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• State 𝑥 ∈ Ω ⊆ ℝ𝑑, unknown function 𝐹: Ω → Ω governs dynamics

𝑥𝑛+1 = 𝐹(𝑥𝑛)

• Goal: Learn about system from data 𝑥(𝑚), 𝑦(𝑚) = 𝐹(𝑥(𝑚))
𝑚=1

𝑀

• Data: experimental measurements or numerical simulations

• E.g., used for forecasting, control, design, understanding

• Applications: chemistry, climatology, 
electronics, epidemiology, finance, 
fluids, molecular dynamics, 
neuroscience, plasmas, robotics, 
video processing, etc.

Data-driven dynamical systems
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Operator viewpoint

• Koopman operator 𝒦 acts on functions 𝑔: Ω → ℂ

𝒦𝑔 𝑥 = 𝑔(𝐹(𝑥))

• 𝒦 is linear but acts on an infinite-dimensional space.

• Work in 𝐿2(Ω,𝜔) for positive measure 𝜔, with inner product ∙,∙ .

• Koopman, “Hamiltonian systems and transformation in Hilbert space,” Proc. Natl. Acad. Sci. USA, 1931.
• Koopman, v. Neumann, “Dynamical systems of continuous spectra,” Proc. Natl. Acad. Sci. USA, 1932.

𝑥1 𝑥2 𝑥3 … 𝑥𝑛

𝑔(𝑥1) 𝑔(𝑥2) 𝑔(𝑥3) … 𝑔(𝑥𝑛)

𝐹 𝐹 𝐹 𝐹

𝒦𝑔 𝒦𝑔 𝒦𝑔 𝒦𝑔

State

Functions
of state

Non-linear

Linear
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Koopman mode decomposition

𝑔(𝑥) = ෍

eigenvalues 𝜆𝑗

𝑐𝜆𝑗𝜑𝜆𝑗(𝑥) + න

−𝜋

𝜋

𝜙𝜃,𝑔 𝑥 d𝜃

𝑔 𝑥𝑛 = 𝒦𝑛𝑔 𝑥0 = ෍

eigenvalues 𝜆𝑗

𝑐𝜆𝑗𝜆𝑗
𝑛𝜑𝜆𝑗 𝑥0 + න

−𝜋

𝜋

𝑒𝑖𝑛𝜃𝜙𝜃,𝑔 𝑥0 d𝜃

Encodes: geometric features, invariant measures, transient behaviour, 
long-time behaviour, coherent structures, quasiperiodicity, etc.

GOAL: Data-driven approximation of 𝒦 and its spectral properties. 

generalised
eigenfunction of 𝒦

eigenfunction of 𝒦

• Mezić, “Spectral properties of dynamical systems, model reduction and decompositions,” Nonlinear Dynamics, 2005.

3/20



Koopmania*: a revolution in the big data era

≈35,000 papers over last decade!

Very little on convergence guarantees or verification.

Why is this lacking?

• Koopman operators have so far been quite distinct 
from both analysis and computational communities.

• Dealing with infinite dim is notoriously hard … 
Source: https://www.dimensions.ai/

*Wikipedia: “its wild surge in popularity is sometimes jokingly called ‘Koopmania’”
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New Papers on
“Koopman Operators”

number of papers

doubles every 5 yrs
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Challenges of computing
Spec 𝒦 = {𝜆 ∈ ℂ:𝒦 − 𝜆𝐼 is not invertible}

1) “Too much”: Approximate spurious modes 𝜆 ∉ Spec(𝒦)

2) “Too little”: Miss parts of Spec(𝒦)

3) Continuous spectra

4) Verification: Which part of an approximation can we trust?

