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Data-driven dynamical systems

e State x € Q € R%, unknown function F: Q — Q governs dynamics
Xny1 = F(xn)
* Goal: Learn about system from data {x(m),y(m) = F(x(m))}i\i=1

* Data: experimental measurements or numerical simulations
* E.g., used for forecasting, control, design, understanding

* Applications: chemistry, climatology,
electronics, epidemiology, finance,
fluids, molecular dynamics,
neuroscience, plasmas, robotics,
video processing, etc.

Poincaré
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Operator viewpoint fommn_ v uma
* Koopman operator X acts on functions g: ) - C '

[:]Cg] (xn) = g(F(xn)) — g(xn+1)
* K is linear but acts on an infinite-dimensional space.

State x1 xz x xn Non linear
|

Functlons \ \ \ \ Lmear

of state g (xl) g(xz) g(xs) - g (xn)

« Work in L% (), w) for positive measure w, with inner product {-,-).

* Koopman, “Hamiltonian systems and transformation in Hilbert space,” Proc. Natl. Acad. Sci. USA, 1931.
e Koopman, v. Neumann, “Dynamical systems of continuous spectra,” Proc. Natl. Acad. Sci. USA, 1932.
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Why is linear (much) easier?

Long-time dynamics
become trivial!

e Suppose F(x) = Ax,A € R¥*% A =VAV L. /
e Set& =V 1y,
fn — V_lxn —_ V_lAnxO — AnV_le — An€0

e Letw!A = Aw, set p(x) = w'x,

[Ko](x) = wlAx = Ap(x) ‘Eigenfunction ‘

Much more general (non-linear and even chaotic F).
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Koopman mode decomposition generised

eigenfunction of K / eigenfunction of X

9= ) e+ | $ag()do
eigs 4; =77 per
gQ) = [K"gl(xo) = ey @2, (x0) + e g,4(x0) O
J J
eigs 4; -7, per

Encodes: geometric features, invariant measures, transient behaviour,
long-time behaviour, coherent structures, quasiperiodicity, etc.

GOAL: Data-driven approximation of K and its spectral properties.

* Mezi¢, “Spectral properties of dynamical systems, model reduction and decompositions,” Nonlinear Dynam., 2005.
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Challenges of computing
Spec(K) = {4 € C: X — Al isnotinvertible}

Truncate: K K € CNk*xNk

1) “Too much”: Approximate spurious modes 4 & Spec(K)
2) “Too little”: Miss parts of Spec(K)

3) Continuous spectra.

Verification: Is it right?
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Build the matrix: Dynamic Mode Decomposition (DMD)

Given dictionary {1/)1, . leK} of functions ;: 0 - C,

(W W) = M Wit (e (x0) =

(K ;) = ZM_ w1, (y0) =
[Fe] (™)

K= K=V, WY)W, WY, € CNkxNk

Recall open problems: too much, too little, continuous spectra, verification

(m
& )'y(m)=F(x(m) M 7
)}
m=1
(11 (x D) U N\ [wy Py (xD) Py, xD)]
Prx™) ey (D) wir ) \pr (eOD) oy (xOD)
Ty W Ty L,
_ 1/11(x(1)) leK(x(l)) ’ W1 1/J1(}’(1)) V)NK()’(D) _
Prx0D) oy (x0)) w) \ Y1)y, 0
Ty W e |

Schmid, “Dynamic mode decomposition of numerical and experimental data,” J. Fluid Mech., 2010.
Rowley, Mezi¢, Bagheri, Schlatter, Henningson, “Spectral analysis of nonlinear flows,” J. Fluid Mech., 2009.

Kutz, Brunton, Brunton, Proctor, “Dynamic mode decomposition: data-driven modeling of complex systems,” SIAM, 2016.
Williams, Kevrekidis, Rowley “A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition,” J. Nonlinear Sci., 2015.



