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Scattering Problem
Acoustic 2D scattering governed by the Helmholtz equation

∂2q

∂x2 + ∂2q

∂y2 + k2
0q = 0, (x, y) ∈ D.

Typical boundary conditions on ∂D:
I Zero normal velocity (Neumann: prescribed ∂q/∂n = qn)
I Continuity of pressure (Dirichlet: prescribed q)
I Impedance/porosity

(Robin: prescribed linear combination of qn and q)
I Elastic deformation (more on this later)

Sommerfeld radiation condition at infinity (radiates to infinity):

lim
r→∞

r
1
2

(
∂

∂r
− ik0

)
q(r, θ) = 0

Crucial for well-posed problem (and important physically)!
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Sketch of talk

I Building a method
I Rigid plate example
I Application I: elastic plates
I Application II: perforated screens and Robin BCs
I Open Problems

Take home message: method provides an efficient way of
solving 2D scattering problems of interest in this community
(and beyond)



Unified Transform

Let q, v solve the Helmholtz equation in domain D, then

∂

∂x

(
v
∂q

∂x
− q ∂v

∂x

)
+ ∂

∂y

(
v
∂q

∂y
− q ∂v

∂y

)
= 0.

Assuming everything converges, Green’s theorem implies∫
∂D

[(
v
∂q

∂x
− q ∂v

∂x

)
dy −

(
v
∂q

∂y
− q ∂v

∂y

)
dx

]
= 0.

Choosing v = e−iβ(λz+ z̄
λ

) with β = k0/2, z = x+ iy gives∫
∂D

e−iβ(λz+ z̄
λ

)
[
qn + β

(
λ
dz

ds
− 1
λ

dz̄

ds

)
q

]
ds = 0, λ ∈ C(D).

View this as a (generalised) Fourier transform of the
boundary integral equations.



Unified Transform

Let q, v solve the Helmholtz equation in domain D, then

∂

∂x

(
v
∂q

∂x
− q ∂v

∂x

)
+ ∂

∂y

(
v
∂q

∂y
− q ∂v

∂y

)
= 0.

Assuming everything converges, Green’s theorem implies∫
∂D

[(
v
∂q

∂x
− q ∂v

∂x

)
dy −

(
v
∂q

∂y
− q ∂v

∂y

)
dx

]
= 0.

Choosing v = e−iβ(λz+ z̄
λ

) with β = k0/2, z = x+ iy gives∫
∂D

e−iβ(λz+ z̄
λ

)
[
qn + β

(
λ
dz

ds
− 1
λ

dz̄

ds

)
q

]
ds = 0, λ ∈ C(D).

View this as a (generalised) Fourier transform of the
boundary integral equations.



Unified Transform

Let q, v solve the Helmholtz equation in domain D, then

∂

∂x

(
v
∂q

∂x
− q ∂v

∂x

)
+ ∂

∂y

(
v
∂q

∂y
− q ∂v

∂y

)
= 0.

Assuming everything converges, Green’s theorem implies∫
∂D

[(
v
∂q

∂x
− q ∂v

∂x

)
dy −

(
v
∂q

∂y
− q ∂v

∂y

)
dx

]
= 0.

Choosing v = e−iβ(λz+ z̄
λ

) with β = k0/2, z = x+ iy gives∫
∂D

e−iβ(λz+ z̄
λ

)
[
qn + β

(
λ
dz

ds
− 1
λ

dz̄

ds

)
q

]
ds = 0, λ ∈ C(D).

View this as a (generalised) Fourier transform of the
boundary integral equations.



Unified Transform

Let q, v solve the Helmholtz equation in domain D, then

∂

∂x

(
v
∂q

∂x
− q ∂v

∂x

)
+ ∂

∂y

(
v
∂q

∂y
− q ∂v

∂y

)
= 0.

Assuming everything converges, Green’s theorem implies∫
∂D

[(
v
∂q

∂x
− q ∂v

∂x

)
dy −

(
v
∂q

∂y
− q ∂v

∂y

)
dx

]
= 0.

Choosing v = e−iβ(λz+ z̄
λ

) with β = k0/2, z = x+ iy gives∫
∂D

e−iβ(λz+ z̄
λ

)
[
qn + β

(
λ
dz

ds
− 1
λ

dz̄

ds

)
q

]
ds = 0, λ ∈ C(D).

View this as a (generalised) Fourier transform of the
boundary integral equations.



Unified Transform

Let q, v solve the Helmholtz equation in domain D, then

∂

∂x

(
v
∂q

∂x
− q ∂v

∂x

)
+ ∂

∂y

(
v
∂q

∂y
− q ∂v

∂y

)
= 0.

