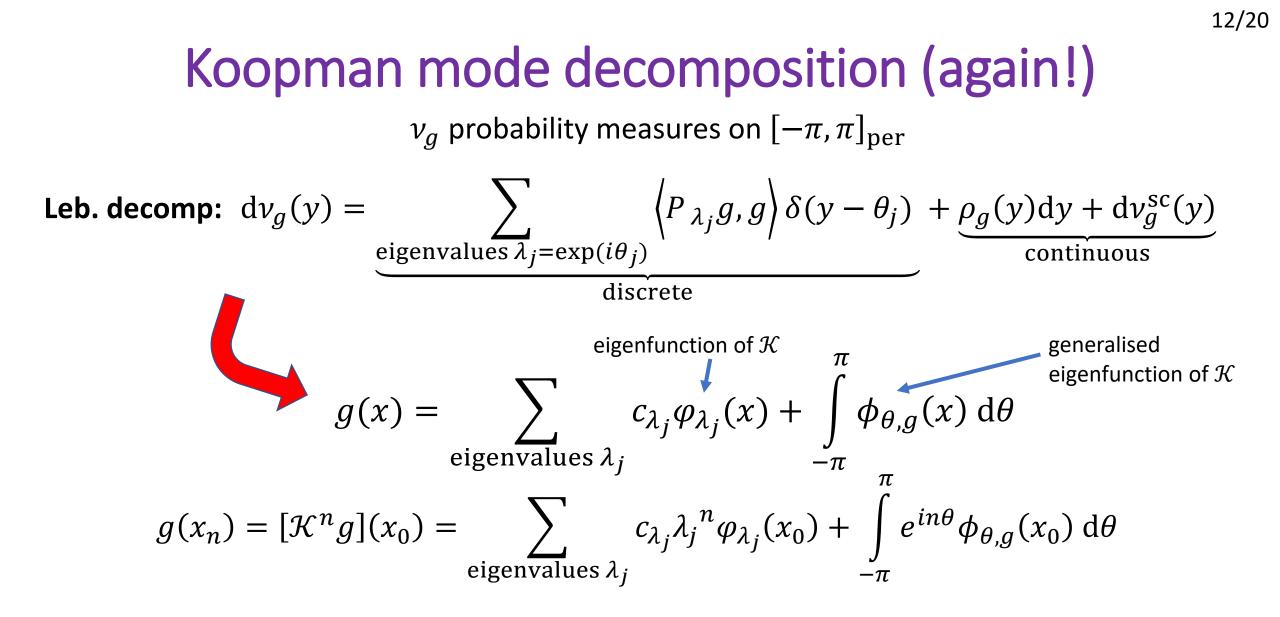
$$g = \left[\int_{\operatorname{Spec}(\mathcal{L})} 1 \, \mathrm{d}E(\lambda) \right] g, \qquad \mathcal{L}g = \left[\int_{\operatorname{Spec}(\mathcal{L})} \lambda \, \mathrm{d}E(\lambda) \right] g, \qquad \forall g \in \mathcal{H}$$

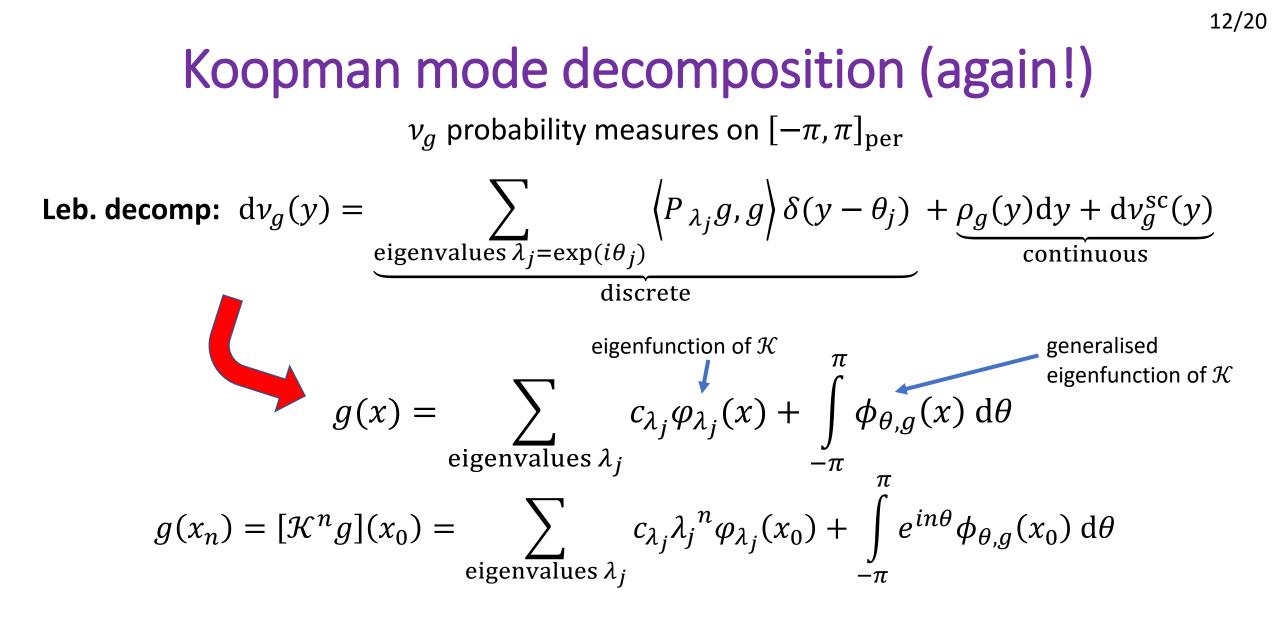
• Spectral measures: $v_g(U) = \langle E(U)g, g \rangle (||g|| = 1)$ prob. measure.

