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Typical boundary conditions on 9D:
» Zero normal velocity (Neumann: prescribed dq/0n = ¢,)
» Continuity of pressure (Dirichlet: prescribed q)

» Impedance/porosity
(Robin: prescribed linear combination of ¢, and ¢)

» Elastic deformation (more on this later)

Sommerfeld radiation condition at infinity (radiates to infinity):

lim 72 (8 — ik()) q(r,0) =0

r—00 or

Crucial for well-posed problem (and important physically)!



Sketch of talk

Building a method
Rigid plate example

>

| 2

» Application I: elastic plates

» Application II: perforated screens and Robin BCs
>

Open Problems

Take home message: method provides an efficient way of
solving 2D scattering problems of interest in this community
(and beyond)



Unified Transform



Unified Transform

Let g, v solve the Helmholtz equation in domain D, then

3(an_ 3”)+<9(an_ 3”)_0
oz \"oz %9z) Ty Yoy " 9y) T



Unified Transform

Let g, v solve the Helmholtz equation in domain D, then

() ()
oz \"or Yoz Oy \ Oy ay_

Assuming everything converges, Green’s theorem implies

Jdq ov Jdq ov B
/ Kv@x qf%‘)dy <<9y q3y>dx]_o'



Unified Transform

Let g, v solve the Helmholtz equation in domain D, then

() ()
oz \"or Yoz Oy \ Oy ay_

Assuming everything converges, Green’s theorem implies

Jdq ov Jdq ov B
/ Kv@x q8x>dy <<9y q3y>dx]_o'

Choosing v = e B3 with B =ko/2, z=x+ iy gives

/ o—iB+E)
oD

Qn+ﬁ(>\8—_) q} ds =0, e C(D).



Unified Transform

Let g, v solve the Helmholtz equation in domain D, then

() ()
oz \"or Yoz Oy \ Oy ay_

Assuming everything converges, Green’s theorem implies

Jdq ov Jdq ov B
/ Kv@x q8x>dy <5y q3y>d$]_o'

Choosing v = e B3 with B =ko/2, z=x+ iy gives

/ o—iB+E)
oD

View this as a (generalised) Fourier transform of the

dz 1dz

dn+ B (Ads _ Ads) q} ds=0, AecC(D).

boundary integral equations.
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Connections with Existing Techniques

Al 72 3

Using that solution anti-symmetric in y:

i[q] (,0) + /RG(x — x’)qy(a:’,O)dx’ =0,

where G is the Green’s function G(z) = iHél)(k:o |x|) /4.
Take FT with frequency w = 5 (A + 1/A) to get

/ e_i’BI(AJr%)qy (x,0)dx
R\y

" / o—iBz(A+1)
Y

gy (,0) + g ()\ - i) [q](x,O)] dr=0, AcA

A=(-1,00U(1,00)U{e?: 7 <0 < 2r}
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Connections with Existing Techniques

To obtain WH equation set (A + §) = —a and

K(a):\/r—kgzﬁQ—i).

Why is this useful?
» Avoids singular integrals (convolution — multiplication).

> Generalise WH equation to arbitrary domains
(and in fact separable PDEs).

» For some problems, allows analytic study for first time
(where it is difficult to see how to use WH).

» WH for 3D problems? (More on this later.)
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Building a Numerical Method

Main idea: Expand boundary values in a suitable basis:

N N
s)=>_a;S;i(s), qn(s) =Y biTj(s)
j=1 i=1

Let f(\) = [,pe PO+ 5(AS))f(s)ds and evaluate at \;:

Za]5< EZ ifé)s()\)erT()\) 0.

Linear system, row i evaluation at \; (Fourier collocation):
ai

Matrix formed
from combinations an
of bl

S;(Ai) and Tj5(\;) :

bn



Extensions/Advantages

Can generalise to:
» Separable PDEs and curved boundaries [C. 2018].
» Arbitrary non-convex domains [C., Flyer & Fornberg 2018].
» Unbounded domains [C., Ayton & Fokas 2019].
» Fast evaluation in interior [C., Fokas & Hashemzadeh 2019].
Some advantages of the method:
» Fast (order of a second for hundreds of basis functions).
> Easy to use and code, can be automated.
» Boundary based (dimensional reduction).
>

Avoid evaluations of singular integrals
(that arise in other methods such as BEM).

