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The infinite-dimensional problem

In discrete setting, operator acting on `2(N):

A =


a11 a12 a13 . . .
a21 a22 a23 . . .
a31 a32 a33 . . .

...
...

...
. . .

 , (Ax)j =
∑
k∈N

ajkxk .

In continuous setting, deal with PDEs, integral operators etc.

Finite Case Infinite Case
Eigenvalues ⇒ Spectrum

Sp(A) = {z ∈ C : A− zI not bounded invertible}
Eigenvectors ⇒ Spectral Measure (normal case)

Goal: compute spectral properties of the operator from matrix elements.



Many applications: quantum mechanics, chemistry, matter physics,
statistical mechanics, optics, number theory, PDEs, mathematics of
information etc.

Mathematicians and physicists contributing to computational spectral
theory form a vast set including:

D. Arnold (Minnesota), W. Arveson (Berkeley), A. Böttcher (Chemnitz),
W. Dahmen (South Carolina), E. B. Davies (King’s College London), P.
Deift (NYU), L. Demanet (MIT), C. Fefferman (Princeton), G. Golub
(Stanford), A. Iserles (Cambridge), W. Schlag (Yale), E. Schrödinger
(DIAS), J. Schwinger (Harvard), N. Trefethen (Oxford), V. Varadarajan
(UCLA), S. Varadhan (NYU), J. von Neumann (IAS), M. Zworski
(Berkeley).



Can this always be done (for general classes of operators)?



Can this always be done (for general classes of operators)?

“Most operators that arise in practice are not presented in a representation
in which they are diagonalized, and it is often very hard to locate even a
single point in the spectrum... Thus, one often has to settle for numerical
approximations [to the spectrum], and this raises the question of how to
implement the methods of finite dimensional numerical linear algebra to
compute the spectra of infinite dimensional operators. Unfortunately, there
is a dearth of literature on this basic problem and, so far as we have been
able to tell, there are no proven techniques.”

— W. Arveson, UC Berkeley (1994)
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Partial answer: can compute spectra of general bounded operators on
`2(N) (in Hausdorff metric) using three successive limits1

lim
n3→∞

lim
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Γn3,n2,n1(A) = Sp(A).

Turns out this is sharp! Hence impossible from numerical point of view.

1Hansen. JAMS (2011)
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Example: Bounded Diagonal Operators (Very Easy)

A =


a1

a2

a3

. . .


If Γn(A) = {a1, ..., an} then Γn(A)→ Sp(A) in Hausdorff metric.

Also have Γn(A) ⊂ Sp(A).

This is optimal from a foundations point of view.



Example: Compact Operators (Still Easy)

A =


a11 a12 a13 . . .
a21 a22 a23 . . .
a31 a32 a33 . . .

...
...

...
. . .

 , compact

If Γn(A) = Sp(PnAPn), then Γn(A)→ Sp(A) in Hausdorff metric.

Known for decades.

Q: Can we gain error control as before?

No algorithm can gain error control on the whole class (even for
self-adjoint).
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What about Jacobi operators?
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a1 b1
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. . .
. . .


This problem has been open for decades.

What about sparse normal operators? Surely this is much harder?!

New result: Large class Ω (covering arguably most applications and
including sparse normal) such that we can compute Γn(A)→ Sp(A) and
En(A) ↓ 0 for A ∈ Ω with

dist(z ,Sp(A)) ≤ En(A), ∀z ∈ Γn(A).

Paradox: Easier problem than compact operators!
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Foundations of Infinite-Dimensional Spectral Computations

How: Deal with operators directly, instead of previous ‘truncate-then-solve’

⇒ Compute many spectral properties for the first time.

Framework: Classify problems in a computational hierarchy (the SCI
hierarchy) measuring their difficulty and the optimality of algorithms.2

⇒ Algorithms that realise the boundaries of what computers can achieve.

NB: This holds regardless of model of computation - measure the intrinsic
difficulty of these problems.

Common theme in examples of this talk: use the resolvent (A− zI )−1

2Also has deep connections with logic and descriptive set theory: C. Preprint (2019)



Structure of the Hierarchy

General Spectral
Problem

Spectral Measures
(in this talk)Spectra

(in this talk)

Spectra of
Compact



Example 1: Computing spectra with error control

Computing the resolvent norm γ(z) := ‖(A− zI )−1‖−1

⇓

First algorithm that computes spectra of a very general class of operators.
Also does so with (rigorous provable) error control.