Koopman mode decomposition (again!) v_g probability measures on $[-\pi, \pi]_{per}$ **Leb. decomp:** $dv_g(y) = \sum_{\substack{\text{eigenvalues } \lambda_j = \exp(i\theta_j) \\ \text{discrete}}} \langle P_{\lambda_j}g, g \rangle \delta(y - \theta_j) + \underbrace{\rho_g(y)dy + dv_g^{sc}(y)}_{\text{continuous}}$

12/20



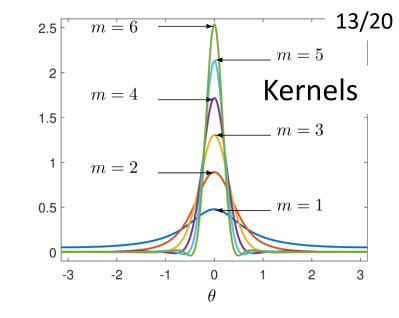




Computing v_q diagonalises non-linear dynamical system!

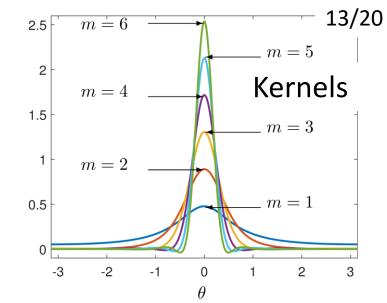
Smoothing via convolution

$$K_{\varepsilon}(\theta) = \frac{e^{-i\theta}}{2\pi} \sum_{j=1}^{m} \left[\frac{c_j}{e^{-i\theta} - (1 + \varepsilon \overline{z_j})^{-1}} - \frac{d_j}{e^{-i\theta} - (1 + \varepsilon z_j)} \right]$$



Smoothing via convolution

$$K_{\varepsilon}(\theta) = \frac{e^{-i\theta}}{2\pi} \sum_{j=1}^{m} \left[\frac{c_j}{e^{-i\theta} - (1 + \varepsilon \overline{z_j})^{-1}} - \frac{d_j}{e^{-i\theta} - (1 + \varepsilon z_j)} \right]$$



$$\left[K_{\varepsilon} * \nu_{g}\right](\theta_{0}) = \sum_{j=1}^{m} \left[c_{j} \mathcal{C}_{g}\left(e^{i\theta_{0}}\left(1 + \varepsilon \overline{z_{j}}\right)^{-1}\right) - d_{j} \mathcal{C}_{g}\left(e^{i\theta_{0}}\left(1 + \varepsilon z_{j}\right)\right)\right]$$

Convergence

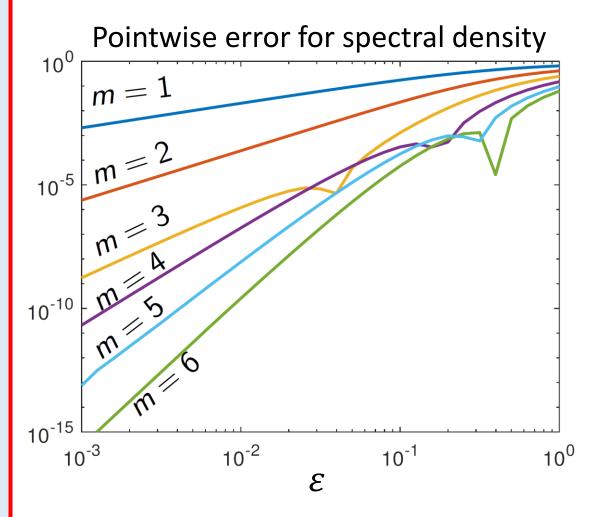
Theorem: Automatic selection of $N_K(\varepsilon)$ with $O(\varepsilon^m \log(1/\varepsilon))$ convergence:

- Density of continuous spectrum ρ_g . (pointwise and L^p)
- Integration against test functions. (weak convergence)

$$\int_{-\pi}^{\pi} h(\theta) \left[K_{\varepsilon} * \nu_{g} \right](\theta) \, \mathrm{d}\theta$$

$$= \int_{-\pi}^{\pi} h(\theta) \, \mathrm{d}\nu_g(\theta) + O(\varepsilon^m \log(1/\varepsilon))$$

Also recover discrete spectrum.



Large d ($\Omega \subseteq \mathbb{R}^d$): <u>robust</u> and <u>scalable</u>

Popular to learn dictionary $\{\psi_1, ..., \psi_{N_K}\}$

E.g., DMD with truncated SVD (linear dictionary, most popular), kernel methods (this talk), neural networks, etc.

Q: Is discretisation span $\{\psi_1, \dots, \psi_{N_K}\}$ large/rich enough?

Above algorithms:

- Pseudospectra: $\{z_k: \tau_k < \varepsilon\} \subseteq \operatorname{Spec}_{\varepsilon}(\mathcal{K})$
- Spectral measures: $C_g(z)$ and smoothed measures