» Flexible choice of bases...



Easy Example: Single Rigid Plate




Easy Example: Single Rigid Plate

For A € (—=1,0) U (1,00) U {e : 7 < 0 < 27}:

-1 S
/ e—1ﬁx(k+§)qy($,0)dm+/l e—lﬂw()\-i-%)qy(a:,())dﬂi

—00

1 1
—iﬁw<A+l>ﬁ( _ l) _ / ~igevt 1) OU
—i—/_le 2 A 3 [q](z, 0)dz _le by 3y (z,0)dx.
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Technical Details

Suitable basis can be predicted from geometry/boundary
conditions of the problem (interesting physics).

=

Endpoint Singularity

“~
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To capture endpoint singularities, expand [g] in terms of
weighted Chebyshev polynomials:

V1—22-Uy(x).



Rapid Convergence!

——UT, k= 10

ko =10 ko = 50
BIM, ky = 10 4 4
10° == UT, kg = 50 )
—-—-—BIM, k = 50 2r o b
=UT, ky =100 | 1 [ \
1M, 00 oyl A
AYIRVIANN u’] 1) \/r
= =150 2 Al ;M
g 10 1
Li 05 0 05
° 5
E"‘; 4 ko = 150
B2
‘
A bbb g KRR R R R
1010 1 LA SRR ANARY
o fii RV UNARAN RN Y
0 0 o A T R
P
Y1111 A0 d Al
-4 -4
05 0 05 05 0 05
1015 . . . . . .
0 20 40 60 80 100 120
N

Figure: Left: Maximum relative error. UT denotes unified transform,
BIM denotes boundary integral method of [Nigro 2017]. Right:
Analytic solutions [g](z, 0) for different k.
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Much more complicated geometries possible
(e.g. arrays of wedges, polygons, curved 0D etc.)



Application I: elastic plates [C. & Ayton 2019]

> Application: A big problem in aero-acoustics is noise
reduction (e.g. yesterday’s talk on owls).

» Current challenge: developing fast and accurate
numerical tools for scattering problems.
(saw some approaches yesterday)
— predict effect of physical parameters and external forces.

» Can we model complicated boundary conditions such as
elasticity? (this is difficult via WH)

Elastic — absorbs energy — reduced noise
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Elastic Problem

» g; ~» K collinear plates v1,7v2,...,Yx ~ q.
> If plate v; elastic, denote plate deformation by 7; then

o k:

¢; =fluid loading (0.0021 for aluminium in air),

Q; =ratio of the bending wavenumber and the acoustic
wavenumber (wobbliness),

[¢) =jump in pressure across the plate.

» Kinematic condition (n; = 0 if v; rigid):

_ Oq1

3}
koni = 87+87q on .

» At endpoint x = xq of plate, either n(xg) = n'(z9) =0
(clamped) or " (x¢) = 7" (x0) = 0 (free).



How to Cope? Vibrational Modes!

Main idea: Expand 7; in eigenfunctions of V* subject to
correct BCs:

V4fj = d?fj, clamped /free at endpoints.

N
Expand: n;(z) ~ Z ai,; fi(z),
j=1

BT;< ) _@( )+]Zlk(2)aufy($)
0o ot Ed
[g](z) = _kg; <8$4 Q%) ni(7)



How to Cope? Vibrational Modes!

Compute fj,d; using standard spectral methods (very easy).

Easy to compute Fourier transforms:
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How to Cope? Vibrational Modes!

Compute fj,d; using standard spectral methods (very easy).

Easy to compute Fourier transforms:

b . .
(A —dj) /a e fi(w)de = (1IN [ f ()], — (N[ (@),
+IAEN 7 (@)]hmg — [ (@)=
Upshot:
» Fast and accurate.

» Cope with multiple bodies with different physical
parameters and geometric configurations.

» Can add porosity.