Assuming everything converges, Green’s theorem implies∫
∂D

[(
v
∂q

∂x
− q ∂v

∂x

)
dy −

(
v
∂q

∂y
− q ∂v

∂y

)
dx

]
= 0.

Choosing v = e−iβ(λz+ z̄
λ

) with β = k0/2, z = x+ iy gives∫
∂D

e−iβ(λz+ z̄
λ

)
[
qn + β

(
λ
dz

ds
− 1
λ

dz̄

ds

)
q

]
ds = 0, λ ∈ C(D).

View this as a (generalised) Fourier transform of the
boundary integral equations.



Connections with Existing Techniques

Using that solution anti-symmetric in y:

1
4 [q](x, 0) +

∫
R
G(x− x′)qy(x′, 0)dx′ = 0,

where G is the Green’s function G(x) = iH(1)
0 (k0 |x|)/4.

Take FT with frequency ω = β (λ+ 1/λ) to get∫
R\γ

e−iβx(λ+ 1
λ

)qy(x, 0)dx

+
∫
γ

e−iβx(λ+ 1
λ

)
[
qy(x, 0) + β

2

(
λ− 1

λ

)
[q](x, 0)

]
dx = 0, λ ∈ Λ

Λ = (−1, 0) ∪ (1,∞) ∪ {eiθ : π < θ < 2π}
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Connections with Existing Techniques
To obtain WH equation set β(λ+ 1

λ) = −α and

K(α) =
√
α2 − k2

0 = β

(
λ− 1

λ

)
.

Why is this useful?
I Avoids singular integrals (convolution → multiplication).
I Generalise WH equation to arbitrary domains

(and in fact separable PDEs).
I For some problems, allows analytic study for first time

(where it is difficult to see how to use WH).
I WH for 3D problems? (More on this later.)
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Building a Numerical Method
Main idea: Expand boundary values in a suitable basis:

q(s) =
N∑
j=1

ajSj(s), qn(s) =
N∑
j=1

bjTj(s)

Let f̂(λ) =
∫
∂D e−iβ(λz(s)+ z̄(s)

λ
)f(s)ds and evaluate at λi:∑

j

ajβ

(
λ
dz

ds
− 1
λ

dz̄

ds

)
Ŝj(λi) + bj T̂j(λi) = 0.

Linear system, row i evaluation at λi (Fourier collocation):


Matrix formed

from combinations
of

Ŝj(λi) and T̂j(λi)





a1
...
aN
b1
...
bN


= 0
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Extensions/Advantages

Can generalise to:
I Separable PDEs and curved boundaries [C. 2018].
I Arbitrary non-convex domains [C., Flyer & Fornberg 2018].
I Unbounded domains [C., Ayton & Fokas 2019].
I Fast evaluation in interior [C., Fokas & Hashemzadeh 2019].

Some advantages of the method:
I Fast (order of a second for hundreds of basis functions).
I Easy to use and code, can be automated.
I Boundary based (dimensional reduction).
I Avoid evaluations of singular integrals

(that arise in other methods such as BEM).
I Flexible choice of bases...



Easy Example: Single Rigid Plate
Real Part
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For λ ∈ (−1, 0) ∪ (1,∞) ∪ {eiθ : π < θ < 2π}:∫ −1

−∞
e−iβx(λ+ 1

λ
)qy(x, 0)dx+

∫ ∞
1

e−iβx(λ+ 1
λ

)qy(x, 0)dx

+
∫ 1

−1
e−iβx(λ+ 1

λ
)β

2
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λ− 1

λ

)
[q](x, 0)dx =

∫ 1

−1
e−iβx(λ+ 1

λ
)∂qI
∂y

(x, 0)dx.



Easy Example: Single Rigid Plate
Real Part

-1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

For λ ∈ (−1, 0) ∪ (1,∞) ∪ {eiθ : π < θ < 2π}:∫ −1

−∞
e−iβx(λ+ 1

λ
)qy(x, 0)dx+

∫ ∞
1

e−iβx(λ+ 1
λ

)qy(x, 0)dx

+
∫ 1

−1
e−iβx(λ+ 1

λ
)β

2

(
λ− 1

λ

)
[q](x, 0)dx =

∫ 1

−1
e−iβx(λ+ 1

λ
)∂qI
∂y

(x, 0)dx.



Technical Details
Suitable basis can be predicted from geometry/boundary
conditions of the problem (interesting physics).

Endpoint Singularity

To capture endpoint singularities, expand [q] in terms of
weighted Chebyshev polynomials:√

1− x2 · Un(x).



Technical Details
Suitable basis can be predicted from geometry/boundary
conditions of the problem (interesting physics).