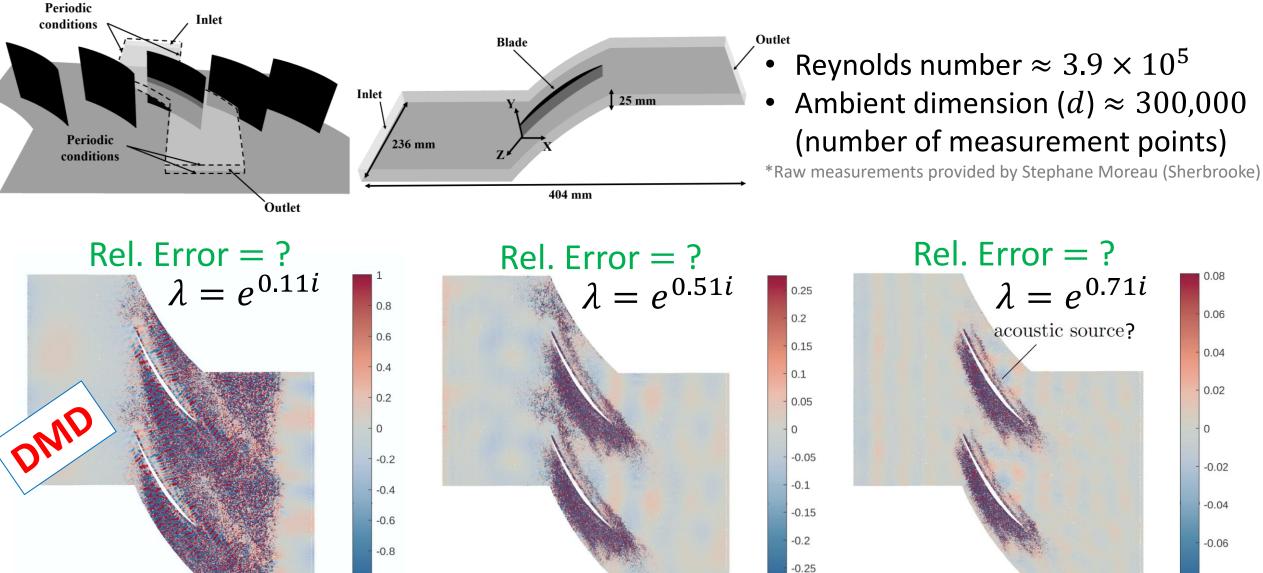
error control adaptive check

 \Rightarrow Rigorously *verify* learnt dictionary $\{\psi_1, \dots, \psi_{N_K}\}$

Example: Trustworthy computation for large d

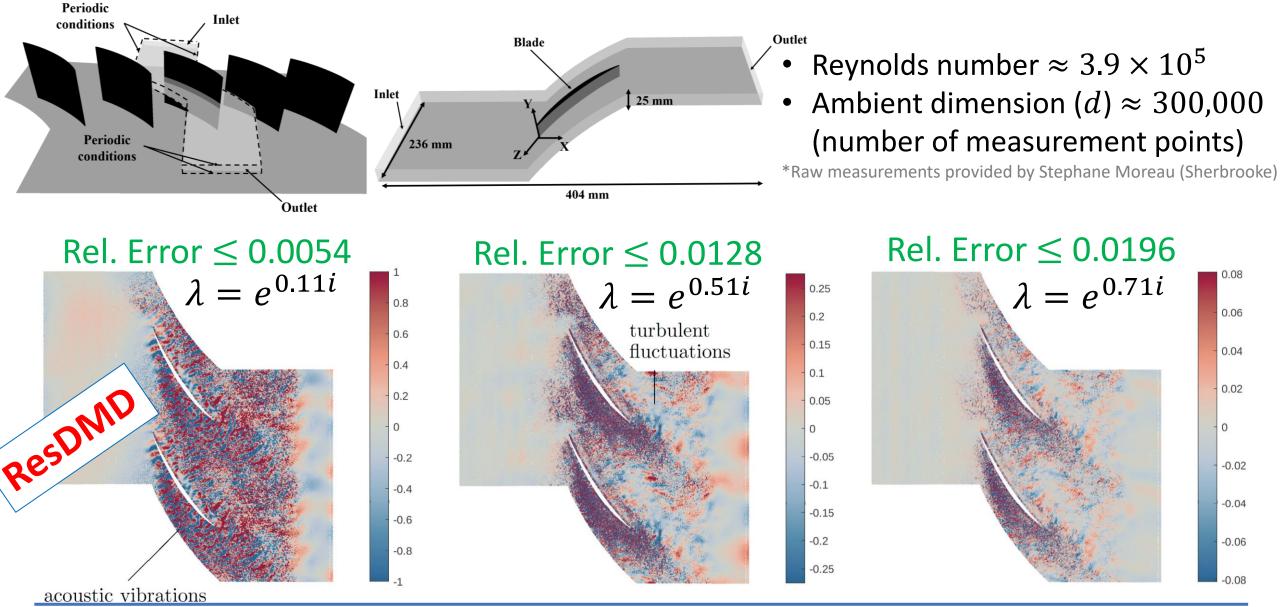
16/20

-0.08



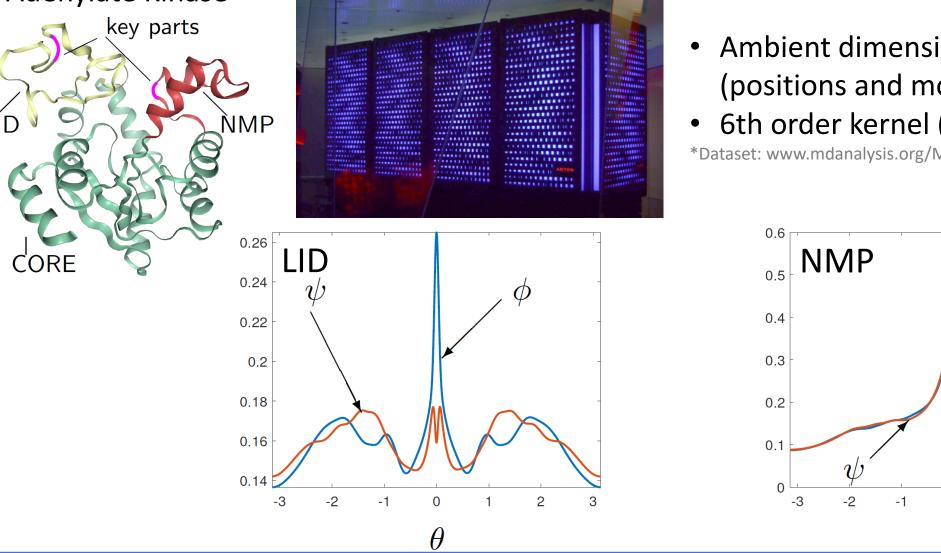
Example: Trustworthy computation for large d