Definition (Dispersion: off-diagonal decay)

Dispersion of A bounded by function f : N→ N and null sequence {cn} if

max{‖(I − Pf (n))APn‖, ‖PnA(I − Pf (n))‖} ≤ cn.

 



Definition (Controlled growth of the resolvent: well-conditioned)

Continuous increasing function g : [0,∞)→ [0,∞) with g(x) ≤ x.
Controlled growth of the resolvent by g if

g(dist(z ,Sp(A))) ≤ ‖(A− zI )−1‖−1 ∀z ∈ C.
Measures conditioning of the problem through

{z ∈ C : ‖(A− zI )−1‖−1 ≤ ε} =: Spε(A) =
⋃
‖B‖≤ε

Sp(A + B).

Normal operators (A commutes with A∗) well-conditioned with∥∥(A− zI )−1
∥∥−1

= dist(z ,Sp(A)), g(x) = x .
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⋃
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Normal operators (A commutes with A∗) well-conditioned with∥∥(A− zI )−1
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= dist(z ,Sp(A)), g(x) = x .

Theorem (C., Roman, Hansen. PRL (2019))

Know f , g ⇒ can compute Sp(A) with error control.



Step 1: Approximate locally via smallest singular value:

γn(z) := min{σ1(Pf (n)(A− zI )Pn), σ1(Pf (n)(A∗ − zI )Pn)}+ cn.

This converges locally uniformly down to γ(z) = ‖(A− zI )−1‖−1.

Step 2: Bound the distance to the spectrum:

γ(z) ≤dist(z , Sp(A)) ≤ g−1(γ(z)) ≤ g−1(γn(z)).

Step 3: Find (almost) local minimisers and output Γn(A) with

Γn(A)→ Sp(A), dist(z ,Sp(A)) ≤ g−1(γn(z)), sup
z∈Γn(A)

g−1(γn(z))→ 0

NB: Without either f or g , constructing an algorithm convergent to the
spectrum is impossible.



New exemplar of spectral computation

Method is:

Local and parallelisable.

Convergent for first time.

Explicitly bounds the error:

Error ≤ an ↓ 0.

Optimal from foundations point of view.

HYSICAL
EVIEW
ETTERS

P
R
L
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Articles published week ending

Extends to unbounded operators and PDEs with coefficients of locally
bounded total variation (e.g. algorithms point sample coefficients).

NB: Was an open problem since Schwinger’s work in the 1960s to do this
for general Schrödinger operators (even without error control).

Paradox: Easier problem than compact operators!
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Example: Operators in condensed matter physics

Figure: Left: Dan Shechtman, Nobel Prize in Chemistry 2011 for discovery of
quasicrystal. Right: Diffraction pattern of a quasicrystal.

Magnetic properties of quasicrystal.

Hard problem - no previous method even converges to spectrum.



Example: Operators in condensed matter physics

Finite truncations
False ‘solutions’.

Unreliable
Does not converge

No error control

Infinite-dimensional techniques
First convergent computation.

Reliable
Converges

Error control



Example 2: Computing spectral measures

Computing the action of the resolvent (A− zI )−1x with asymptotic error
control as z approaches R.

⇓

First algorithm that computes spectral measures (and spectral
decompositions) of general self-adjoint operators - ‘diagonalisation.’



If A normal, associated projection-valued measure EA s.t.

Ax =

∫
Sp(A)

λdEA(λ)x, ∀x ∈ D(A),

Allows computation of functional calculus, has interesting physics etc.

Most previous efforts to develop computational tools have focused on
specific examples where analytical formulas are available, or on limit
theorems which do not compute the full measure.



Idea: Use the formula

(A− zI )−1 − (A− zI )−1

2πi
=

∫
Sp(A)

P(Re(z)− λ, Im(z))dEA(λ),

P(x , ε) = επ−1/(x2 + ε2): convolution with Poisson kernel.

Smoothed version of measure.

Suppose we compute with a truncation parameter n...

WARNING 1: If we fix ε, then too smooth even as n→∞.

WARNING 2: If we truncate to compute LHS, becomes unstable as ε ↓ 0.

Q: Do we need two limits? I.e. n→∞ then ε ↓ 0?