Endpoint Singularity

To capture endpoint singularities, expand [q] in terms of
weighted Chebyshev polynomials:√

1− x2 · Un(x).



Technical Details
Suitable basis can be predicted from geometry/boundary
conditions of the problem (interesting physics).

Endpoint Singularity

To capture endpoint singularities, expand [q] in terms of
weighted Chebyshev polynomials:√

1− x2 · Un(x).



Rapid Convergence!
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Figure: Left: Maximum relative error. UT denotes unified transform,
BIM denotes boundary integral method of [Nigro 2017]. Right:
Analytic solutions [q](x, 0) for different k0.

Much more complicated geometries possible
(e.g. arrays of wedges, polygons, curved ∂D etc.)
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Application I: elastic plates [C. & Ayton 2019]

I Application: A big problem in aero-acoustics is noise
reduction (e.g. yesterday’s talk on owls).

I Current challenge: developing fast and accurate
numerical tools for scattering problems.
(saw some approaches yesterday)
→ predict effect of physical parameters and external forces.

I Can we model complicated boundary conditions such as
elasticity? (this is difficult via WH)

Elastic → absorbs energy → reduced noise



Elastic Problem
I qI  K collinear plates γ1, γ2, ..., γK  q.

I If plate γi elastic, denote plate deformation by ηi then(
∂4

∂x4 −
k4

0
Ω4
i

)
ηi = − εi

Ω6
i

k3
0[q] on γi.

εi =fluid loading (0.0021 for aluminium in air),
Ωi =ratio of the bending wavenumber and the acoustic
wavenumber (wobbliness),
[q] =jump in pressure across the plate.

I Kinematic condition (ηi = 0 if γi rigid):

k2
0ηi = ∂qI

∂y
+ ∂q

∂y
on γi.

I At endpoint x = x0 of plate, either η(x0) = η′(x0) = 0
(clamped) or η′′(x0) = η′′′(x0) = 0 (free).
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How to Cope? Vibrational Modes!
Main idea: Expand ηi in eigenfunctions of ∇4 subject to
correct BCs:

∇4fj = d4
jfj , clamped/free at endpoints.

Expand: ηi(x) ≈
N∑
j=1

ai,jfj(x),

⇒ ∂q

∂y
(x) ≈ −∂qI

∂y
(x) +

N∑
j=1

k2
0ai,jfj(x)

[q](x) = − Ω6
i

k3
0εi

(
∂4

∂x4 −
k4

0
Ω4
i

)
ηi(x)

≈ − Ω6
i

k3
0εi

N∑
j=1

ai,j

(
d4
j −

k4
0

Ω4
i

)
fj(x).



How to Cope? Vibrational Modes!

Compute fj , dj using standard spectral methods (very easy).

Easy to compute Fourier transforms:

(λ4 − d4
j )
∫ b

a
eiλxfj(x)dx = (iλ)3[eiλxf(x)]bx=a − (iλ)2[eiλxf ′(x)]bx=a

+ iλ[eiλxf ′′(x)]bx=a − [eiλxf ′′′(x)]bx=a.

Upshot:
I Fast and accurate.
I Cope with multiple bodies with different physical

parameters and geometric configurations.
I Can add porosity.
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Elastic Plate Extensions



Far-field Noise

Figure: Far-field directivity for k0 = 5, ε = 0.0021 and different l.



Far-field Noise

Figure: Far-field directivity for k0 = 50, ε = 0.0021 and different l.



Radiated Power

10 -1 10 0

10 0

Figure: Relative power level as a function of Ω for k0 = 10, ε = 0.0021.



Physical Conclusions

I Short elastic extensions can provide ample noise reduction,
rivalling a fully elastic plate, particularly for high
frequencies. (Important for aerodynamic properties!)

I Low frequency perturbations cannot excite oscillations in
very short elastic sections (unless highly flexible).

I If the elastic extension is too short, scattering at the
elastic-rigid junction can contribute significantly to the
total far-field noise.

I Different length extensions should be used depending on
the frequencies to be reduced.

I Future work: consider aerodynamic impact of elastic
extensions to balance acoustic and aerodynamic
considerations. Extensions to 3D and elastic spheres.
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Application II: Perforated Screens (with M. Priddin)

d 2a

If a� d� k−1
0 then expect homogenised BC [Lamb 1895,

Leppington 1977, Howe 1998] with

∂q

∂y
(x, 0) + ∂qI

∂y
(x, 0) = µ(x)[q](x, 0)

and
µ = π

2d

{
log

(
d

πa

)}−1
.

I Never (as far as I’m aware) been numerically verified
(difficult due to large number of plates, near touching
plates and singularities).