Residual DMD (ResDMD): Approx. K and K*K

(i ) = i Winth; (x ™) 1y (x ™)) = [‘PX WWX]

m=1 jk
M
(Kb ) = ) wnth; (x0) P (v = [?X*W‘PK]
m=1 (K] (x (™) jk
M
(Ktpie, Ky = ) w1 () (v = FJY*WLPZI
m=1 K :
Jjk

Residuals: g = Z 8V, IKXg —2glI” = g"[K, — AK;" — 2Ky + |A°Glg
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 C, T, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.
(., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., under minor rev.
* Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition



https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

ResDMD: avoiding “too much”

2
I‘ES(/L g) — g* Gg eigenvectors

1. Compute G, K;, K, € CNk*NK and eigendecomposition K,V = GVA.

2. For each eigenpair (A4,v), compute res(A4,v).

eigenvalues
Algorithm 1: A//

3. Output: subset of e-vectors V() & e-vals A with res(A,v) < e (e =input tol).

Theorem (no spectral pollution): Suppose quad. rule converges. Then

lim sup max ||[(K — D)7t <¢
M—oco AEAE)
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 C, T, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.
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ResDMD: avoiding “too much”

g* KZ — AK]_* — A_K]_ + |A|ZG 8
res(A,8)? = [ g Gg ] eigenvectors

eigenvalues
Algorithm 1: A//

1. Compute G, K;, K, € CNk*NK and eigendecomposition K,V = GVA.

2. For each eigenpair (A4,v), compute res(A4,v).

3. Output: subset of e-vectors V() & e-vals A with res(A,v) < e (e =input tol).

Theorem (no spectral pollution): Suppose quad. rule converges. Then

lim sup max ||[(K — D)7t <¢
M—oco AEAE)

BUT: Typically, does not capture all of spectrum! (“too little”)

 C, T, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.
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ResDMD: avoiding “too little”

Spec.(K) = U Spec(KX + B), liP(} Spec.(K) = Spec(K)
)
IBll<e

Algorlthm 2: First convergent method for general X
1. Compute G,K;, K, € CNk*Nk,
2. For z; in comp. grid, compute 7, = min res(zy, g), corresponding g, (gen. SVD).

N
9=X ;% 8j¥;

3. Output: {z;: 7, < €} (approx. of Spec.(K)), {gx: Tx < €} (e-pseudo-eigenfunctions).

Theorem (full convergence): Suppose the quadrature rule converges.
* Error control: {z;: 1), < £} € Spec.(K) (as M — o)
* Convergence: Converges locally uniformly to Spec.(KX) (as Ny — o)

 C, T, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.
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The Challenges

“ ~ N,
- []

ROaeS—AEoOPE ) /
2) “TooJdittle’: M £ G E;;; /

3) Continuous spectra.

Approxinate- SspuHot

Verification: Is it right?



Continuous spectra

White light contains a continuous spectra

Often interesting to look at
the intensity of each wavelength

Irradiance (W/m2/nm)

1.5

0.5]

Spectrum of Solar Radiation (Earth)

UV | Visible| Infrared »

i Sunlight without atmospheric absorption

5778K blackbody

H,0 Sunlight at sea level

Atmospheric
absorption bands

250 500 750
Wavelength (nm)

1000 1250 1500 1750 2000 2250 2500
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Setup for continuous spectra

Suppose system is measure preserving (e.g., Hamiltonian, ergodic, post-transient etc.)

& KK =1 (isometry)

= Spec(K) € {z:|z| < 1}
~~ spectral

(NB: we consider unitary extensions via Wold decomposition.) measure
supp. on

boundary
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Spectral decomposition of operators

A € C"*™ normal = O.N. basis of eigenvectors v, ..., vy,

n n
v = (Z Vi Vg ) v, Av = (Z Akvkv,’;> v, veCt
= =F

Projector onto Span(vy) eigenvalues




Spectral decomposition of operators

A € C"*™ normal

k=1

n
*

!

Projector onto Span(vy) eigenvalues

= O.N. basis of eigenvectors vy, ..., Uy:

n
)v, Av = (2 Akvkv,’;> v, veCt
=F

o, . n

Energy of “v” in each eigenvector: ,uv(/lj) = (vjvj‘v, v) = |vj‘v|2

This is called the spectral measure with respect to a vector v.
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Spectral decomposition of operators

A € C"*™ normal

k=1

n
*

!

