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Sketch of talk

Goal: Numerically solve scattering problems in applications with
complicated BCs. Want: accurate, fast, flexible (+ easy-to-use?).

Outline (3 fun examples):

Building a numerical method

BC I: Porosity (variable Robin)

Application I: Silent flight of owls

BC II: Elasticity (4th order coupled ODE)

Application II: Acoustic black holes

BC III: Forchheimer (nonlinear inertial correction)

Application III: Porous foam aerofoils without turbulent simulations

Conclusions and future work



Scattering problem

Acoustic 2D scattering governed by the Helmholtz equation

∂2φ

∂x2
+
∂2φ

∂y2
+ k20φ = 0, (x , y) ∈ D.

Focus on ∂D = {(x , 0) : x ∈ [−1, 1]}.
Sommerfeld radiation condition at infinity (radiates to infinity):

lim
r→∞

r
1
2

(
∂

∂r
− ik0

)
φ(r , θ) = 0.

NB: Multiple (non-touching) plates dealt with similarly.



Simple idea: Separation of variables

Elliptic coordinates x = cosh(ν) cos(τ), y = sinh(ν) sin(τ)
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φ(ν, τ) =
∞∑

m=1

amsem(τ)Hsem(ν).

Will determine the unknown coefficients using collocation.



Angular Mathieu functions

Expand in a rapidly convergent sine series:

sem(Q; τ) = sem(τ) =
∞∑
l=1

B
(m)
l sin(lτ), Q = k20/4.

For even order solutions, eigenvalue problem becomes
22 − λ2m Q

Q 42 − λ2m Q
Q 62 − λ2m Q

. . .
. . .

. . .



B

(2m)
2

B
(2m)
4

B
(2m)
6
...

 = 0.

Similar system for odd order solutions.



Radial Mathieu functions

Expand in a rapidly convergent Bessel function series:

Hsem(ν) =
∞∑
l=1

(−1)l+mB
(m)
l

Cm

[
Jl−1(e−ν

√
Q)H

(1)
l+pm

(eν
√
Q)

− Jl+pm(e−ν
√
Q)H

(1)
l−1(eν

√
Q)
]
,

where pm = 1 if m is even and pm = 0 if m is odd.

(Convention: Cm such that Hse′m(0) = 1.)

Warning: Care needed in some regimes to avoid underflow and overflow
associated with cancellations between the Bessel and Hankel functions.
Solve this using asymptotics (details in C. & Kisil 2020).

Bottom line: With a bit of care, both types of Mathieu functions can be
accurately and efficiently evaluated ⇒ can be used with collocation.



Singular integral equation interpretation

Green’s function that vanishes on the horizontal axis

G (x , y ; x̃ , ỹ) =
H

(1)
0 (k0

√
(x − x̃)2 + (y − ỹ)2)− H

(1)
0 (k0

√
(x − x̃)2 + (y + ỹ)2)

4i
.

We get an explicit diagonalisation for x ∈ [−1, 1]:

∂

∂y

∫ 1

−1
sem(cos−1(x̃))∂ỹG (x , 0; x̃ , 0)dx̃ =

dm
sin(cos−1(x))

sem(cos−1(x)).

Examples in this talk can be recast in terms of this double-layer potential.

We can now build a collocation method!



BC I: Porosity (variable Robin)
Incident field with velocity potential φI. Impedance BC:

∂φ

∂y

∣∣∣
y=0

(x) +
∂φI
∂y

∣∣∣
y=0

(x) = µ(x)[φ](x), x ∈ [−1, 1].

Truncate expansion to N terms, the integral equation becomes

N∑
n=1

ansen
(
cos−1 (x)

) [
1− 2Hsen(0)µ(x)

√
1− x2

]
= −

√
1− x2 · ∂φI

∂y
(x).

Collocate at N Cheb. pts (NB: reformulate as diagonal system if µ=0).

NB: Gain sine series for far-field directivity, D(θ), defined via

φ(r , θ) ∼ D(θ)
eiwr√
r
, as r →∞.