Truncate: 𝒦 𝕂 ∈ ℂ𝑁𝐾×𝑁𝐾
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Given dictionary 𝜓1, … , 𝜓𝑁𝐾 of functions 𝜓𝑗: Ω → ℂ, 

𝒦 𝕂 = Ψ𝑋
∗𝑊Ψ𝑋

−1Ψ𝑋
∗𝑊Ψ𝑌 ∈ ℂ

𝑁𝐾×𝑁𝐾

Recall open problems: too much, too little, continuous spectra, verification

𝜓𝑘 , 𝜓𝑗 ≈ σ𝑚=1
𝑀 𝑤𝑚𝜓𝑗 𝑥

𝑚 𝜓𝑘 𝑥 𝑚 =

𝜓1(𝑥
(1)) ⋯ 𝜓𝑁𝐾(𝑥

(1))

⋮ ⋱ ⋮
𝜓1(𝑥

(𝑀)) ⋯ 𝜓𝑁𝐾(𝑥
(𝑀))

Ψ𝑋

∗
𝑤1

⋱
𝑤𝑀

𝑊

𝜓1(𝑥
(1)) ⋯ 𝜓𝑁𝐾(𝑥

(1))

⋮ ⋱ ⋮
𝜓1(𝑥

(𝑀)) ⋯ 𝜓𝑁𝐾(𝑥
(𝑀))

Ψ𝑋 𝑗𝑘

Build the matrix: Dynamic Mode Decomposition (DMD)

• Schmid, “Dynamic mode decomposition of numerical and experimental data,” J. Fluid Mech., 2010.
• Kutz, Brunton, Brunton, Proctor, “Dynamic mode decomposition: data-driven modeling of complex systems,” SIAM, 2016.
• Williams, Kevrekidis, Rowley “A data-driven approximation of the Koopman operator: Extending dynamic mode 

decomposition,” J. Nonlinear Sci., 2015.

𝒦𝜓𝑘, 𝜓𝑗 ≈ σ𝑚=1
𝑀 𝑤𝑚𝜓𝑗 𝑥

𝑚 𝜓𝑘 𝑦 𝑚

[𝒦𝜓𝑘] 𝑥 𝑚

=

𝜓1(𝑥
(1)) ⋯ 𝜓𝑁𝐾(𝑥

(1))

⋮ ⋱ ⋮
𝜓1(𝑥

(𝑀)) ⋯ 𝜓𝑁𝐾(𝑥
(𝑀))

Ψ𝑋

∗
𝑤1

⋱
𝑤𝑀

𝑊

𝜓1(𝑦
(1)) ⋯ 𝜓𝑁𝐾(𝑦

(1))

⋮ ⋱ ⋮
𝜓1(𝑦

(𝑀)) ⋯ 𝜓𝑁𝐾(𝑦
(𝑀))

Ψ𝑌 𝑗𝑘
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Residuals: 𝑔 = σ𝑗=1
𝑁𝐾 𝐠𝑗𝜓𝑗 , 𝒦𝑔 − 𝜆𝑔 2 ≈ 𝐠∗ 𝐾2 − 𝜆𝐾1

∗ − ҧ𝜆𝐾1 + 𝜆 2𝐺 𝐠

Residual DMD (ResDMD): Approx. 𝒦 and𝒦∗𝒦

• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.
• C., Ayton, Szőke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., under minor rev.
• Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

𝜓𝑘, 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥
𝑚 𝜓𝑘 𝑥 𝑚 = Ψ𝑋

∗𝑊Ψ𝑋
𝐺 𝑗𝑘

𝒦𝜓𝑘, 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥
𝑚 𝜓𝑘 𝑦 𝑚

[𝒦𝜓𝑘] 𝑥
𝑚

= Ψ𝑋
∗𝑊Ψ𝑌
𝐾1 𝑗𝑘

𝒦𝜓𝑘 , 𝒦𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑦
𝑚 𝜓𝑘 𝑦 𝑚 = Ψ𝑌

∗𝑊Ψ𝑌
𝐾2 𝑗𝑘
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ResDMD: avoiding “too much”

res(𝜆, 𝐠)2 =
𝐠∗ 𝐾2 − 𝜆𝐾1

∗ − ҧ𝜆𝐾1 + 𝜆 2𝐺 𝐠

𝐠∗𝐺𝐠

Algorithm 1:

1. Compute 𝐺,𝐾1, 𝐾2 ∈ ℂ
𝑁𝐾×𝑁𝐾 and eigendecomposition 𝐾1𝑉 = 𝐺𝑉Λ.

2. For each eigenpair (𝜆, 𝐯), compute res(𝜆, 𝐯).

3. Output: subset of e-vectors 𝑉(𝜀) & e-vals Λ(𝜀)with res 𝜆, 𝐯 ≤ 𝜀 (𝜀 = input tol).

Theorem (no spectral pollution): Suppose quad. rule converges. Then
lim sup
𝑀⟶∞

max
𝜆∈Λ(𝜀)

𝒦 − 𝜆 −1 −1 ≤ 𝜀

• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.

eigenvectors
eigenvalues
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ResDMD: avoiding “too much”

res(𝜆, 𝐠)2 =
𝐠∗ 𝐾2 − 𝜆𝐾1

∗ − ҧ𝜆𝐾1 + 𝜆 2𝐺 𝐠

𝐠∗𝐺𝐠

Algorithm 1:

1. Compute 𝐺,𝐾1, 𝐾2 ∈ ℂ
𝑁𝐾×𝑁𝐾 and eigendecomposition 𝐾1𝑉 = 𝐺𝑉Λ.

2. For each eigenpair (𝜆, 𝐯), compute res(𝜆, 𝐯).

3. Output: subset of e-vectors 𝑉(𝜀) & e-vals Λ(𝜀)with res 𝜆, 𝐯 ≤ 𝜀 (𝜀 = input tol).

Theorem (no spectral pollution): Suppose quad. rule converges. Then
lim sup
𝑀⟶∞

max
𝜆∈Λ(𝜀)

𝒦 − 𝜆 −1 −1 ≤ 𝜀

BUT: Typically, does not capture all of spectrum! (“too little”)

• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.

eigenvectors
eigenvalues
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ResDMD: avoiding “too little”

Spec𝜀(𝒦) = ራ

ℬ ≤𝜀

Spec(𝒦 + ℬ) , lim
𝜀↓0

Spec𝜀(𝒦) = Spec(𝒦)

Algorithm 2:

1. Compute 𝐺,𝐾1, 𝐾2 ∈ ℂ
𝑁𝐾×𝑁𝐾.

2. For 𝑧𝑘 in comp. grid, compute 𝜏𝑘 = min
𝑔=σ𝑗=1

𝑁𝐾 𝐠𝑗𝜓𝑗

res(𝑧𝑘 , 𝑔), corresponding 𝑔𝑘 (gen. SVD).

3. Output: 𝑧𝑘: 𝜏𝑘 < 𝜀 (approx. of Spec𝜀(𝒦)), 𝑔𝑘: 𝜏𝑘 < 𝜀 (𝜀-pseudo-eigenfunctions).

Theorem (full convergence): Suppose the quadrature rule converges. 
• Error control: 𝑧𝑘: 𝜏𝑘 < 𝜀 ⊆ Spec𝜀(𝒦) (as 𝑀 → ∞)
• Convergence: Converges locally uniformly to Spec𝜀 𝒦 (as 𝑁𝐾 → ∞)

First convergent method for general 𝒦

• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.

9/20



Suppose system is measure preserving (e.g., Hamiltonian, ergodic, post-transient etc.)

⟺𝒦∗𝒦 = 𝐼 (isometry)

⟹ Spec(𝒦) ⊆ 𝑧: 𝑧 ≤ 1

(NB: we consider unitary extensions via Wold decomposition.)

Setup for continuous spectra
10/20
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• Fin.-dim.: 𝐵 ∈ ℂ𝑛×𝑛, 𝐵∗𝐵 = 𝐵𝐵∗, o.n. basis of e-vectors 𝑣𝑗 𝑗=1

𝑛

𝑣 = ෍

𝑗=1

𝑛

𝑣𝑗𝑣𝑗
∗ 𝑣, 𝐵𝑣 = ෍

𝑗=1

𝑛

𝜆𝑗𝑣𝑗𝑣𝑗
∗ 𝑣, ∀𝑣 ∈ ℂ𝑛

• Inf.-dim.: Operator ℒ:𝒟(ℒ) → ℋ. Typically, no basis of e-vectors! 
Spectral theorem: (projection-valued) spectral measure 𝐸

𝑔 = න
Spec ℒ

1 d𝐸(𝜆) 𝑔, ℒ𝑔 = න
Spec ℒ

𝜆 d𝐸(𝜆) 𝑔, ∀𝑔 ∈ ℋ

• Spectral measures: 𝜈𝑔 𝑈 = 𝐸 𝑈 𝑔, 𝑔 ( 𝑔 = 1) prob. measure.