16/20



Example: molecular dynamics (Adenylate Kinase)

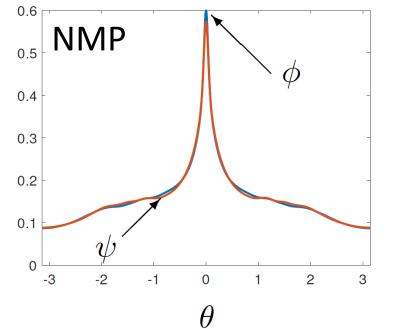
Adenylate Kinase



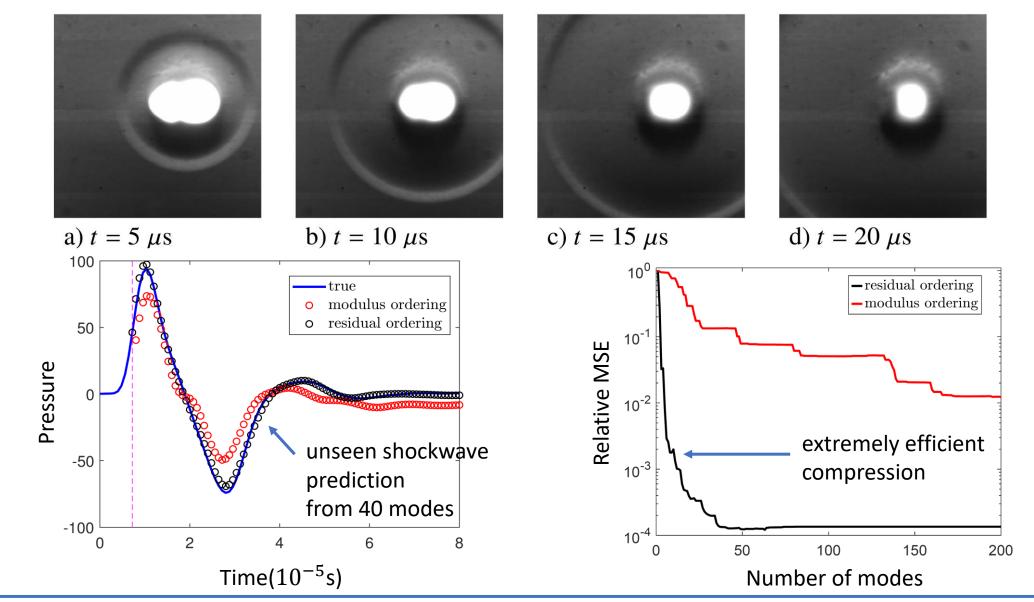
C., T., "Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems," preprint.

- Ambient dimension (d) $\approx 20,000$ (positions and momenta of atoms)
- 6th order kernel (spec res 10^{-6})

*Dataset: www.mdanalysis.org/MDAnalysisData/adk_equilibrium.html



Example: Trustworthy Koopman mode decomposition



• C., Ayton, Szőke, "Residual Dynamic Mode Decomposition," J. Fluid Mech., under minor rev.

Wider programme

- <u>Inf.-dim. computational analysis</u> ⇒ **Compute spectral properties rigorously.**
- <u>Continuous linear algebra</u> \implies **Avoid the woes of discretisation**
- <u>Solvability Complexity Index hierarchy</u> \Rightarrow Classify diff. of comp. problems, prove algs are optimal.
- Extends to: Foundations of AI, optimization, computer-assisted proofs, and PDEs etc.
- C., "On the computation of geometric features of spectra of linear operators on Hilbert spaces," Found. Comput. Math., to appear.
- C., "Computing spectral measures and spectral types," Comm. Math. Phys., 2021.
- C., Horning, Townsend "Computing spectral measures of self-adjoint operators," SIAM Rev., 2021.
- C., Roman, Hansen, "How to compute spectra with error control," Phys. Rev. Lett., 2019.
- C., Hansen, "The foundations of spectral computations via the solvability complexity index hierarchy," J. Eur. Math. Soc., 2022.
- C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale's 18th problem," Proc. Natl. Acad. Sci. USA, 2022.
- C., "Computing semigroups with error control," SIAM J. Numer. Anal., 2022.
- Ben-Artzi, C., Hansen, Nevanlinna, Seidel, "On the solvability complexity index hierarchy and towers of algorithms," arXiv, 2020.
- Smale, "The fundamental theorem of algebra and complexity theory," Bull. Amer. Math. Soc., 1981, 36 pp.
- McMullen, "Families of rational maps and iterative root-finding algorithms," Ann. of Math., 1987, 27 pp.

Summary: rigorous data-driven Koopmanism!

• "Too much" or "Too little"

Idea: New matrix for residual \Rightarrow **ResDMD** for computing spectra.

• Continuous spectra and spectral measures:

Idea: Convolution with rational kernels via resolvent and ResDMD.

Verification

Idea: Use **ResDMD** to verify computations. E.g., learned dictionaries.

Code:

https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

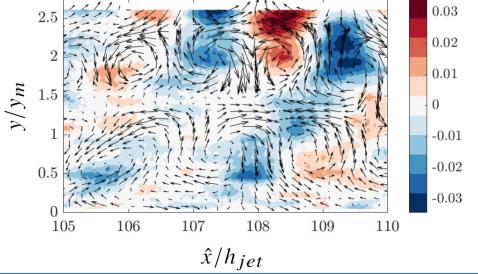
Additional slides...