Theorem (C. Preprint (2019))

Know f ⇒ can compute measure in one limit (no error control possible)

This is through a rectangular least squares type problem that computes
(A− zI )−1x with (asymptotic) error control. Balance n and ε adaptively.
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Accelerating convergence with rational kernels

Idea: Replace Poisson kernel with rational kernel

K ε(x) =
1

2πi

n1∑
j=1

αj

x − εaj
− 1

2πi

n2∑
j=1

βj
x − εbj

.

Can compute convolution with error control through

〈dE ∗ K εx, y〉(x)

=
1

2πi

 n1∑
j=1

αj〈(A− (x + εaj))−1x, y〉 −
n2∑
j=1

βj〈(A− (x + εbj))−1x, y〉

 .
Theorem

Let n1 = n2 = m ∈ N and fix aj in UHP, bj in LHP. Then there exists
unique {αj , βj} with the following. For any 〈dE ∗ K εx, y〉 absolutely
continuous locally around x with Cα Radon–Nikodym derivative F and
α ≤ m, it holds that (up to a possible factor of log(ε−1))

|〈dE ∗ K εx, y〉(x)− F (x)| = O(εα).



Example: Jacobi Polynomials

dµJ =
(1− x)α(1 + x)β

N(α, β)
dx = fα,β(x)dx ,

10-4 10-3 10-2 10-1 100
10-5

10-4

10-3

10-2

10-1

100

10-4 10-3 10-2 10-1 100
10-15

10-10
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Figure: Left: Pointwise errors for x = −1, 0, 1 for m = 1 and α = 0.7, β = 0.3.
Right: Pointwise errors for x = −0.99, 0, 1 for m = 10 and α = 0.7, β = −0.3.



Eigenvalue hunting without spectral pollution

Can extend to compute decompositions (of measures and spectral sets).

Example: Dirac operator.

Describes the motion of a relativistic spin-1/2 particle.

Essential spectrum given by R\(−1, 1)⇒ spectral pollution!

Consider radially symmetric potential, coupled system on half-line:

DV =

(
1 + V (r) − d

dr + κ
r

d
dr + κ

r −1 + V (r)

)
.

Map to [−1, 1] using

x =
r − L

r + L

and compute (A− zI )−1x using the ultraspherical method.



Abs. Error
j Ej+1 − Ej n = 102 n = 104 n = 106

0 2.94× 10−1 1.16× 10−4 1.92× 10−9 3.08× 10−14

1 6.14× 10−2 2.23× 10−5 3.68× 10−10 6.55× 10−15

2 2.04× 10−2 6.17× 10−6 1.01× 10−10 1.78× 10−15

3 9.02× 10−3 2.41× 10−6 3.95× 10−11 5.55× 10−16

4 4.74× 10−3 1.17× 10−6 1.90× 10−11 1.11× 10−16

5 2.78× 10−3 6.47× 10−7 1.05× 10−11 1.11× 10−16

6 1.77× 10−3 3.94× 10−7 6.42× 10−12 1.11× 10−16

7 1.20× 10−3 2.57× 10−7 4.19× 10−12 1.11× 10−16

8 8.45× 10−4 1.70× 10−7 2.88× 10−12 2.22× 10−16

9 6.18× 10−4 8.80× 10−8 2.07× 10−12 1.11× 10−16

10 4.66× 10−4 3.68× 10−8 1.53× 10−12 1.11× 10−16

100 6.19× 10−7 n/a 2.55× 10−15 2.55× 10−15

500 5.09× 10−9 n/a n/a 1.11× 10−12

1000 6.39× 10−10 n/a n/a 4.00× 10−13

NB: This problem is hard! Previous quadratic projection methods
compute first four {E0,E1,E2,E3} to at most three digits.



Results in this talk:

Can compute spectra of a large class of operators with error control.
New algorithm is fast, local and parallelisable.

Can compute spectral measures and spectral decompositions through
resolvent. Can be combined with state-of-the-art PDE methods.

Also have foundations for: spectral type (pure point, absolutely
continuous, singularly continuous), Lebesgue measure and fractal
dimensions of spectra, discrete spectra, essential spectra, eigenvectors +
multiplicity, spectral radii, essential numerical ranges, geometric features
of spectrum (e.g. capacity), spectral gap problem, ...

Ongoing and future work: foundations of computational PDEs,
foundations of (stable) neural networks, and computer-assisted proofs.

Coming soon: high-performance numerical package with resolvent based
algorithms for discrete and continuous problems (with Andrew Horning).

For papers solving above problems, classifications in the SCI hierarchy and
numerical code: http://www.damtp.cam.ac.uk/user/mjc249/home.html
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