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Infinite-dimensional operators: Example
Consider discrete Schrödinger operators acting on 

Can we compute the spectrum for general potentials?
A rich problem in many areas of physics and (pure & applied) maths!



The infinite-dimensional problem

Finite Dimensions Infinite Dimensions

Eigenvalues Spectrum

Eigenvectors or states Spectral Measure (includes states)

Goal: compute spectral properties of the operator from matrix elements
Can extend to PDEs (e.g. sample coefficients)
Much harder and more subtle than finite dimensions!



Computational Spectral Problem
Quantum mechanics and       algebras, structural mechanics, optics, acoustics, 
statistical physics, number theory, matter physics, analysis of PDEs, data analysis, 
neural networks and AI, nuclear scattering, computational chemistry…

Pretty much every area of physics and applied maths!

Physicists and mathematicians contributing to computational spectral theory: 
D. Arnold (Minnesota), W. Arveson (Berkeley), A. Böttcher (Chemnitz), W. Dahmen (South 
Carolina), E. B. Davies (KCL), P. Deift (NYU), L. Demanet (MIT), C. Fefferman (Princeton), G. 
Golub (Stanford), A. Iserles (Cambridge), W. Schlag (Yale), E. Schrödinger (DIAS), J. Schwinger 
(Harvard), N. Trefethen (Oxford), V. Varadarajan (UCLA), S. Varadhan (NYU), J. von Neumann 
(IAS), M. Zworski (Berkeley),...

Extremely well studied for over 50 years by many “heavyweights”!

However, computing spectra is notoriously hard…



London Millennium Bridge: 
When computing spectra 
goes badly wrong!

• Opened on 10 June 2000.

• Spectra correspond to vibrations 
or “resonances” of bridge.

• Unexpected resonances caused 
bridge closure on 12 June.

• Closed for two years and cost 
several million pounds to fix.



Quasicrystal example

Apply perpendicular magnetic field.
Hard problem - no previous method converges to spectrum.







Example I: Diagonal (very easy)

If Γ𝑛𝑛(𝐴𝐴) = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛}, then Γ𝑛𝑛(𝐴𝐴) ⟶ Sp(𝐴𝐴) in the Hausdorff metric.

Also have Γ𝑛𝑛(𝐴𝐴) ⊆ Sp(𝐴𝐴).

This is optimal from a foundations point of view.



Example II: Compact (still easy)

If Γ𝑛𝑛(𝐴𝐴) = Sp(𝑃𝑃𝑛𝑛𝐴𝐴𝑃𝑃𝑛𝑛), then Γ𝑛𝑛(𝐴𝐴) ⟶ Sp(𝐴𝐴) in the Hausdorff metric.

Known for decades.

BUT no error control possible (even for self-adjoint).



Example III: Jacobi (hard?!)

This problem has been open for decades.

What about sparse normal operators? Surely this is even harder?!



Paradox
New result: Large class Ω (covering arguably most applications and 
including sparse normal) such that we can compute Γ𝑛𝑛(𝐴𝐴) ⟶ Sp(𝐴𝐴)
and E𝑛𝑛(𝐴𝐴) ↓ 0 for 𝐴𝐴 ∈ Ω

dist 𝑧𝑧, Sp 𝐴𝐴 ≤ E𝑛𝑛 𝐴𝐴 , for all 𝑧𝑧 ∈ Γ𝑛𝑛(𝐴𝐴).

Paradox: Easier problem than compact operators! Up to controllable 
error bound – as easy as diagonal operators.

Also for each 𝑧𝑧 ∈ Γ𝑛𝑛(𝐴𝐴), compute approximate state 𝑣𝑣𝑛𝑛,𝑧𝑧 with

𝑣𝑣𝑛𝑛,𝑧𝑧 = 1, (𝐴𝐴 − 𝑧𝑧)𝑣𝑣𝑛𝑛,𝑧𝑧 ≤ E𝑛𝑛 𝐴𝐴



What about Schrödinger operators?
Consider self-adjoint Schrödinger operators −∇2 + V on 𝐿𝐿2(ℝ𝑑𝑑).
Can we compute spectra from sampling V?

NB: Open problem since Schwinger in1960s to do this for general case.

New result: If 𝑉𝑉 has locally bounded total variation and grows at most 
polynomially at infinity then yes! And with error control as before.

Paradox: Easier problem than compact operators!

Can also be extended to many non-self-adjoint Schrödinger operators, 
singular potentials, more general partial differential operators etc.



New Algorithm (discrete case)
Consider matrix representation of general bounded operator

Dispersion bounded by                   and null sequence          if 



What does this mean?

Treats infinite dimensional operator directly via finite dimensional 
numerical linear algebra techniques! 

Rectangular truncations
• No need to apply boundary 

conditions
• Algorithm captures the correct 

interactions of the first 𝑛𝑛 basis sites



Continuous increasing function                                       with 
Controlled growth of the resolvent by     if

Measures conditioning of the problem

Normal operators well-conditioned with

Theorem: Know     and      ⇒ compute spectrum with error control!



Step 1: Approximate locally via smallest singular value:

γn(z) := min{σ1(Pf (n)(A− z)Pn), σ1(Pf (n)(A∗ − z)Pn)}+ cn.

This converges locally uniformly down to γ(z) = ‖(A− z)−1‖−1.

Step 2: Bound the distance to the spectrum:

γ(z) ≤dist(z , Sp(A)) ≤ g−1(γ(z)) ≤ g−1(γn(z)).