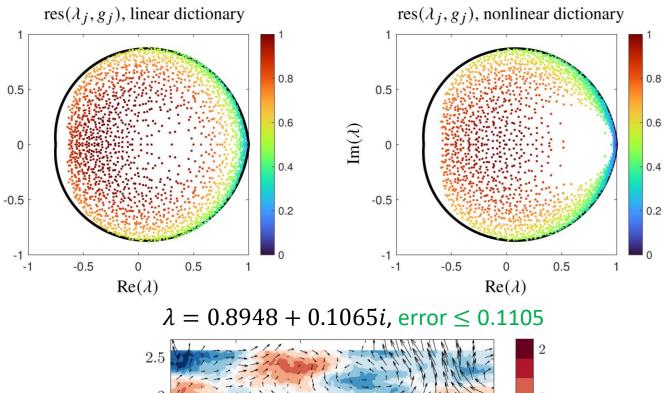
Example: Verify the dictionary

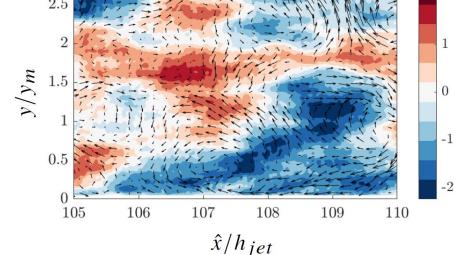
- Reynolds number $\approx 6.4 \times 10^4$
- Ambient dimension (d) ≈ 100,000 (velocity at measurement points)

*Raw measurements provided by Máté Szőke (Virginia Te

 $\lambda = 0.9439 + 0.2458i$, error ≤ 0.0765







• C., Ayton, Szőke, "Residual Dynamic Mode Decomposition," J. Fluid Mech., under minor rev.

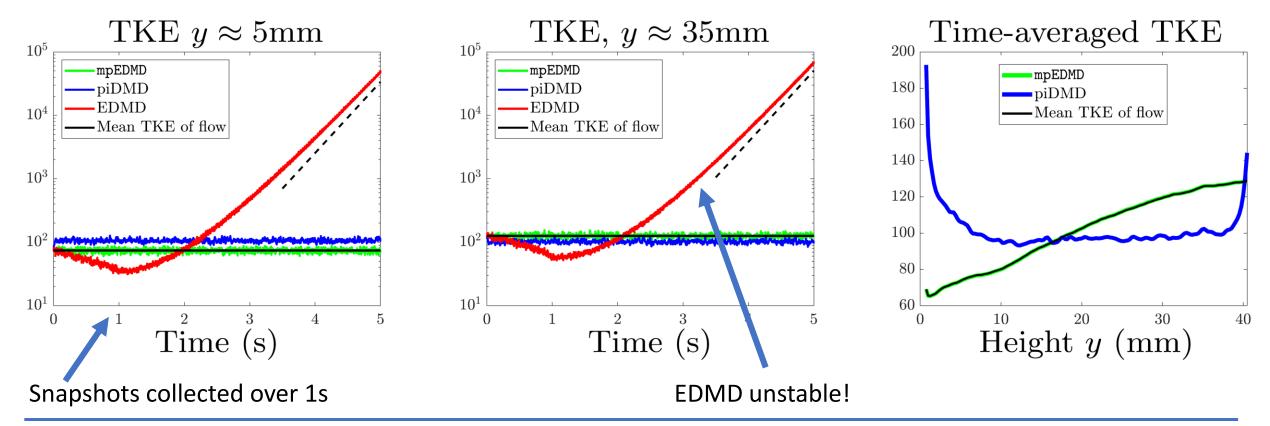
 $y_{1/2}$

 $\operatorname{Im}(\gamma)$

.δ

measure-preserving EDMD...

- Polar decomposition of \mathcal{K} . Easy to combine with any DMD-type method!
- Converges for spectral measures, spectra, Koopman mode decomposition.
- Measure-preserving discretization for arbitrary measure-preserving systems.



• C., "The mpEDMD Algorithm for Data-Driven Computations of Measure-Preserving Dynamical Systems," arXiv 2022.

Convergence of quadrature

E.g.,
$$\langle \mathcal{K}\psi_k, \psi_j \rangle = \lim_{M \to \infty} \sum_{m=1}^M w_m \overline{\psi_j(x^{(m)})} \underbrace{\psi_k(y^{(m)})}_{[\mathcal{K}\psi_k](x^{(m)})}$$

Three examples:

- **High-order quadrature:** $\{x^{(m)}, w_m\}_{m=1}^{M} M$ -point quadrature rule. Rapid convergence. Requires free choice of $\{x^{(m)}\}_{m=1}^{M}$ and small d.
- Random sampling: $\{x^{(m)}\}_{m=1}^{M}$ selected at random. Most common Large *d*. Slow Monte Carlo $O(M^{-1/2})$ rate of convergence.
- Ergodic sampling: $x^{(m+1)} = F(x^{(m)})$. Single trajectory, large d. Requires ergodicity, convergence can be slow.

