The Unified Transform A New Tool for Scattering Problems

Matthew Colbrook DAMTP, University of Cambridge

Sketch of talk

- Motivation
- ▶ Methodology I: scattering problem and unified transform
- ▶ Rigid plate example
- Methodology II: elastic plates
- ▶ Application: elastic plate extensions

Motivation

- ▶ Application: A big problem in aero-acoustics is noise reduction [1, 2, 3].
- Current challenge: developing fast and accurate numerical tools for scattering problems.

 → predict effect of physical parameters and external forces.
- Can we model complicated boundary conditions such as elasticity? (this is <u>difficult</u> via traditional methods)

Elastic \rightarrow absorbs energy \rightarrow reduced noise

Wind Turbines

Airport Noise

Figure: Noise levels (annual average) near Heathrow - a major health concern (source: The BMJ 2013;347:f5432).

Acoustic 2D scattering governed by the Helmholtz equation

$$\frac{\partial^2 q}{\partial x^2} + \frac{\partial^2 q}{\partial y^2} + k_0^2 q = 0$$

Acoustic 2D scattering governed by the Helmholtz equation

$$\frac{\partial^2 q}{\partial x^2} + \frac{\partial^2 q}{\partial y^2} + k_0^2 q = 0$$

Typical boundary conditions associated to scattering problems:

- ▶ Zero normal velocity (Neumann: prescribed $\partial q / \partial n = q_n$)
- Continuity of pressure (Dirichlet: prescribed q)
- Impedance/porosity (Robin: prescribed linear combination of q_n and q)

Acoustic 2D scattering governed by the Helmholtz equation

$$\frac{\partial^2 q}{\partial x^2} + \frac{\partial^2 q}{\partial y^2} + k_0^2 q = 0$$

Typical boundary conditions associated to scattering problems:

- ▶ Zero normal velocity (Neumann: prescribed $\partial q / \partial n = q_n$)
- Continuity of pressure (Dirichlet: prescribed q)
- Impedance/porosity (Robin: prescribed linear combination of q_n and q)
- Elastic plate deformation (more on this later)

Acoustic 2D scattering governed by the Helmholtz equation

$$\frac{\partial^2 q}{\partial x^2} + \frac{\partial^2 q}{\partial y^2} + k_0^2 q = 0$$

Typical boundary conditions associated to scattering problems:

- ▶ Zero normal velocity (Neumann: prescribed $\partial q / \partial n = q_n$)
- Continuity of pressure (Dirichlet: prescribed q)
- Impedance/porosity (Robin: prescribed linear combination of q_n and q)
- Elastic plate deformation (more on this later)

Sommerfeld radiation condition at infinity (radiates to infinity):

$$\lim_{r \to \infty} r^{\frac{1}{2}} \left(\frac{\partial}{\partial r} - ik_0 \right) q(r, \theta) = 0$$

Let q, v solve the Helmholtz equation in domain \mathcal{D} , then

$$\frac{\partial}{\partial x}\left(v\frac{\partial q}{\partial x} - q\frac{\partial v}{\partial x}\right) + \frac{\partial}{\partial y}\left(v\frac{\partial q}{\partial y} - q\frac{\partial v}{\partial y}\right) = 0.$$

Let q, v solve the Helmholtz equation in domain \mathcal{D} , then

$$\frac{\partial}{\partial x}\left(v\frac{\partial q}{\partial x} - q\frac{\partial v}{\partial x}\right) + \frac{\partial}{\partial y}\left(v\frac{\partial q}{\partial y} - q\frac{\partial v}{\partial y}\right) = 0.$$

Assuming everything converges, Green's theorem implies

$$\int_{\partial \mathcal{D}} \left[\left(v \frac{\partial q}{\partial x} - q \frac{\partial v}{\partial x} \right) dy - \left(v \frac{\partial q}{\partial y} - q \frac{\partial v}{\partial y} \right) dx \right] = 0.$$

Let q, v solve the Helmholtz equation in domain \mathcal{D} , then

$$\frac{\partial}{\partial x}\left(v\frac{\partial q}{\partial x} - q\frac{\partial v}{\partial x}\right) + \frac{\partial}{\partial y}\left(v\frac{\partial q}{\partial y} - q\frac{\partial v}{\partial y}\right) = 0.$$