Spectral measures → diagonalisation
11/20



Koopman mode decomposition (again!)
𝜈𝑔 probability measures on −𝜋, 𝜋 per

d𝜈𝑔 𝑦 = ෍

eigenvalues 𝜆𝑗=exp(𝑖𝜃𝑗)

𝑃 𝜆𝑗𝑔, 𝑔 𝛿(𝑦 − 𝜃𝑗)

discrete

+ 𝜌𝑔 𝑦 d𝑦 + d𝜈𝑔
sc 𝑦

continuous

Leb. decomp:
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𝜋
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eigenfunction of 𝒦

Leb. decomp:
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Koopman mode decomposition (again!)

𝑔(𝑥) = ෍

eigenvalues 𝜆𝑗
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eigenvalues 𝜆𝑗

𝑐𝜆𝑗𝜆𝑗
𝑛𝜑𝜆𝑗 𝑥0 + න

−𝜋

𝜋

𝑒𝑖𝑛𝜃𝜙𝜃,𝑔 𝑥0 d𝜃

Computing 𝜈𝑔 diagonalises non-linear dynamical system!

generalised
eigenfunction of 𝒦

eigenfunction of 𝒦

Leb. decomp:
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Smoothing via convolution

𝐾𝜀 𝜃 =
𝑒−𝑖𝜃

2𝜋
෍

𝑗=1

𝑚
𝑐𝑗

𝑒−𝑖𝜃 − (1 + 𝜀ഥ𝑧𝑗)
−1
−

𝑑𝑗

𝑒−𝑖𝜃 − 1 + 𝜀𝑧𝑗

Kernels
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Smoothing via convolution

𝐾𝜀 𝜃 =
𝑒−𝑖𝜃

2𝜋
෍

𝑗=1

𝑚
𝑐𝑗

𝑒−𝑖𝜃 − (1 + 𝜀ഥ𝑧𝑗)
−1
−

𝑑𝑗

𝑒−𝑖𝜃 − 1 + 𝜀𝑧𝑗

𝐾𝜀 ∗ 𝜈𝑔 𝜃0 =෍

𝑗=1

𝑚

𝑐𝑗𝒞𝑔 𝑒𝑖𝜃0(1 + 𝜀ഥ𝑧𝑗)
−1 − 𝑑𝑗𝒞𝑔 𝑒𝑖𝜃0 1 + 𝜀𝑧𝑗

𝒞𝑔 𝑧 = න
−𝜋

𝜋 𝑒𝑖𝜃d𝜈𝑔(𝜃)

𝑒𝑖𝜃 − 𝑧
= ൝

𝒦 − 𝑧𝐼 −1𝑔,𝒦∗𝑔 , if 𝑧 > 1

−𝑧−1 𝑔, 𝒦 − ҧ𝑧−1𝐼 −1𝑔 , if 0 < 𝑧 < 1

𝑚th order rational kernels:
ResDMD computes
with error control

𝜃0

•

•
𝑂(𝜀)𝑂(𝜀)

𝜀 = “smoothing parameter”

Kernels
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Convergence

Pointwise error for spectral density

𝜀

Theorem: Automatic selection of 𝑁𝐾(𝜀)
with 𝑂(𝜀𝑚log(1/𝜀)) convergence:
• Density of continuous spectrum 𝜌𝑔.

(pointwise and 𝐿𝑝)
• Integration against test functions.

(weak convergence)

න
−𝜋

𝜋

ℎ 𝜃 𝐾𝜀 ∗ 𝜈𝑔 𝜃 d𝜃

= න
−𝜋

𝜋

ℎ 𝜃 d𝜈𝑔 𝜃 + 𝑂(𝜀𝑚log(1/𝜀))

Also recover discrete spectrum.

• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.
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Popular to learn dictionary 𝜓1, … , 𝜓𝑁𝐾

E.g., DMD with truncated SVD (linear dictionary, most popular), 
kernel methods (this talk), neural networks, etc.