Total far-field noise, measured in dB:

P = 10 log10

(∫ π

0
|D(θ)|2dθ

)
.



Application I: Silent flight of owls

Porosity promotes the silent flight of owls?

Wing measurements ⇒ µ.
Owl vs. buzzard in [Ayton, C., Geyer, Chaitanya & Sarradj 2020].
First study of variable porosity parameter.
Goal: porosity adapted aerofoils for noise reduction



Application I: Silent flight of owls
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∆P for a near-field quadrupole source at x0 = 0.95 and various y0. Negative
values indicate the owl is quieter than the buzzard by that many dB.

Further findings:

Leading-edge noise also reduced for owl (despite similar µ there).

Porosity decreasing from trailing edge to leading edge can be quieter
than constant porosity (variably porous plate can induce a
destructively interfering leading-edge field)



Application I: Silent flight of owls
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Relative errors for [φ] (left, L2 norm error over [−1, 1]) and P (right).



BC II: Elasticity (4th order coupled ODE)

Porous plate with evenly-spaced circular apertures of radius R and
fractional open area αH . Plate deformation η(x) satisfies:

B0(x)η(x) +
4∑

l=1

Bl(x)
∂ lη

∂x l
(x) = −ρf c20

(
1 +

4αH

π

)
[φ](x).

Kinematic condition for incident field φI:

∂φ

∂y

∣∣∣
y=0

(x) +
∂φI
∂y

∣∣∣
y=0

(x) = k20

[
(1− αH)η(x) + αHηa(x)

]
.

ηa = 2[φ]/(πk20R) = average fluid displacement in apertures.

Endpoint ±1 either free η′′ = η′′′ = 0 or clamped η = η′ = 0.



BC II: Elasticity (4th order coupled ODE)
Expansion of η in Chebyshev polynomials

η(x) =
N−1∑
j=0

bjTj(x).

Collocate thin plate equation at N − 4 Chebyshev points

N−1∑
j=0

bjπ

2ρf c20

4∑
l=0

Bl(x)T
(l)
j (x) + (π + 4αH)

M∑
m=1

amsem
(
cos−1(x)

)
Hsem(0) = 0.

Collocate kinematic relation at M Chebyshev points√
1− x2 · ∂φI

∂y
(x) +

M∑
m=1

amsem
(
cos−1(x)

) [
1− 4αHHsem(0)

πR

√
1− x2

]

= k2
0 (1− αH)

√
1− x2

N−1∑
j=0

bjTj(x).

+ 4 relations for η BCs ⇒ (M + N)× (M + N) system for coefficients.



Application II: Acoustic black holes

Aluminium plate of thickness h(x) with

B(x) =
Eh(x)3

12(1− ν2)
, E = 69× 109Pa, ν = 0.35

d2

dx2
(
B(x)η′′(x)

)
−m0h(x)η(x) = −ρf c20

(
1 +

4αH

π

)
[φ](x)

First study of interaction of acoustic blackholes with incident field.
Goal: can acoustic blackholes absorb most of incident field?



Incident plane wave, k0 = 20, h(x) = 0.001x2 + h0
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Left: h0 = 10−6. Right: h0 = 10−3.



Typical convergence behaviour
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Incident plane wave for h0 = 10−6 (dashed) and h0 = 10−3 (full).

Several digits of rel. accuracy, even for (nearly) singular elastic BCs!



BC III: Forchheimer (nonlin. inertial correction for large Re)

∂φ

∂y

∣∣∣
y=0

(x) +
∂φI
∂y

∣∣∣
y=0

(x) = C0(x)ηa|y=0, x ∈ [−1, 1].

Nonlinear correction important for foam-like materials:

[φ] = C1(x)ηa + C2(x)ηa|ηa|, x ∈ [−1, 1].

C1,C2 defined in terms of physical parameters. Expand ηa via

ηa(x) =
N−1∑
j=0

bjTj(x).