=

O.N. basis of eigenvectors vy, ..., Uy:

n
)v, Av = (2 Akvkv,’;> v, veCt
=F

Projector onto Span(vy,)

eigenvalues

o, . n

Energy of “v” in each eigenvector:

* * 2
1o () = (vyvv,v) = o]

This is called the spectral measure with respect to a vector v.

0.2}

0.15¢

0.1}

0.05¢

Qe oo © Moo 00 00 O ¢ 0 &

Eigenvalues

-1.5 -1

-0.5 0 0.5
X

1

1.5
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Spectral decomposition of operators

A € C"*™ normal = O.N. basis of eigenvectors vy, ..., Uy:

n n
v = (2 Vi Vg ) v, Av = (2 Akvkv,’;> v, veCt
= =F

Projector onto Span(vy) eigenvalues

o, . n

Energy of “v” in each eigenvector: ,uv(/lj) = (vjvj‘v, v) = |vj‘v|2

This is called the spectral measure with respect to a vector v.

021 Spectnal measure

0.15
0.1

0.05

LaludLdl .,

-1.5 -1 -0.5 0 0.5
X

1.5
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Spectral decomposition of operators

A € C"*™ normal = O.N. basis of eigenvectors vy, ..., Uy:

n n
v = (2 Vi Vg ) v, Av = (2 Akvkv,’;> v, veCt
= =F

Projector onto Span(vy) eigenvalues

o, . n

Energy of “v” in each eigenvector: ,uv(/lj) = (vjvj‘v, v) = |vj‘v|2

This is called the spectral measure with respect to a vector v.

o2/ Spectral measure |

0.15¢
0.1

0.05¢

gl

-1.5 -1 -0.5 0
X

IMLlhl.ullI.. |

15
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Spectral decomposition of operators

A € C"*™ normal = O.N. basis of eigenvectors v, ..., vy,

n n
v = (Z Vi Vg ) v, Av = (Z Akvkv,’;> v, veCt
= =F

Projector onto Span(vy) eigenvalues

o, . n

Energy of “v” in each eigenvector: ,u,,(/lj) = (vjvj‘v, v) = |v]7‘v|2

This is called the spectral measure with respect to a vector v.

o2t Spect#hl measure
0.15¢

0.1

0.05
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Spectral decomposition of operators

A € C"*™ normal = O.N. basis of eigenvectors vy, ..., Uy:

n n
v = (2 Vi Vg ) v, Av = (2 Akvkv,’;> v, veCt
= =F

Projector onto Span(vy) eigenvalues

o, . n

Energy of “v” in each eigenvector: ,uv(/lj) = (vjvj‘v, v) = |vj‘v|2

This is called the spectral measure with respect to a vector v.

K is unitary = projection-valued measure ¢

g=(JTd€(y)>g, %g=<f1ryd€(y)>g

Spectral measure v, (B) = (¢(B)g, g)




_________________

“smoothing parameter”

S
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Evaluating spectral measure

Smoothing convolution

w0 = | ROy~ 0) dvg(0)

[T, T]per

Poisson kernel for 1 (1+¢)? -1
unit disk P:(6o) = 2
21+ (1 + €)% —2(1 + €)cos(6y)




_________________

& = “smoothing parameter”

S

Evaluating spectral measur

Smoothing cc

Porvley = [ R -0
Poisso |

14/35
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Evaluating spectral measure

A/'O(g) Smoothing convolution

Porvgl@) = | ROy — 0) dvg(0)

[T, T]per

_________________

“smoothing parameter”

Poisson kernel for 1 (1+¢)? -1
\_/ unit disk PS(HO) — 2
21+ (1 + €)% —2(1 + €)cos(6y)

[P, *v,|(60) = C4(eo(1+ &)™) —¢, (ewo(l + 8))

i6 _ . .
D= | -dv“"(e)={<m_m 999 ifl2] > 1

elf — 7 —z Ng,(K—-2z"'D"1g), ifo<]|z|<1

[—TT, ] per
ResDMD computes

with error control

Analogous ideas are common in particle and condensed matter physics for computing spectral measures.
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Horizontal slice = spectral measure at constant magnetic field strength.