Q: Is discretisation 𝐬𝐩𝐚𝐧 𝝍𝟏, … ,𝝍𝑵𝑲 large/rich enough?

Above algorithms:
• Pseudospectra: 𝑧𝑘: 𝜏𝑘 < 𝜀 ⊆ Spec𝜀(𝒦) error control

• Spectral measures: 𝒞𝑔 𝑧 and smoothed measures adaptive check

⟹ Rigorously verify learnt dictionary 𝜓1, … , 𝜓𝑁𝐾

Large 𝑑 (Ω ⊆ ℝ𝑑): robust and scalable
15/20



Example: Trustworthy computation for large 𝑑

𝜆 = 𝑒0.11𝑖 𝜆 = 𝑒0.51𝑖 𝜆 = 𝑒0.71𝑖
?

Rel. Error = ? Rel. Error = ? Rel. Error = ?

• Reynolds number ≈ 3.9 × 105

• Ambient dimension (𝑑) ≈ 300,000
(number of measurement points)

*Raw measurements provided by Stephane Moreau (Sherbrooke)

• C., T., “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.
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𝜆 = 𝑒0.11𝑖 𝜆 = 𝑒0.51𝑖 𝜆 = 𝑒0.71𝑖
Rel. Error ≤ 0.0054 Rel. Error ≤ 0.0128 Rel. Error ≤ 0.0196

• C., T., “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.
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Example: molecular dynamics (Adenylate Kinase)

• Ambient dimension (𝑑) ≈ 20,000
(positions and momenta of atoms)

• 6th order kernel (spec res 10−6)
*Dataset: www.mdanalysis.org/MDAnalysisData/adk_equilibrium.html

LID NMP

• C., T., “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.
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extremely efficient
compression

Number of modes

R
el

at
iv

e 
M

SE

unseen shockwave
prediction
from 40 modes

Example: Trustworthy Koopman mode decomposition

Time(10−5s)

P
re

ss
u

re

• C., Ayton, Szőke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., under minor rev.
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• Inf.-dim. computational analysis ⟹ Compute spectral properties rigorously.

• Continuous linear algebra ⟹ Avoid the woes of discretisation

• Solvability Complexity Index hierarchy⟹Classify diff. of comp. problems, prove algs are optimal.

• Extends to: Foundations of AI, optimization, computer-assisted proofs, and PDEs etc.

Wider programme

• C., “On the computation of geometric features of spectra of linear operators on Hilbert spaces,” Found. Comput. Math., to appear.
• C., “Computing spectral measures and spectral types,” Comm. Math. Phys., 2021.
• C., Horning, Townsend “Computing spectral measures of self-adjoint operators,” SIAM Rev., 2021.
• C., Roman, Hansen, “How to compute spectra with error control,” Phys. Rev. Lett., 2019.
• C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022.
• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th 

problem," Proc. Natl. Acad. Sci. USA, 2022.
• C., “Computing semigroups with error control,” SIAM J. Numer. Anal., 2022. 
• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” arXiv, 2020.
• Smale, “The fundamental theorem of algebra and complexity theory,” Bull. Amer. Math. Soc., 1981, 36 pp.
• McMullen, “Families of rational maps and iterative root-finding algorithms,” Ann. of Math., 1987, 27 pp.
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Summary: rigorous data-driven Koopmanism!

• “Too much” or “Too little” 

Idea: New matrix for residual ⇒ ResDMD for computing spectra.

• Continuous spectra and spectral measures:

Idea: Convolution with rational kernels via resolvent and ResDMD.

• Verification

Idea: Use ResDMD to verify computations. E.g., learned dictionaries.

https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

Code:
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Additional slides…



𝜆 = 0.9439 + 0.2458𝑖, error ≤ 0.0765 𝜆 = 0.8948 + 0.1065𝑖, error ≤ 0.1105

• Reynolds number ≈ 6.4 × 104

• Ambient dimension (𝑑) ≈ 100,000
(velocity at measurement points)

*Raw measurements provided by Máté Szőke (Virginia Tech)

Spectral pollution

Example: Verify the dictionary

• C., Ayton, Szőke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., under minor rev.



measure-preserving EDMD…
• Polar decomposition of 𝒦. Easy to combine with any DMD-type method!