Solvability Complexity Index Hierarchy

metric space

Class $\Omega \ni A$, want to compute $\Xi: \Omega \to (\mathcal{M}, d)$

- Δ_0 : Problems solved in finite time (v. rare for cts problems).
- Δ_1 : Problems solved in "one limit" with full error control: $d(\Gamma_n(A), \Xi(A)) \le 2^{-n}$
- Δ_2 : Problems solved in "one limit":

$$\lim_{n\to\infty}\Gamma_n(A)=\Xi(A)$$

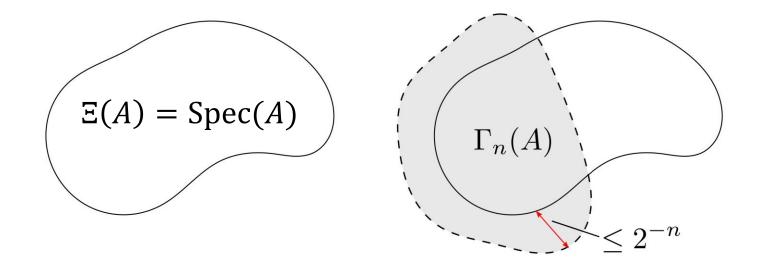
• Δ_3 : Problems solved in "two successive limits":

$$\lim_{n\to\infty}\lim_{m\to\infty}\Gamma_{n,m}(A)=\Xi(A)$$

- Ben-Artzi, C., Hansen, Nevanlinna, Seidel, "On the solvability complexity index hierarchy and towers of algorithms," preprint.
- Hansen, "On the solvability complexity index, the *n*-pseudospectrum and approximations of spectra of operators," J. Amer. Math. Soc., 2011.
- McMullen, "Families of rational maps and iterative root-finding algorithms," Ann. of Math., 1987.
- Doyle, McMullen, "Solving the quintic by iteration," Acta Math., 1989.
- Smale, "The fundamental theorem of algebra and complexity theory," Bull. Amer. Math. Soc., 1981.

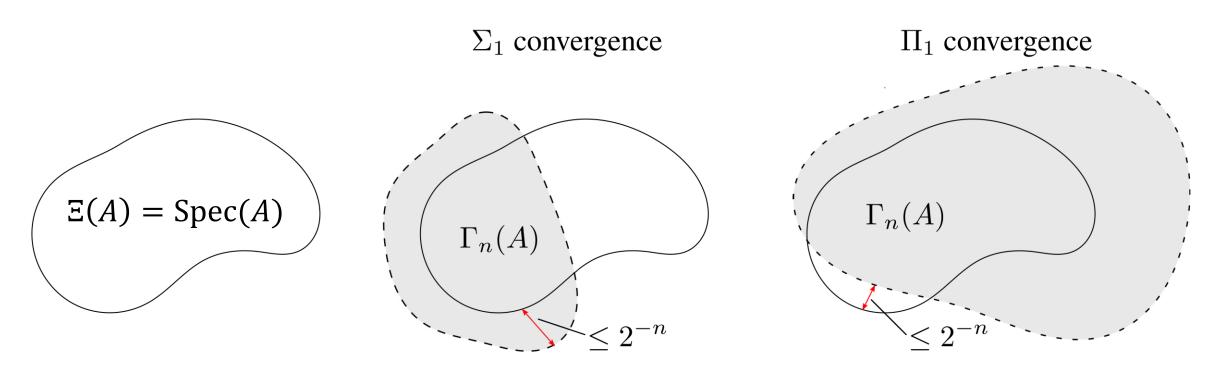
Error control for spectral problems

 Σ_1 convergence



• Σ_1 : \exists alg. { Γ_n } s.t. $\lim_{n \to \infty} \Gamma_n(A) = \Xi(A), \max_{z \in \Gamma_n(A)} \operatorname{dist}(z, \Xi(A)) \le 2^{-n}$

