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Motivation

I Application: A big problem in aero-acoustics is noise
reduction [1, 2, 3].

I Current challenge: developing fast and accurate
numerical tools for scattering problems.
→ predict effect of physical parameters and external forces.

I Can we model complicated boundary conditions such as
elasticity? (this is difficult via traditional methods)

Elastic → absorbs energy → reduced noise



Wind Turbines



Airport Noise

Figure: Noise levels (annual average) near Heathrow - a major health
concern (source: The BMJ 2013;347:f5432).



Scattering Problem
Acoustic 2D scattering governed by the Helmholtz equation

∂2q

∂x2 + ∂2q

∂y2 + k2
0q = 0

Typical boundary conditions associated to scattering problems:
I Zero normal velocity (Neumann: prescribed ∂q/∂n = qn)
I Continuity of pressure (Dirichlet: prescribed q)
I Impedance/porosity (Robin: prescribed linear combination

of qn and q)
I Elastic plate deformation (more on this later)

Sommerfeld radiation condition at infinity (radiates to infinity):

lim
r→∞
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Unified Transform

Let q, v solve the Helmholtz equation in domain D, then

∂
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)
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v
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)
= 0.

Assuming everything converges, Green’s theorem implies∫
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[(
v
∂q

∂x
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)
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v
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− q ∂v

∂y

)
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]
= 0.

Choosing v = e−iβ(λz+ z̄
λ

) with β = k0/2, z = x+ iy gives∫
∂D

e−iβ(λz+ z̄
λ

)
[
qn + β

(
λ
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− 1
λ

dz̄
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)
q

]
ds = 0, λ ∈ C(D).

View this as a Fourier transform of the boundary integral
equations.
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Building a Numerical Method
Idea: Expand boundary values in a suitable basis:

q(s) =
N∑
j=1

ajSj(s), qn(s) =
N∑
j=1

bjTj(s)

Let f̂(λ) =
∫
∂D e−iβ(λz(s)+ z̄(s)

λ
)f(s)ds and evaluate at λi:∑

j

ajβ

(
λ
dz

ds
− 1
λ

dz̄

ds

)
Ŝj(λi) + bj T̂j(λi) = 0.

Linear system, row i evaluation at λi (Fourier collocation):


Matrix formed

from combinations
of

Ŝj(λi) and T̂j(λi)





a1
...
aN
b1
...
bN


= 0
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Advantages/extensions

Can generalise to separable PDEs and curved boundaries [4].
Some advantages of the method:
I Fast (couple of seconds for hundreds of basis functions).
I Easy to use and code (can be automated [5, 6]).
I Boundary based (dimensional reduction).
I Avoid evaluations of singular integrals (that arise in other

methods such as BEM).
I Flexible choice of bases...



Single Rigid Plate (Analytic Solution Known)
Real Part
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Use the symmetry...
For λ ∈ (−1, 0) ∪ (1,∞) ∪ {eiθ : π < θ < 2π}:∫ 0
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Technical Details
Suitable basis can be predicted from geometry/boundary
conditions of the problem (interesting physics).

Endpoint Singularity

To capture endpoint singularities, expand [q] in terms of
weighted Chebyshev polynomials:√

1− (2x− 1)2 · Un(2x− 1).
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Rapid Convergence!
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Figure: Left: Maximum relative error. UT denotes unified transform,
BIM denotes boundary integral method of [7]. Right: Analytic
solutions [q](x, 0) for different k0.



Back to Elastic Problem
I qI  K collinear plates γ1, γ2, ..., γK  q.

I If plate γi elastic, denote plate deformation by ηi then(
∂4

∂x4 −
k4

0
Ω4
i

)
ηi = − εi

Ω6
i

k3
0[q] on γi.

εi =fluid loading (0.0021 for aluminium in air),
Ωi =ratio of the bending wavenumber and the acoustic
wavenumber (wobbliness),
[q] =jump in pressure across the plate.

I Kinematic condition (ηi = 0 if γi rigid):

k2
0ηi = ∂qI

∂y
+ ∂q

∂y
on γi.

I At endpoint x = x0 of plate, either η(x0) = η′(x0) = 0
(clamped) or η′′(x0) = η′′′(x0) = 0 (free).
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How to Cope? Vibrational Modes!

Idea: Expand ηi in eigenfunctions of ∇4 subject to correct BCs:

∇4fj = d4
jfj , clamped/free at endpoints.

Expand: ηi(x) ≈
N∑
j=1

ai,jfj(x),

⇒ ∂q

∂y
(x) ≈ −∂qI

∂y
(x) +

N∑
j=1

k2
0ai,jfj(x)

[q](x) = − Ω6
i

k3
0εi

(
∂4

∂x4 −
k4

0
Ω4
i

)
ηi(x)

≈ − Ω6
i

k3
0εi

N∑
j=1

ai,j

(
d4
j −

k4
0

Ω4
i

)
fj(x).



How to Cope? Vibrational Modes!

Compute fj , dj using standard spectral methods (very easy).

Easy to compute Fourier transforms:

(λ4 − d4
j )
∫ b

a
eiλxfj(x)dx = (iλ)3[eiλxf(x)]bx=a − (iλ)2[eiλxf ′(x)]bx=a

+ iλ[eiλxf ′′(x)]bx=a − [eiλxf ′′′(x)]bx=a.

Upshot: Fast and accurate method able to cope with multiple
plates with different physical parameters and geometric
configurations. Mixture of elastic rigid plates etc. Can even
cope with porous elastic plates.
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Elastic Plate Extensions



Far-field Noise

Figure: Far-field directivity for k0 = 5, ε = 0.0021 and different l.



Far-field Noise

Figure: Far-field directivity for k0 = 50, ε = 0.0021 and different l.



Radiated Power
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Figure: Relative power level as a function of Ω for k0 = 10, ε = 0.0021.



Radiated Power

10 20 30 40 50 60 70 80 90 100

10 -1

10 0

Figure: Relative power level as a function of lkB (kB = k0/Ω).



Conclusions (Physical)

I Short elastic extensions can provide ample noise reduction,
rivalling a fully elastic plate, particularly for high
frequencies. (Important for aerodynamic properties!)

I Low frequency perturbations cannot excite oscillations in
very short elastic sections (unless highly flexible).

I If the elastic extension is too short, scattering at the
elastic-rigid junction can contribute significantly to the
total far-field noise.

I Different length extensions should be used depending on
the frequencies to be reduced.

I Future work: consider aerodynamic impact of elastic
extensions to balance acoustic and aerodynamic
considerations.
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Conclusions (Numerical)

I Developed a fast and accurate method able to cope with
scattering problems that are difficult to analyse via
traditional methods (such as Wiener-Hopf).

I Method can be viewed as a Fourier transform version of
boundary integral methods, with collocation occurring in
Fourier space.

I Method is easier to use and more accurate than boundary
integral methods (e.g. no singular integrals).

I Suitable basis captures the difficult boundary conditions
coupling to the plate deformation.

I Current work: extensions to 3D and elastic spheres.
All of this can be extended to more complicated geometries [5].
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