Elastic Plate Extensions

quadrupole
incident field

@

\ / elastic extension

clamped



Far-field Noise
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Radiated Power
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Physical Conclusions

» Short elastic extensions can provide ample noise reduction,
rivalling a fully elastic plate, particularly for high
frequencies. (Important for aerodynamic properties!)

» Low frequency perturbations cannot excite oscillations in
very short elastic sections (unless highly flexible).

> If the elastic extension is too short, scattering at the
elastic-rigid junction can contribute significantly to the
total far-field noise.

» Different length extensions should be used depending on
the frequencies to be reduced.

» Future work: consider aerodynamic impact of elastic
extensions to balance acoustic and aerodynamic
considerations. FExtensions to 3D and elastic spheres.
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¢-- -->

>

d 2a

Ifo<d<ky ! then expect homogenised BC [Lamb 1895,
Leppington 1977, Howe 1998] with
dq
dy

(2,0) + %j(x, 0) = () [g)(z,0)

- B ()

» Never (as far as I'm aware) been numerically verified
(difficult due to large number of plates, near touching
plates and singularities).

and

» How to take u to zero at endpoints and does this matter?
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Preliminary Results

(a) d/a =10, (kod)™" =14.5  (b) d/a = 100, (kod) ™" = 12.7

(c) d/a =10, (kod)™' =59.5  (d) d/a = 100, (kod)™* = 50.95
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Conclusions

» Developed a fast and accurate method for scattering
problems that are difficult to analyse analytically via WH.

» Can be viewed as a Fourier transform version of boundary
integral methods (collocation in Fourier space).

> Easier to use and more accurate than boundary integral
methods (e.g. no singular integrals).

> Suitable basis can capture difficult boundary conditions
such as coupling to plate deformation.
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Open Problems

» Can this be efficiently implemented in 3D, leading to
multi-dimensional quasi-WH method? Analysis of
singularities of solution would be a challenge!

» Non-linear boundary conditions (e.g. via Newton iteration).

» Analytic question: can we leverage the connection between
WH and UT in collinear case to other more complicated
geometries?

» Is there a unified (pun intended) way of viewing
everything?



Infinite Plate Example
e.g. Modified Helmholtz ky — iko (decay at infinity)

Di:y>0 %:f

DQ:y<O

/O e_iﬁx()\—%)@(:z’ O)daj B /oo e_iﬁ:p()\—%)
0

—oo oy
(o)
_ _/ oA\
0

Basis functions: modified Laguerre (with exponentially
decaying weight) to capture singular behaviour.

| ™

()\ + 1\) [q](z,0)dx

) f(x)de, AeR_.

>



Infinite Plate Example

Approximation of |g|(x,0) Approximation of g,(—z,0)

Discrete Error
Discrete Error

Figure: p =‘Number of singular functions in basis’ Left: Convergence
of computed Dirichlet values. Right: Convergence of computed
Neumann values.



Wedge Example

e.g. Helmholtz (add some decay at infinity)

ko =10+1
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3D

Suppose
V3¢=0 V(x,y,2) € D

then Green’s theorem gives

0q ov B
/ (an_qan>d =0

for v some other solution to Laplace.

Pick v as

v(z,y,2) = etz Huy)+/ N2z
for A\, u € C.
Then

- 8z ox
—i(Az+py)+ /\2+u z vLe
fint ( o[ -

'uﬁn

[)as



3D

Initial results on separable domains look similar (rapid
convergence with suitable basis functions etc.).

Challenges: Integrations over 2D surfaces can be tricky for
[Al, || large (ideally want analytic form for given basis
functions), study of singularities in 3D harder,...

Current Ideas (more welcome!):

» Domain decomposition and iterative solvers - becomes
more like BEM in Fourier space.

» Couple with domain transform methods.



Curved Boundary and Separable PDE

PDE in divergence form:
V- (aVu)+ V- (fu) +yu = 0.

Domain D a curvilinear polygon, corners {z;}{ with the side I';,
joining z; to zj41 parametrised by

[~1,1] 3t — (2;(t),y;(t)) € R
Let v be a solution of adjoint, n outward normal,
/ ul(n- B —n-(a’Vv)] +v[n- (aVu)]ds = 0.
oD

One parameter family of solutions v — Global Relation.
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