Assuming everything converges, Green's theorem implies

$$\int_{\partial \mathcal{D}} \left[\left(v \frac{\partial q}{\partial x} - q \frac{\partial v}{\partial x} \right) dy - \left(v \frac{\partial q}{\partial y} - q \frac{\partial v}{\partial y} \right) dx \right] = 0.$$

Choosing $v = e^{-i\beta(\lambda z + \frac{\bar{z}}{\lambda})}$ with $\beta = k_0/2, z = x + iy$ gives

$$\int_{\partial \mathcal{D}} e^{-i\beta(\lambda z + \frac{\bar{z}}{\lambda})} \left[q_n + \beta \left(\lambda \frac{dz}{ds} - \frac{1}{\lambda} \frac{d\bar{z}}{ds} \right) q \right] ds = 0, \qquad \lambda \in \mathcal{C}(\mathcal{D}).$$

Let q, v solve the Helmholtz equation in domain \mathcal{D} , then

$$\frac{\partial}{\partial x}\left(v\frac{\partial q}{\partial x} - q\frac{\partial v}{\partial x}\right) + \frac{\partial}{\partial y}\left(v\frac{\partial q}{\partial y} - q\frac{\partial v}{\partial y}\right) = 0.$$

Assuming everything converges, Green's theorem implies

$$\int_{\partial \mathcal{D}} \left[\left(v \frac{\partial q}{\partial x} - q \frac{\partial v}{\partial x} \right) dy - \left(v \frac{\partial q}{\partial y} - q \frac{\partial v}{\partial y} \right) dx \right] = 0.$$

Choosing $v = e^{-i\beta(\lambda z + \frac{\tilde{z}}{\lambda})}$ with $\beta = k_0/2, z = x + iy$ gives

$$\int_{\partial \mathcal{D}} e^{-i\beta(\lambda z + \frac{\bar{z}}{\lambda})} \left[q_n + \beta \left(\lambda \frac{dz}{ds} - \frac{1}{\lambda} \frac{d\bar{z}}{ds} \right) q \right] ds = 0, \qquad \lambda \in \mathcal{C}(\mathcal{D}).$$

View this as a **Fourier transform** of the boundary integral equations.

Building a Numerical Method

Idea: Expand boundary values in a suitable basis:

$$q(s) = \sum_{j=1}^{N} a_j S_j(s), \quad q_n(s) = \sum_{j=1}^{N} b_j T_j(s)$$

Building a Numerical Method

Idea: Expand boundary values in a suitable basis:

$$q(s) = \sum_{j=1}^{N} a_j S_j(s), \quad q_n(s) = \sum_{j=1}^{N} b_j T_j(s)$$

Let $\hat{f}(\lambda) = \int_{\partial \mathcal{D}} e^{-i\beta(\lambda z(s) + \frac{\bar{z}(s)}{\lambda})} f(s) ds$ and evaluate at λ_i :

$$\sum_{j} a_{j}\beta \left(\lambda \frac{dz}{ds} - \frac{1}{\lambda} \frac{d\bar{z}}{ds}\right) \hat{S}_{j}(\lambda_{i}) + b_{j}\hat{T}_{j}(\lambda_{i}) = 0.$$

Building a Numerical Method

Idea: Expand boundary values in a suitable basis:

$$q(s) = \sum_{j=1}^{N} a_j S_j(s), \quad q_n(s) = \sum_{j=1}^{N} b_j T_j(s)$$

Let $\hat{f}(\lambda) = \int_{\partial \mathcal{D}} e^{-i\beta(\lambda z(s) + \frac{\bar{z}(s)}{\lambda})} f(s) ds$ and evaluate at λ_i :

$$\sum_{j} a_{j}\beta \left(\lambda \frac{dz}{ds} - \frac{1}{\lambda} \frac{d\bar{z}}{ds}\right) \hat{S}_{j}(\lambda_{i}) + b_{j}\hat{T}_{j}(\lambda_{i}) = 0$$

Linear system, row *i* evaluation at λ_i (Fourier collocation):

$$\begin{pmatrix} \text{Matrix formed} \\ \text{from combinations} \\ \text{of} \\ \hat{S}_{j}(\lambda_{i}) \text{ and } \hat{T}_{j}(\lambda_{i}) \end{pmatrix} \begin{pmatrix} a_{1} \\ \vdots \\ a_{N} \\ b_{1} \\ \vdots \\ b_{N} \end{pmatrix} = 0$$

Can generalise to separable PDEs and curved boundaries [4]. Some advantages of the method:

- ▶ Fast (couple of seconds for hundreds of basis functions).
- ▶ Easy to use and code (can be automated [5, 6]).
- ▶ Boundary based (dimensional reduction).
- Avoid evaluations of singular integrals (that arise in other methods such as BEM).
- ▶ Flexible choice of bases...