Step 3: Find (almost) local minimisers and output Γn(A) with

Γn(A)→ Sp(A), dist(z , Sp(A)) ≤ g−1(γn(z)), sup
z∈Γn(A)

g−1(γn(z))→ 0

NB: Without either f or g , constructing an algorithm convergent to the
spectrum is impossible (even dropping error control).



Example: Laplacian on Penrose tiling







Example: 𝒫𝒫𝒫𝒫 symmetry breaking

• Aperiodic Hamiltonian:

(𝐻𝐻𝐻𝐻)𝑛𝑛= 𝐻𝐻𝑛𝑛−1 + 𝐻𝐻𝑛𝑛+1 + (cos 𝑛𝑛 + 𝑖𝑖𝛾𝛾sin(𝑛𝑛)) 𝐻𝐻𝑛𝑛, 𝑛𝑛 ∈ ℤ

• Increase 𝛾𝛾 to get complex spectrum

• Phase transition depends on boundary conditions

• Rigorously compute phase transition (𝛾𝛾𝑃𝑃𝑃𝑃 ≈ 1) and pseudospectrum:
Sp𝜀𝜀 𝐻𝐻 = 𝑧𝑧 ∈ ℂ: 𝐻𝐻 − 𝑧𝑧 −1 ≥ 𝜀𝜀−1 =∪ 𝐵𝐵 ≤𝜀𝜀 Sp(𝐻𝐻 + 𝐵𝐵)

• Algorithm computes this with error control (no 𝑔𝑔 required)





Problems with previous methods (general case open >50 years):
• Spurious modes or false solutions
• Not detecting all of spectrum (bridge example)
• Dealing with unbounded domains
• Figuring out if we have converged yet (only have heuristics)

New method:
• Local and parallelisable.
• Convergent for first time.
• Faster than previous methods.
• Explicitly bounds the error of the output.
• Optimal (prove no method can do better).

Extends to unbounded operators and PDEs with coefficients of 
locally bounded total variation (e.g. point sample coefficients).

Made the front cover of Physical Review Letters

New exemplar of spectral computation?



Programme: The Foundations of Infinite-
Dimensional Spectral Computations

• Deal with operators directly, instead of previous “truncate-then-solve”

• Classify problems in a computational hierarchy (the SCI hierarchy) 
measuring their intrinsic difficulty and the optimality of algorithms.*

• Also have foundations for: spectral type (pure point, absolutely 
continuous, singularly continuous), Lebesgue measure and fractal 
dimensions of spectra, discrete spectra, essential spectra, eigenvectors 
+ multiplicity, spectral radii, essential numerical ranges, geometric 
features of spectrum (e.g. capacity), spectral gap problem, spectral 
measures, ...

*This holds regardless of model of computation (Turing, analog,…) – some nice links with descriptive set theory.



Spectral measures

• “Diagonalise”:

• Many applications have a continuous spectral component.

• Crucial in: quantum mechanics, scattering in particle physics, 
correlation in stochastic processes/signal-processing, fluid stability, 
resonances, density-of-states in materials science, orthogonal 
polynomials, random matrix theory, evolution PDEs,…

• Problem: current methods restricted to operators with lots of structure 
(typically small perturbations of trivial cases)

Spectral measure



• For 

• Smoothed convolution with Poisson kernel (cf. Stone’s formula).

• Converges weakly as 

• This idea is used in condensed matter physics (e.g. “Lorentz” kernel), 
DOS calculations, autocorrelation functions, plasma physics, etc.

Extending ideas from physics



Example: Magnetic Graphene



Square truncation 1: Fix 𝑁𝑁, decrease 𝜀𝜀






Square truncation 2: Fix 𝜀𝜀, increase 𝑁𝑁






Theorem: If we know 𝑓𝑓, we can compute in one limit!

• Rectangular least squares type problem that computes 
• Need to choose 𝑁𝑁(𝜀𝜀) adaptively.



Accelerating Convergence

• New idea: Replace Poisson kernel with general rational function for full 
infinite-dimensional operator through computing                      

⇒ Compute measures with error control and high order of convergence 
for general operators! Even PDEs, integral operators,…

• Machinery of high order rational kernels
• (Pointwise) If measure is locally 𝐶𝐶𝑛𝑛+𝛼𝛼, get pointwise rate of 𝑂𝑂(𝜀𝜀𝑛𝑛+𝛼𝛼).
• (Average) If measure is locally 𝑊𝑊𝑛𝑛,𝑝𝑝, get 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙

𝑝𝑝 rate of 𝑂𝑂(𝜀𝜀𝑛𝑛).



Describes relativistic electron, gap in essential spectrum
⇒ spurious solutions with current methods.

Example: Dirac operator



Conclusion
• Can compute spectra of a large class of operators with error control.
• New algorithm is fast, local and parallelisable.
• Methods extend to other problems (e.g. spectral measures) and classify 

problems into a hierarchy telling us what is possible.
Ongoing and future work:

• Applications in physics, e.g. materials science
• Other problems in QM: DFT etc.?
• Infinite back to finite? E.g. can acceleration be applied to DOS?
• Foundations of computational PDEs (e.g. Schrödinger equations)
One reason I wanted to give talk was to discuss other future directions
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For further papers in this program, classifications in the SCI hierarchy and 
numerical code: http://www.damtp.cam.ac.uk/user/mjc249/home.html

If you have further ideas or problems for collaboration, please get in touch!

http://www.damtp.cam.ac.uk/user/mjc249/home.html
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