Software package

SpecSolve available at https://github.com/SpecSolve
Capabilities: ODEs, PDEs, integral operators, discrete operators.

C., Horning, T. “Computing spectral measures of self-adjoint operators,” SIAM Rev., 2021.


https://github.com/SpecSolve

(T Tabo
Po —A1g
W = azpq

P2pP1

\

Example

PoP1

—QoP1 \

—Q01 Q3P P3P2

—P2  —aza; —p3a;
AuP3  —Aul3 ™ /

a; = (—1)70.95U+1)/2 pj=\/1—\aj\2

Generalised shift, typical building block of many dynamical systems.

16/35
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Fix Nk, vary &: unstable!

Ng = 40,e = 1.000000

or o o

Im(z)
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Fix €, vary Ng: too smooth!

N =1,e =0.100000

25
1r 2y
SO 1.5+
E
1t
0.
qr B
0 051
-0
0.95 1 1.05
2 0
2 1 0 1 2 -3 2 1 0 1 2 3



Adaptive: new matrix to compute residuals crucial

2.5

1.5}

051

Ng = 10,e = 0.100000

19/35
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But ... slow convergence
Problem: As € 1 0, erroris O(elog(1/¢)) and Nk (&) — oo.

Pointwise error for spectral density

Error due to discretization
100 ¢ ‘ ‘ -

109

€=0.01 |

107t

10—10 i

3 2 1 0 107° |
10 10 10 10 0 50 100 150 200

Small Ng critical in data-driven computations. Can we improve convergence rate?




mth order rational kernels:

KE(Q) —
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High-order rational kernels

C.

Kernels

d;

e—l@ m ;
21 ; e™t — (1 +ez)™? emif — (1+ ez)

&

“smoothing parameter”

D

ResDMD computes
with error control

[Ke *v,](6,) = \

i [ch’g (e'%(1+ez)™ ) —d;c, (ei90(1 + ezj))]
=1
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Smaller Ny (larger €)

, | | e = 1.000000
Y o o 25 ! ! !
o o
o (]
1 o o 2
(] o
: :
—~ r
\’}LO o 1.5
S o
— o 1t
uoso o
A+
0 0.5
*%os 1 901 o © P
-2 . - o ' 0
2 1 0 1 2 -3 2 1 0 1 2 3
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Convergence

Theorem: Automatic selection of Nk (¢)

with O(¢™log(1/¢)) convergence:

* Density of continuous spectrum p,.
(pointwise and LP)

* Integration against test functions.
(weak convergence)

f h(0)[K. *v,](6) de

[—7T, ] per

_ f R(6) dv, (6) + O(™log(1/¢))

-] per .
Also recover discrete spectrum.

Pointwise error for spectral density

10 107 107" 10Y
E

 C, T, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.



s it right? s
The importance of verification

Anticles published week ending 28 JUNE 2019

Published by
American Physical Society s Volume 122, Number 25

E.g., ground state of quasicrystal

* C.,Roman, Hansen, “How to compute spectra with error control,” Phys. Rev. Lett., 2019.



IS it right? - PHYSICAL REVIEW B o
The importance of verification

covering condensed matter and materials physics

Highlights
/I/
PHYSICAL Bulk localized transport states in
I REVIEW infinite and finite quasicrystals via
4 LETTERS magnetic aperiodicity

Phys. Rev. B

' Anticles published week ending 28 JUNE 2019

| Spectra with error control

Certainty in computed
spectral properties

Published by
American Physical Society Ség% Volume 122, Number 25

E.g., ground state of quasicrystal

bulk localised transport states

C., Roman, Hansen, “How to compute spectra with error control,” Phys. Rev. Lett., 2019.
Johnstone, C., Nielsen, Ohberg, Duncan, “Bulk Localised Transport States in Infinite and Finite Quasicrystals via Magnetic Aperiodicity,” Phys. Rev. B, 2022.
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The Challenges

" aVa aa ”. /\
) b [ ]