Single Rigid Plate (Analytic Solution Known)

$\mathcal{D}_1 \colon y > 0$

 $\mathcal{D}_2: y < 0$

Single Rigid Plate (Analytic Solution Known)

$$\mathcal{D}_1 \colon y > 0$$

 $\mathcal{D}_2: y < 0$

Use the symmetry...
For
$$\lambda \in (-1,0) \cup (1,\infty) \cup \{e^{i\theta} : \pi < \theta < 2\pi\}$$
:

$$\int_{-\infty}^{0} e^{-i\beta x(\lambda + \frac{1}{\lambda})} q_y(x,0) dx + \int_{1}^{\infty} e^{-i\beta x(\lambda + \frac{1}{\lambda})} q_y(x,0) dx$$

$$+ \int_{0}^{1} e^{-i\beta x(\lambda + \frac{1}{\lambda})} \frac{\beta}{2} \left(\lambda - \frac{1}{\lambda}\right) [q](x,0) dx = \int_{0}^{1} e^{-i\beta x(\lambda + \frac{1}{\lambda})} \frac{\partial q_I}{\partial y}(x,0) dx.$$

Technical Details

Suitable basis can be predicted from geometry/boundary conditions of the problem (interesting physics).

Technical Details

Suitable basis can be predicted from geometry/boundary conditions of the problem (interesting physics).

Technical Details

Suitable basis can be predicted from geometry/boundary conditions of the problem (interesting physics).

To capture endpoint singularities, expand [q] in terms of weighted Chebyshev polynomials:

$$\sqrt{1 - (2x - 1)^2 \cdot U_n(2x - 1)}.$$

Rapid Convergence!

Figure: Left: Maximum relative error. UT denotes unified transform, BIM denotes boundary integral method of [7]. Right: Analytic solutions [q](x, 0) for different k_0 .

• $q_I \rightsquigarrow K$ collinear plates $\gamma_1, \gamma_2, ..., \gamma_K \rightsquigarrow q$.

• $q_I \rightsquigarrow K$ collinear plates $\gamma_1, \gamma_2, ..., \gamma_K \rightsquigarrow q$.

▶ If plate γ_i elastic, denote plate deformation by η_i then

$$\left(\frac{\partial^4}{\partial x^4} - \frac{k_0^4}{\Omega_i^4}\right)\eta_i = -\frac{\epsilon_i}{\Omega_i^6}k_0^3[q] \quad \text{on} \quad \gamma_i.$$

 ϵ_i =fluid loading (0.0021 for aluminium in air), Ω_i =ratio of the bending wavenumber and the acoustic wavenumber (wobbliness),

[q] =jump in pressure across the plate.

- $q_I \rightsquigarrow K$ collinear plates $\gamma_1, \gamma_2, ..., \gamma_K \rightsquigarrow q$.
- ▶ If plate γ_i elastic, denote plate deformation by η_i then

$$\left(\frac{\partial^4}{\partial x^4} - \frac{k_0^4}{\Omega_i^4}\right)\eta_i = -\frac{\epsilon_i}{\Omega_i^6}k_0^3[q] \quad \text{on} \quad \gamma_i.$$

 ϵ_i =fluid loading (0.0021 for aluminium in air), Ω_i =ratio of the bending wavenumber and the acoustic wavenumber (wobbliness),

[q] =jump in pressure across the plate.

• Kinematic condition $(\eta_i = 0 \text{ if } \gamma_i \text{ rigid})$:

$$k_0^2 \eta_i = \frac{\partial q_I}{\partial y} + \frac{\partial q}{\partial y}$$
 on γ_i .