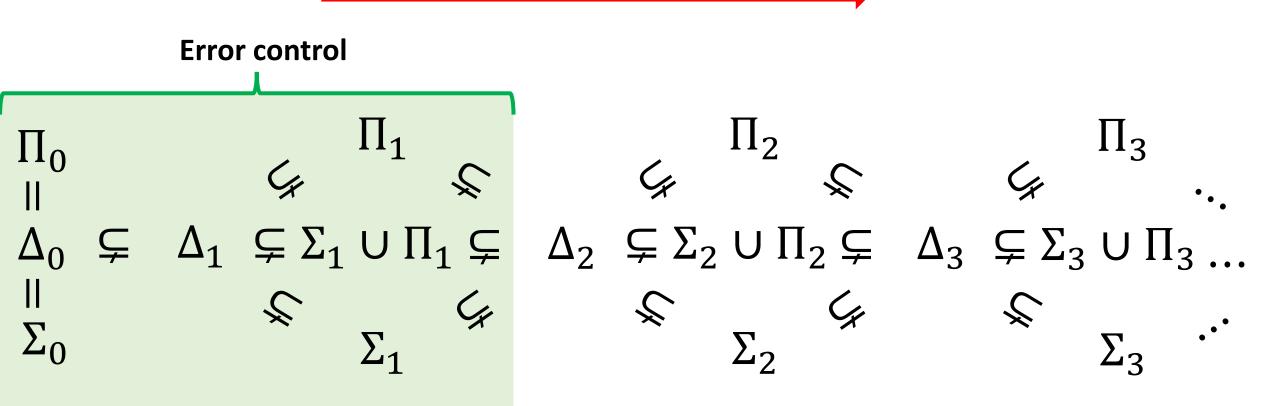
Error control for spectral problems



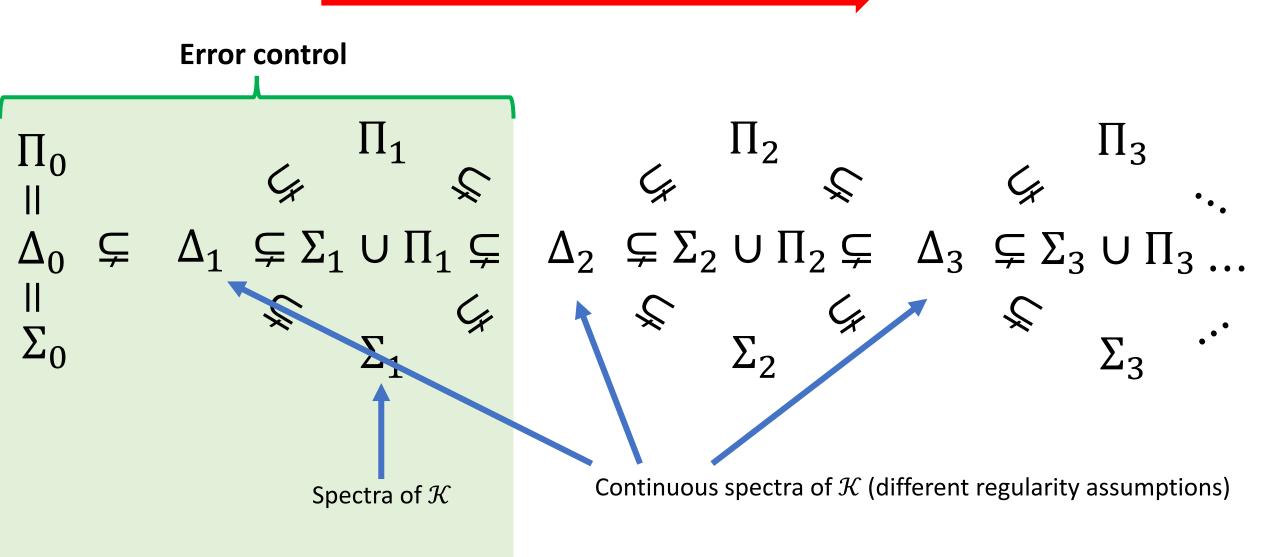
- Σ_1 : \exists alg. { Γ_n } s.t. $\lim_{n \to \infty} \Gamma_n(A) = \Xi(A), \max_{z \in \Gamma_n(A)} \operatorname{dist}(z, \Xi(A)) \le 2^{-n}$
- Π_1 : \exists alg. { Γ_n } s.t. $\lim_{n \to \infty} \Gamma_n(A) = \Xi(A), \max_{z \in \Xi(A)} \operatorname{dist}(z, \Gamma_n(A)) \le 2^{-n}$

Such problems can be used in a proof!