Yproximate spurious-mogesA- & Speclt /
2) “Toe little”: M E Spec(iC /

Verification: Is it right?
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Example: non-linear pendulum
X1 = Xy, X, = —sin(xy), Q= [-7m,7]perx R

Nk =3
157

1t

05+

0r

Im(\)

-0.5¢

At

-1.5
15 A -0.5 0 0.5 1 1.5

Re(\)
Computed pseudospectra (¢ = 0.25). Eigenvalues of IK shown as dots (spectral pollution).
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Approximate eigenfunctions

Colour represents complex argument, constant modulus shown as shadowed steps.
All residuals smaller than € = 0.05 (made smaller by increasing N).
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Quadrature with trajectory data

8. (Kb ) = Jim S wth GT0) (™)

[Kk] (X(m))

Three examples:

» High-order quadrature: {x(™), Wm} . M-point quadrature rule.

Rapid convergence. Requires free ch0|ce of {x(m)} and small d.

* Random sampling: {x(m)} 1 selected at random. <« Most common
Large d. Slow Monte Carlo O(M 1/2Y rate of convergence. /

* Ergodic sampling: x ("1 = F(x(™),
Single trajectory, large d. Requires ergodicity, convergence can be slow.
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Example: Trustworthy computation for large d

Inlet

Periodic

conditions

Blade Outlet

/"« Reynolds number = 3.9 x 10°
 Ambient dimension (d) = 300,000

(number of measurement points)

*Raw measurements provided by Stephane Moreau (Sherbrooke)

404 mm
Outlet
Rel. Error =7? Rel. Error = ? Rel. Error = ?
| 4 ' 0.71i B
e 0.25 —_ .
A=c¢e
0.2 ’ 0.06
0.6 W\, acoustic source?
015 % 0.04
5 0.4 101 » ';'
| °2 1005 \ ' o
..0 _0 _0
102 j 0.05 1002
0.4 1-0.1
-0.04
55 -0.15
-0.2 -0.06
0.8
-0.25
-1 -0.08

 C., T, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.
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Example: Trustworthy computation for large d

Periodic

conditions

Inlet
Blade Outlet

/"« Reynolds number =~ 3.9 x 10°

 Ambient dimension (d) = 300,000
(number of measurement points)

*Raw measurements provided by Stephane Moreau (Sherbrooke)

404 mm
Outlet
Rel. Error < 0.0054 Rel. Error < 0.0128 Rel. Error 0.0196

A — eOlll . /1 — eOSll 2.25 -

06 turbulent '
" fluctuations Vi 004
0 102 i Lo 10.02
$e$°® . . 4-0.2 ﬁ {-0.05 | 002
i . ({ 015 -0.04
' 0.8 ﬁ 0.2 -0.06

1 -0.08

acoustic vibrations
 C., T, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.
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Large d () S R?): robust and scalable

Popular to learn dictionary {l/)l, . ¢NK}

E.g., DMD with truncated SVD ﬁlinear dictionary, most popular),
kernel methods (this talk), neural networks, etc.

Q: Is discretisation span{tpl, . ‘I’NK} large/rich enough?

Above algorithms:
* Pseudospectra: {z;: T, < €} € Spec.(K) error control
* Spectral measures: C, (z) and smoothed measures adaptive check

— Rigorously verify learnt dictionary {1/11» o) l/JNK}
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ify the dictionary

Ver

Example

res(4;, g;), linear dictionary

res(4;, g;), nonlinear dictionary

05¢
-0.5¢

Un
e

6.4 x 10*

~o
~

Reynolds number

 Ambient dimension (d) = 100,000

o b

(velocity at measurement points)
*Raw measurements provided by Maté Sz6ke (Virginia Te:

A

Re(A)

0.8948 + O.1065i, error < 0.1105

Re(A)