• Converges for spectral measures, spectra, Koopman mode decomposition.

• Measure-preserving discretization for arbitrary measure-preserving systems.

• C., “The mpEDMD Algorithm for Data-Driven Computations of Measure-Preserving Dynamical Systems,” arXiv 2022.

Snapshots collected over 1s EDMD unstable!



Convergence of quadrature

E.g.,    𝒦𝜓𝑘 , 𝜓𝑗 = lim
𝑀→∞

σ𝑚=1
𝑀 𝑤𝑚𝜓𝑗 𝑥

𝑚 𝜓𝑘 𝑦 𝑚

[𝒦𝜓𝑘] 𝑥
𝑚

Three examples:

• High-order quadrature: 𝑥(𝑚), 𝑤𝑚 𝑚=1

𝑀
𝑀-point quadrature rule.  

Rapid convergence. Requires free choice of 𝑥(𝑚)
𝑚=1

𝑀
and small 𝑑.

• Random sampling: 𝑥(𝑚)
𝑚=1

𝑀
selected at random.

Large 𝑑. Slow Monte Carlo 𝑂(𝑀−1/2) rate of convergence.

• Ergodic sampling: 𝑥(𝑚+1) = 𝐹(𝑥(𝑚)). 
Single trajectory, large 𝑑. Requires ergodicity, convergence can be slow.

Most common



Class Ω ∋ 𝐴, want to compute Ξ:Ω → (ℳ, 𝑑)

• ∆0: Problems solved in finite time (v. rare for cts problems).

• ∆1: Problems solved in “one limit” with full error control:

𝑑(Γ𝑛 𝐴 , Ξ(𝐴)) ≤ 2−𝑛

• ∆2: Problems solved in “one limit”:

lim
𝑛→∞

Γ𝑛(𝐴) = Ξ(𝐴)

• ∆3: Problems solved in “two successive limits”:

lim
𝑛→∞

lim
𝑚→∞

Γ𝑛,𝑚(𝐴) = Ξ(𝐴)

• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
• Hansen, “On the solvability complexity index, the 𝑛-pseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.
• McMullen, “Families of rational maps and iterative root-finding algorithms,” Ann. of Math., 1987.
• Doyle, McMullen, “Solving the quintic by iteration,” Acta Math., 1989.
• Smale, “The fundamental theorem of algebra and complexity theory,” Bull. Amer. Math. Soc., 1981.

Solvability Complexity Index Hierarchy
metric space

⋮



Error control for spectral problems

• Σ1: ∃ alg. Γ𝑛 s.t. lim
𝑛→∞

Γ𝑛 𝐴 = Ξ 𝐴 , max𝑧∈Γ𝑛 𝐴 dist 𝑧, Ξ 𝐴 ≤ 2−𝑛

Ξ 𝐴 = Spec(𝐴)



Error control for spectral problems

• Σ1: ∃ alg. Γ𝑛 s.t. lim
𝑛→∞

Γ𝑛 𝐴 = Ξ 𝐴 , max𝑧∈Γ𝑛 𝐴 dist 𝑧, Ξ 𝐴 ≤ 2−𝑛

• Π1: ∃ alg. Γ𝑛 s.t. lim
𝑛→∞

Γ𝑛 𝐴 = Ξ 𝐴 , max𝑧∈Ξ(𝐴)dist(𝑧, Γ𝑛 𝐴 ) ≤ 2−𝑛

Such problems can be used in a proof!

Ξ 𝐴 = Spec(𝐴)
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Σ2

Σ2 ∪ Π2 ⊊ Δ3 ⊊

Π3

Σ3

Σ3 ∪ Π3⋯

Spectra of
compact operators

Error control

Increasing difficulty

Spectral gap problem

Spectral stability

Σ1

Spectra of Schrödinger*
(different potential classes)

Spectra of 𝒦 Continuous spectra of 𝒦 (different regularity assumptions)

*Open problem of Schwinger: “The special canonical group,” “Unitary operator bases,” PNAS, 1960.

Small sample of classification theorems