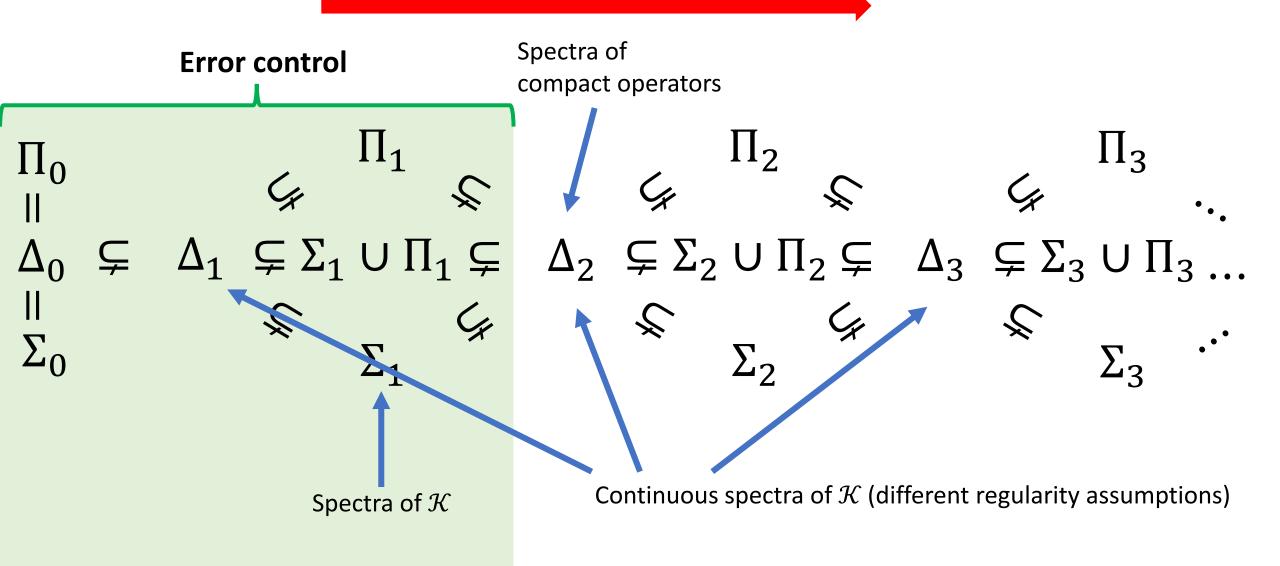
Increasing difficulty



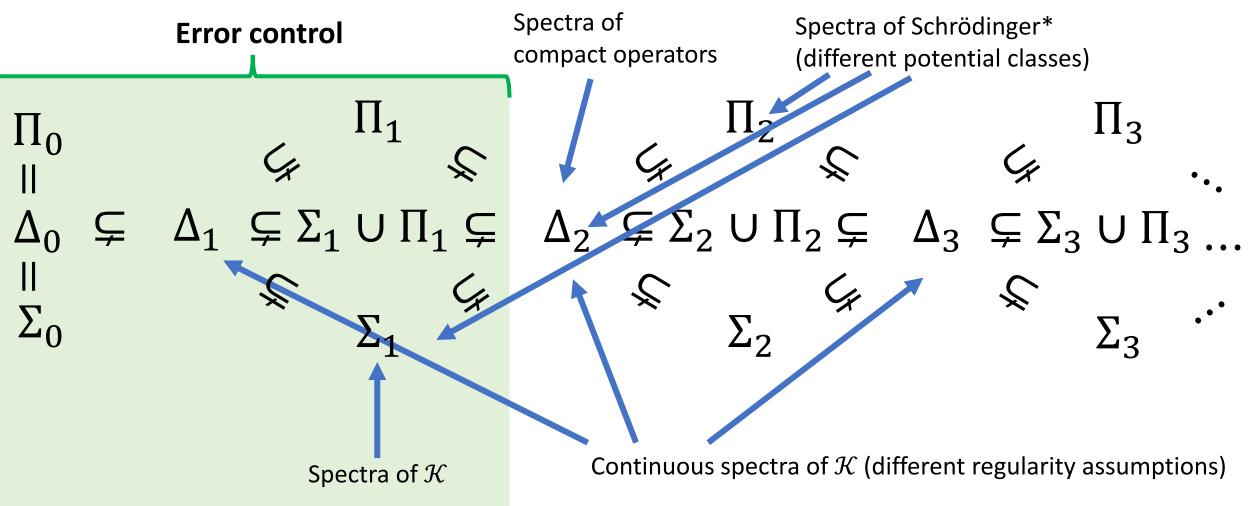
Increasing difficulty



Increasing difficulty

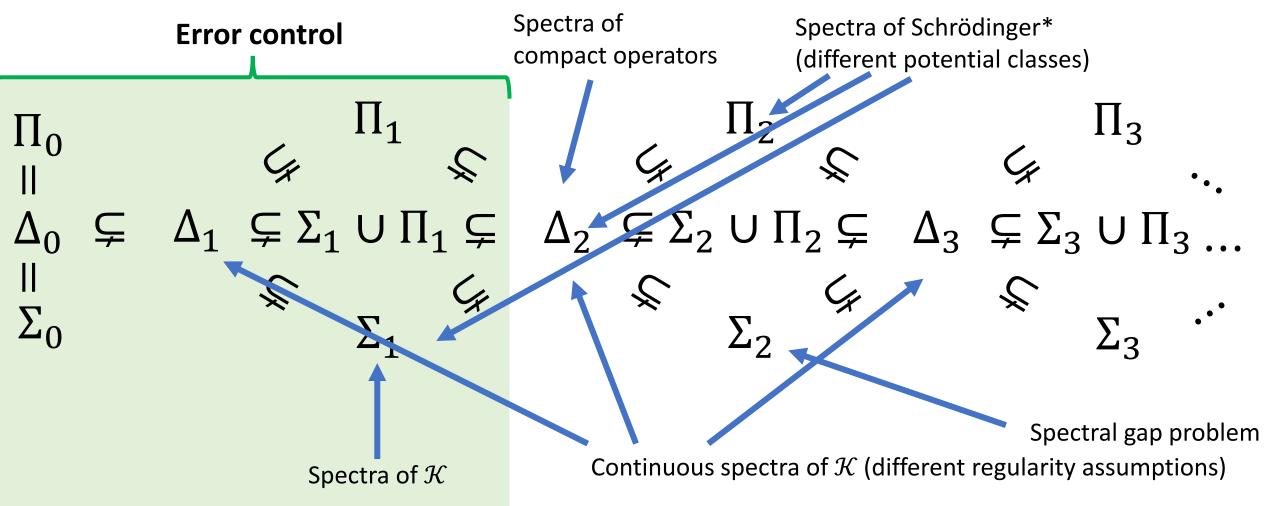


Increasing difficulty



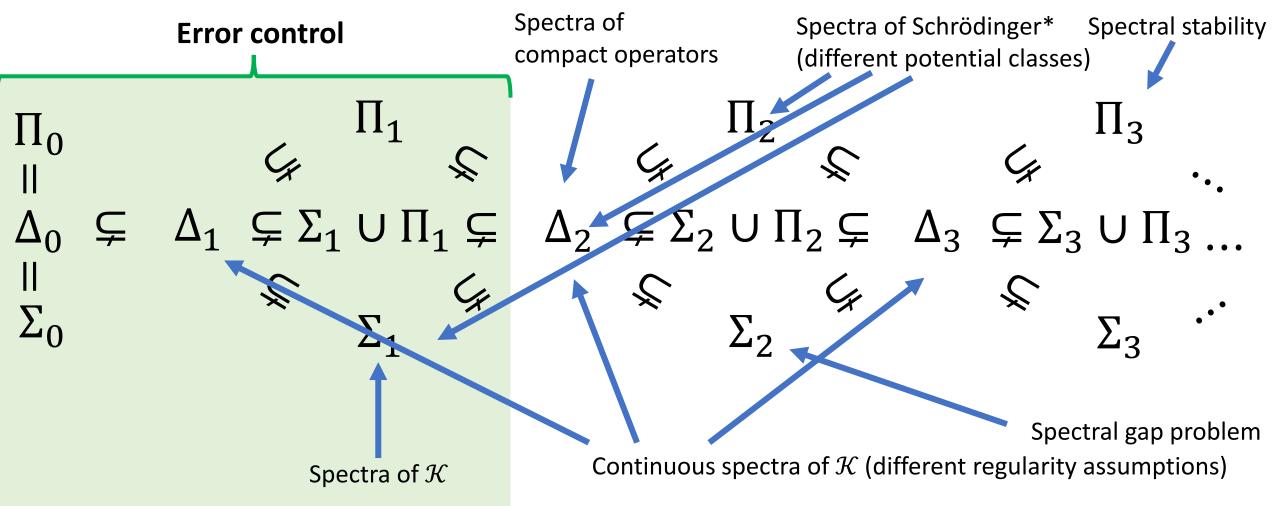
*Open problem of Schwinger: "The special canonical group," "Unitary operator bases," PNAS, 1960.

Increasing difficulty



*Open problem of Schwinger: "The special canonical group," "Unitary operator bases," PNAS, 1960.

Increasing difficulty



*Open problem of Schwinger: "The special canonical group," "Unitary operator bases," PNAS, 1960.