A=

A=

Y B ¢ TR

N Y trEAey -
»\\\\ o 7
%

b SN
?n; J

B \_\.h—\\
- ‘B
..._, RN
/I} \\\‘///I/_ b b/

A
t
/
2 w = 1 O
N e o=’
S\m\\m
2 8z s g S
s &8 = & 5§ 5 5

0.9439 + 0.2458i, error < 0.0765

T /.«l\l 7 C«
7 e
~kK(:\“\1HMHM\\;
i g
\/a \\ \—\|
K W
N T
3 ~\\'|'l‘\\\\\\\\
\\“\ 2
/\\/l,— ~
&% 1/
,,\\\Fh/cl\\.\“_-qﬁ
- SO NN |
///Kvn\q/f \\H//.\Q - A
V) ///l‘ / ////\.ﬂ
-/ \/»v//,. /A //4//1_.|
N - NN R/
ALy \\\\‘“!hk. : \/HW///N,, /\\
NN ! \lﬂ‘U/// ./
AN //ﬁ».\_\//(fz ‘\_IIN/:/I_.\,//M
[\ i o)
g/

106 107 108 109 110

105

106 107 108 109 110

105

ﬁ/hjet

xA/hjet

77

C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., under minor rev.
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Example: molecular dynamics (Adenylate Kinase)

Adenylate Kinase
¢ key parts
) q Y

 Ambient dimension (d) = 20,000
(positions and momenta of atoms)
 6th order kernel (spec res 107°)

*Dataset: www.mdanalysis.org/MDAnalysisData/adk_equilibrium.html

0.24 - w ” ¢
0.22 - /

0.2-
0.18
0.16
0.14 ¢ ‘

3 2 1 0 1 2 3
0 0

 C, T, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” preprint.



33/35

Example: Trustworthy Koopman mode decomposition

b) t = 10 us c)t=15pus d) =20 us
‘ 100 T
true —residual ordering
o modulus ordering —modulus ordering
o residual ordering | |

--------

Pressure

extremely efficient !

Relative MISE

\ unseen shockws:

-50 3L - .
orediction 10 compression
from 40 modes
-100 ‘ 10 . . .
0 = 4 6 8 0 50 100 150 200
Time(107>s) Number of modes

(., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., under minor rev.
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Wider programme

Inf.-dim. computational analysis = Compute spectral properties rigorously.

Continuous linear algebra — Avoid the woes of discretisation

Solvability Complexity Index hierarchy = Classify diff. of comp. problems, prove algs are optimal.

Extends to: Foundations of Al, optimization, computer-assisted proofs, and PDE learning.

C., “On the computation of geometric features of spectra of linear operators on Hilbert spaces,” Found. Comput. Math., to appear.
Boullé, T., “Learning elliptic partial differential equations with randomized linear algebra”, Found. Comput. Math., 2022.

Boullé, Kim, Shi, T., “Learning Green's functions associated with parabolic partial differential equations”, JMLR, to appear.

C., Horning, T. “Computing spectral measures of self-adjoint operators,” SIAM Rev., 2021.

C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022.
C.,, Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep leaming and Smale’s 18th problem," Proc. Natl. Acad. Sci. USA, 2022.
C., “Computing spectral measures and spectral types,” Comm. Math. Phys., 2021.

C., Roman, Hansen, “How to compute spectra with error control,” Phys. Rev. Lett., 2019.

C., “Computing semigroups with error control,” SIAM J. Numer. Anal., 2022.

Gilles, T., “Continuous analogues of Krylov methods for differential operators,” SIAM J. Numer. Anal., 2019.

Horning, T., “FEAST for Differential Eigenvalue Problems,” SIAM J. Numer. Anal., 2020.
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Summary: rigorous data-driven Koopmanism!

* “Too much” or “Too little”
Idea: New matrix for residual = ResDMD for computing spectra.
* Continuous spectra and spectral measures:
Idea: Convolution with rational kernels via resolvent and ResDMD.
* Is it right?
Idea: Use ResDMD to verify computations. E.g., learned dictionaries.

Code:
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition




Additional slides...



measure-preserving EDMD...
* Polar decomposition of K. Easy to combine with any DMD-type method!

* Converges for spectral measures, spectra, Koopman mode decomposition.

* Measure-preserving discretization for arbitrary measure-preserving systems.