I How to take µ to zero at endpoints and does this matter?
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Preliminary Results
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(b) d/a = 100, (k0d)−1 = 12.7
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(c) d/a = 10, (k0d)−1 = 59.5

0

30

60

90

120

150

180

210

240

270

300

330

0

0.2

0.4

0.6

0.8

1

(d) d/a = 100, (k0d)−1 = 50.95
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Conclusions

I Developed a fast and accurate method for scattering
problems that are difficult to analyse analytically via WH.

I Can be viewed as a Fourier transform version of boundary
integral methods (collocation in Fourier space).

I Easier to use and more accurate than boundary integral
methods (e.g. no singular integrals).

I Suitable basis can capture difficult boundary conditions
such as coupling to plate deformation.
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Open Problems

I Can this be efficiently implemented in 3D, leading to
multi-dimensional quasi-WH method? Analysis of
singularities of solution would be a challenge!

I Non-linear boundary conditions (e.g. via Newton iteration).
I Analytic question: can we leverage the connection between

WH and UT in collinear case to other more complicated
geometries?

I Is there a unified (pun intended) way of viewing
everything?



Open Problems

I Can this be efficiently implemented in 3D, leading to
multi-dimensional quasi-WH method? Analysis of
singularities of solution would be a challenge!

I Non-linear boundary conditions (e.g. via Newton iteration).

I Analytic question: can we leverage the connection between
WH and UT in collinear case to other more complicated
geometries?

I Is there a unified (pun intended) way of viewing
everything?



Open Problems

I Can this be efficiently implemented in 3D, leading to
multi-dimensional quasi-WH method? Analysis of
singularities of solution would be a challenge!

I Non-linear boundary conditions (e.g. via Newton iteration).
I Analytic question: can we leverage the connection between

WH and UT in collinear case to other more complicated
geometries?

I Is there a unified (pun intended) way of viewing
everything?



Open Problems

I Can this be efficiently implemented in 3D, leading to
multi-dimensional quasi-WH method? Analysis of
singularities of solution would be a challenge!

I Non-linear boundary conditions (e.g. via Newton iteration).
I Analytic question: can we leverage the connection between

WH and UT in collinear case to other more complicated
geometries?

I Is there a unified (pun intended) way of viewing
everything?



Infinite Plate Example
e.g. Modified Helmholtz k0 → ik0 (decay at infinity)

∫ 0

−∞
e−iβx(λ− 1

λ
) ∂q

∂y
(x, 0)dx−

∫ ∞
0

e−iβx(λ− 1
λ

)β

2

(
λ+ 1

λ

)
[q](x, 0)dx

= −
∫ ∞

0
e−iβx(λ− 1

λ
)f(x)dx, λ ∈ R−.

Basis functions: modified Laguerre (with exponentially
decaying weight) to capture singular behaviour.



Infinite Plate Example
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Figure: p =‘Number of singular functions in basis’. Left: Convergence
of computed Dirichlet values. Right: Convergence of computed
Neumann values.



Wedge Example

e.g. Helmholtz (add some decay at infinity)
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3D
Suppose

∇2q = 0 ∀(x, y, z) ∈ D

then Green’s theorem gives∫
∂D

(
v
∂q

∂n
− q ∂v

∂n

)
ds = 0

for v some other solution to Laplace.
Pick v as

v(x, y, z) = e−i(λx+µy)+
√
λ2+µ2z

for λ, µ ∈ C.
Then∫
∂D
e−i(λx+µy)+

√
λ2+µ2z

(
∂q

∂n
− q

[√
λ2 + µ2 ∂z

∂n
− iλ∂x

∂n
− iµ∂y

∂n

])
ds

= 0.



3D

Initial results on separable domains look similar (rapid
convergence with suitable basis functions etc.).

Challenges: Integrations over 2D surfaces can be tricky for
|λ|, |µ| large (ideally want analytic form for given basis
functions), study of singularities in 3D harder,...

Current Ideas (more welcome!):
I Domain decomposition and iterative solvers - becomes

more like BEM in Fourier space.
I Couple with domain transform methods.



Curved Boundary and Separable PDE

PDE in divergence form:

∇ · (α∇u) +∇ · (βu) + γu = 0.

Domain D a curvilinear polygon, corners {zj}n1 with the side Γj ,
joining zj to zj+1 parametrised by

[−1, 1] 3 t→ (xj(t), yj(t)) ∈ R2.

Let v be a solution of adjoint, n outward normal,∫
∂D
u
[
(n · β)v − n · (αT∇v)

]
+ v

[
n · (α∇u)

]
ds = 0.

One parameter family of solutions v → Global Relation.
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