- $q_I \rightsquigarrow K$ collinear plates $\gamma_1, \gamma_2, ..., \gamma_K \rightsquigarrow q$.
- ▶ If plate γ_i elastic, denote plate deformation by η_i then

$$\left(\frac{\partial^4}{\partial x^4} - \frac{k_0^4}{\Omega_i^4}\right)\eta_i = -\frac{\epsilon_i}{\Omega_i^6}k_0^3[q] \quad \text{on} \quad \gamma_i.$$

 ϵ_i =fluid loading (0.0021 for aluminium in air), Ω_i =ratio of the bending wavenumber and the acoustic wavenumber (wobbliness),

[q] =jump in pressure across the plate.

• Kinematic condition $(\eta_i = 0 \text{ if } \gamma_i \text{ rigid})$:

$$k_0^2 \eta_i = \frac{\partial q_I}{\partial y} + \frac{\partial q}{\partial y}$$
 on γ_i .

At endpoint $x = x_0$ of plate, either $\eta(x_0) = \eta'(x_0) = 0$ (clamped) or $\eta''(x_0) = \eta'''(x_0) = 0$ (free).

How to Cope? Vibrational Modes!

Idea: Expand η_i in eigenfunctions of ∇^4 subject to correct BCs:

 $\nabla^4 f_j = d_j^4 f_j$, clamped/free at endpoints.

Expand:
$$\eta_i(x) \approx \sum_{j=1}^N a_{i,j} f_j(x),$$

$$\Rightarrow \frac{\partial q}{\partial y}(x) \approx -\frac{\partial q_I}{\partial y}(x) + \sum_{j=1}^N k_0^2 a_{i,j} f_j(x)$$

$$[q](x) = -\frac{\Omega_i^6}{k_0^3 \epsilon_i} \left(\frac{\partial^4}{\partial x^4} - \frac{k_0^4}{\Omega_i^4}\right) \eta_i(x)$$

$$\approx -\frac{\Omega_i^6}{k_0^3 \epsilon_i} \sum_{j=1}^N a_{i,j} \left(d_j^4 - \frac{k_0^4}{\Omega_i^4}\right) f_j(x).$$

How to Cope? Vibrational Modes!

Compute f_j, d_j using standard spectral methods (very easy). Easy to compute Fourier transforms:

$$(\lambda^{4} - d_{j}^{4}) \int_{a}^{b} e^{i\lambda x} f_{j}(x) dx = (i\lambda)^{3} [e^{i\lambda x} f(x)]_{x=a}^{b} - (i\lambda)^{2} [e^{i\lambda x} f'(x)]_{x=a}^{b} + i\lambda [e^{i\lambda x} f''(x)]_{x=a}^{b} - [e^{i\lambda x} f'''(x)]_{x=a}^{b}.$$

How to Cope? Vibrational Modes!

Compute f_j, d_j using standard spectral methods (very easy). Easy to compute Fourier transforms:

$$(\lambda^{4} - d_{j}^{4}) \int_{a}^{b} e^{i\lambda x} f_{j}(x) dx = (i\lambda)^{3} [e^{i\lambda x} f(x)]_{x=a}^{b} - (i\lambda)^{2} [e^{i\lambda x} f'(x)]_{x=a}^{b} + i\lambda [e^{i\lambda x} f''(x)]_{x=a}^{b} - [e^{i\lambda x} f'''(x)]_{x=a}^{b}.$$

Upshot: Fast and accurate method able to cope with multiple plates with different physical parameters and geometric configurations. Mixture of elastic rigid plates etc. Can even cope with porous elastic plates.

Elastic Plate Extensions

Far-field Noise

Figure: Far-field directivity for $k_0 = 5$, $\epsilon = 0.0021$ and different l.

Far-field Noise

Figure: Far-field directivity for $k_0 = 50$, $\epsilon = 0.0021$ and different *l*.

Radiated Power

Figure: Relative power level as a function of Ω for $k_0 = 10$, $\epsilon = 0.0021$.

Radiated Power

Figure: Relative power level as a function of $lk_{\rm B}$ $(k_{\rm B} = k_0/\Omega)$.

 Short elastic extensions can provide ample noise reduction, rivalling a fully elastic plate, particularly for high frequencies. (Important for aerodynamic properties!)

- Short elastic extensions can provide ample noise reduction, rivalling a fully elastic plate, particularly for high frequencies. (Important for aerodynamic properties!)
- Low frequency perturbations cannot excite oscillations in very short elastic sections (unless highly flexible).