. TKEIy ~ 5mm . TKE, YR 35mm » Time—averaged TKE |

———mpEDMD f - |~———mpEDMD

s MPEDMD
——piDMD /o | ——piDMD 180 - e DiDMD
1041 —EDMD AN 104 L —EDMD Mean TKE of flow
Mean TKE of flow 4 ] b Mean TKE of flow 160 +

140 +
103 .
t 120 -

102 v T T TP VW W - ' 100 r

80

10 0 1 2 3 4 5 10! 0 5 6OO 10 2I0 3IO 4I0
Time (s) Height y (mm)
Snapshots collected over 1s EDMD unstable!

 C., “The mpEDMD Algorithm for Data-Driven Computations of Measure-Preserving Dynamical Systems,” arXiv 2022.



Solvability Complexity Index Hierarchy

Class Q) 3 A, want to compute Z: Q = (M, d) €= metric space
* Ay: Problems solved in finite time (v. rare for cts problems).

* A;: Problems solved in “one limit” with full error control:
d([,(4),2(4)) < 27"
* A,: Problems solved in “one limit”:
IimI;,(4) = Z(4)

n—->0o

* A5: Problems solved in “two successive limits”:
lim lim I3, ,,(4) = 2(4)

. Nn—00 Mm— 0o

Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.

Hansen, “On the solvability complexity index, the 7zpseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.
McMullen, “Families of rational maps and iterative root-finding algorithms,” Ann. of Math., 1987.

Doyle, McMullen, “Solving the quintic by iteration,” Acta Math., 1989.

Smale, “The fundamental theorem of algebra and complexity theory,” Bull. Amer. Math. Soc., 1981.



Error control for spectral problems

Y11 convergence

Z(A) = Spec(4)

e ¥,:3alg. {l,} s.t. lim [, (A) = Z(4), maxzepn(A)dist(Z, E(4)) <27
n—>00



Error control for spectral problems

>i1 convergence II; convergence

—

Z(A) = Spec(4)

e ¥,:3alg. {l,} s.t. lim [, (A) = Z(4), maxzepn(A)dist(Z, E(4)) <27
n—>00

e I[I;: Falg. {l,} s.t. im [, (A) = E(A), max g4 dist(z,[;,(4)) <277
Nn—00

Such problems can be used in a proof!



Small sample of classification theorems

Increasing difficulty

Error control
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Small sample of classification theorems

Increasing difficulty

Error control

[14 [ [13
& N & < &
A]_ §21UH1; Az ;ZZUI_IZ; Ag ;Z3UH3
A & < & N

Spectra of K Continuous spectra of K (different regularity assumptions)



Small sample of classification theorems

Increasing difficulty

Error control Spectra of
l compact operators
|
| G N & IS

A & < &
0 \ Zz 23

Spectra of K Continuous spectra of K (different regularity assumptions)



Small sample of classification theorems

Increasing difficulty

Error control Spectra of Spectra of Schrodinger*
| compact operators (different potential classes)

Spectra of K Continuous spectra of K (different regularity assumptions)

*Open problem of Schwinger: “The special canonical group,” “Unitary operator bases,” PNAS, 1960.



Small sample of classification theorems

Increasing difficulty

Error control Spectra of Spectra of Schrodinger*
| compact operators (different potential classes)
|

[1 [14 j [l3

0
” & IS & &
Ap & A SL,VUIL & VUL G Ay S23UIl; .
5 S & < G <

0 Zz 23

‘ Spectral gap problem

Spectra of K Continuous spectra of K (different regularity assumptions)

*Open problem of Schwinger: “The special canonical group,” “Unitary operator bases,” PNAS, 1960.



Small sample of classification theorems

Increasing difficulty

Error control Spectra of Spectra of Schrodinger*  Spectral stability
| compact operators (different potential classes)
|
[1 [14 j [l3
0
” & Q & &
Ap & A SL,VUIL & VUL G Ay S23UIl; .
g S & < & <
0 Zz 23
‘ Spectral gap problem

Spectra of K Continuous spectra of K (different regularity assumptions)

*Open problem of Schwinger: “The special canonical group,” “Unitary operator bases,” PNAS, 1960.
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