Collocate nonlinear coupling at N Chebyshev points

2
M∑

m=1

amsem
(
cos−1(x)

)
Hsem(0) =

C1(x) + C2(x)

∣∣∣∣∣∣
N−1∑
j=0

bjTj(x)

∣∣∣∣∣∣
N−1∑

j=0

bjTj(x)

 .
Collocate kinematic relation at M Chebyshev points√

1− x2 · ∂φI
∂y

(x) +
M∑

m=1

amsem
(
cos−1(x)

)
=
√

1− x2 · C0(x)
N−1∑
j=0

bjTj(x).



BC III: Forchheimer (nonlin. inertial correction for large Re)

Results in nonlinear system:

Av + (Bv) ◦ |Cv| = c

A =

(
A11 A12

A21 A22

)
,B =

(
0 0

0 B22

)
,C =

(
0 0

0 C22

)
.

Decouple via
v1 = A−111 (c1 − A12v2) .

Solve following via Newton’s method:[
A22 − A21A

−1
11 A12

]
v2 + (B22v2) ◦ |C22v2| = −A21A

−1
11 c1.

In all tested cases:

< 10 iterates needed.

Initial vector chosen to be solution of linear model.

Deflation yielded no further solutions.



Typical convergence behaviour

C0(x) = k20 , C1(x) = ik0(1.2 + sin(20x)), C2(x) = i20k20 (x2 + 1),
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Convergence of the method for the linear case (left) and non-linear case (right).



Application III: Porous foam aerofoils without turbulent sim.

Comparison with Large Eddy Simulations of [Koh et. al. 2018]
(quadrupole sound source at trailing edge).
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impermeable/solid, and red to porous. Data computed in less than 0.1s on six
year-old laptop



Concluding Remarks
Numerical:

This simple and flexible approach works well in different scenarios and
applications (low-mid frequency scattering off . 100 plates)

More accurate and faster than basic BEM (comparison in papers).

Can “diagonlisation” of SIEs be made more general and automatic?

Can we cope with different domains, e.g. “V” shaped boundaries?

Can we make it faster (e.g. sparse methods, hierarchical solvers ...)
to deal with > 100 scatterers (e.g. model barbules of owl’s wing)?

How to deal with polylogarithmic singularities more effectively?

Extension to unbounded plates underway (with A. Hales).

Physical:

(I) Porosity distributions important due to destructive interferences.

(II) Acoustic BHs can lead to “transparent” plates and counter-intuitive
scattering/sound absorption.

(III) At mid-high k0 and high permeability, inertial effects can dominate.
Inclusion corrects prev. models’ over-prediction of noise reduction!
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If you have suggestions or problems for collaboration, please get in touch!



Quadrupole at (x , y) = (−1, 0.001), k0 = 25, h(x) = 0.001(x + 1)2 + h0
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Left: h0 = 10−6. Right: h0 = 10−3.



Comparison with BEM

Compare with Cavalieri, Wolf, & Jaworski, “Numerical solution of acoustic
scattering by finite perforated elastic plates”, Proceedings A 2016.

Uses BEM method with basis functions constructed using vibration modes
of the plate (computed using standard spectral methods).

(1− αH)
∂4η

∂x4
− k40

Ω4
η = −

(
1 +

4αH

π

)
ε

Ω6
k30 [φ],

∂φ

∂y

∣∣∣
y=0

+
∂φI
∂y

∣∣∣
y=0

= (1− αH)k20η +
2αH

πR
[φ].

Constant parameters:
Ω = vacuum bending wave Mach number
ε = 0.0021 = fluid-loading
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Left: Convergence of elastic BEM for k0 = 0.5 (100 modes). Right: Same but for
k0 = 20 (number of modes shown).
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Case Material Ref. (see [C. & Ayton 2020])
1 Impermeable -
2 Alantum NiCrAl open-cell metal foam [Rubio et. al. 2019]
3 Sintered PE granulate (Porex) [Geyer et. al. 2014]
4 Sintered SUS316L powder (Group 2, 9mm) [Zhong et. al. 2018]
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Right: Results for an NACA 4-digit aerofoil.
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