- Short elastic extensions can provide ample noise reduction, rivalling a fully elastic plate, particularly for high frequencies. (Important for aerodynamic properties!)
- Low frequency perturbations cannot excite oscillations in very short elastic sections (unless highly flexible).
- ▶ If the elastic extension is too short, scattering at the elastic-rigid junction can contribute significantly to the total far-field noise.

- Short elastic extensions can provide ample noise reduction, rivalling a fully elastic plate, particularly for high frequencies. (Important for aerodynamic properties!)
- Low frequency perturbations cannot excite oscillations in very short elastic sections (unless highly flexible).
- ▶ If the elastic extension is too short, scattering at the elastic-rigid junction can contribute significantly to the total far-field noise.
- Different length extensions should be used depending on the frequencies to be reduced.

- Short elastic extensions can provide ample noise reduction, rivalling a fully elastic plate, particularly for high frequencies. (Important for aerodynamic properties!)
- Low frequency perturbations cannot excite oscillations in very short elastic sections (unless highly flexible).
- ▶ If the elastic extension is too short, scattering at the elastic-rigid junction can contribute significantly to the total far-field noise.
- Different length extensions should be used depending on the frequencies to be reduced.
- Future work: consider aerodynamic impact of elastic extensions to balance acoustic and aerodynamic considerations.

Developed a fast and accurate method able to cope with scattering problems that are difficult to analyse via traditional methods (such as Wiener-Hopf).

- Developed a fast and accurate method able to cope with scattering problems that are difficult to analyse via traditional methods (such as Wiener-Hopf).
- Method can be viewed as a Fourier transform version of boundary integral methods, with collocation occurring in Fourier space.

- Developed a fast and accurate method able to cope with scattering problems that are difficult to analyse via traditional methods (such as Wiener-Hopf).
- Method can be viewed as a Fourier transform version of boundary integral methods, with collocation occurring in Fourier space.
- Method is easier to use and more accurate than boundary integral methods (e.g. no singular integrals).

- Developed a fast and accurate method able to cope with scattering problems that are difficult to analyse via traditional methods (such as Wiener-Hopf).
- Method can be viewed as a Fourier transform version of boundary integral methods, with collocation occurring in Fourier space.
- Method is easier to use and more accurate than boundary integral methods (e.g. no singular integrals).
- Suitable basis captures the difficult boundary conditions coupling to the plate deformation.

- Developed a fast and accurate method able to cope with scattering problems that are difficult to analyse via traditional methods (such as Wiener-Hopf).
- Method can be viewed as a Fourier transform version of boundary integral methods, with collocation occurring in Fourier space.
- Method is easier to use and more accurate than boundary integral methods (e.g. no singular integrals).
- Suitable basis captures the difficult boundary conditions coupling to the plate deformation.
- ▶ Current work: extensions to 3D and elastic spheres.

- Developed a fast and accurate method able to cope with scattering problems that are difficult to analyse via traditional methods (such as Wiener-Hopf).
- Method can be viewed as a Fourier transform version of boundary integral methods, with collocation occurring in Fourier space.
- Method is easier to use and more accurate than boundary integral methods (e.g. no singular integrals).
- Suitable basis captures the difficult boundary conditions coupling to the plate deformation.
- ▶ Current work: extensions to 3D and elastic spheres.

All of this can be extended to more complicated geometries [5].

J.W. Jaworski and N. Peake.

Aerodynamic noise from a poroelastic edge with implications for the silent flight of owls. *Journal of Fluid Mechanics*, 2013.

J.F.M. Scott.

Acoustic scattering by a finite elastic strip.

Philosophical Transactions of the Royal Society of London A, 1992.

M.S. Howe.

Structural and acoustic noise produced by turbulent flow over an elastic trailing edge. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1993.

M.J. Colbrook.

Extending the unified transform: curvilinear polygons and variable coefficient PDEs. IMA Journal of Numerical Analysis, 2018.

M.J. Colbrook, L.J. Ayton, and A.S. Fokas.

The unified transform for mixed boundary condition problems in unbounded domains. *Proceedings of the Royal Society A*, 2019.

M.J. Colbrook, A.S. Fokas, and P. Hashemzadeh.

A hybrid analytical-numerical technique for elliptic PDEs. SIAM Journal on Scientific Computing, 2019.

D. Nigro.

Prediction of broadband aero and hydrodynamic noise: derivation of analytical models for low frequency.

PhD thesis, University of Manchester, 2017.